
fnins-16-848737 May 9, 2022 Time: 9:47 # 1

ORIGINAL RESEARCH
published: 11 May 2022

doi: 10.3389/fnins.2022.848737

Edited by:
Oscar Arias-Carrion,

Hospital General Dr. Manuel Gea
González, Mexico

Reviewed by:
Marc Sebastián-Romagosa,

g.tec Medical Engineering GmbH,
Austria

Anthony Zanesco,
University of Miami, United States

*Correspondence:
Yu Pan

panyu@btch.edu.cn
Weibei Dou

douwb@tsinghua.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Brain Imaging Methods,
a section of the journal

Frontiers in Neuroscience

Received: 05 January 2022
Accepted: 08 April 2022
Published: 11 May 2022

Citation:
Hao Z, Zhai X, Cheng D, Pan Y

and Dou W (2022) EEG
Microstate-Specific Functional

Connectivity and Stroke-Related
Alterations in Brain Dynamics.

Front. Neurosci. 16:848737.
doi: 10.3389/fnins.2022.848737

EEG Microstate-Specific Functional
Connectivity and Stroke-Related
Alterations in Brain Dynamics
Zexuan Hao1, Xiaoxue Zhai2, Dandan Cheng2, Yu Pan2*† and Weibei Dou1*†

1 Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology (BNRist),
Tsinghua University, Beijing, China, 2 Department of Rehabilitation Medicine, School of Clinical Medicine, Beijing Tsinghua
Changgung Hospital, Tsinghua University, Beijing, China

The brain, as a complex dynamically distributed information processing system, involves
the coordination of large-scale brain networks such as neural synchronization and
fast brain state transitions, even at rest. However, the neural mechanisms underlying
brain states and the impact of dysfunction following brain injury on brain dynamics
remain poorly understood. To this end, we proposed a microstate-based method
to explore the functional connectivity pattern associated with each microstate class.
We capitalized on microstate features from eyes-closed resting-state EEG data to
investigate whether microstate dynamics differ between subacute stroke patients
(N = 31) and healthy populations (N = 23) and further examined the correlations between
microstate features and behaviors. An important finding in this study was that each
microstate class was associated with a distinct functional connectivity pattern, and
it was highly consistent across different groups (including an independent dataset).
Although the connectivity patterns were diminished in stroke patients, the skeleton of the
patterns was retained to some extent. Nevertheless, stroke patients showed significant
differences in most parameters of microstates A, B, and C compared to healthy controls.
Notably, microstate C exhibited an opposite pattern of differences to microstates A and
B. On the other hand, there were no significant differences in all microstate parameters
for patients with left-sided vs. right-sided stroke, as well as patients before vs. after
lower limb training. Moreover, support vector machine (SVM) models were developed
using only microstate features and achieved moderate discrimination between patients
and controls. Furthermore, significant negative correlations were observed between
the microstate-wise functional connectivity and lower limb motor scores. Overall,
these results suggest that the changes in microstate dynamics for stroke patients
appear to be state-selective, compensatory, and related to brain dysfunction after
stroke and subsequent functional reconfiguration. These findings offer new insights
into understanding the neural mechanisms of microstates, uncovering stroke-related
alterations in brain dynamics, and exploring new treatments for stroke patients.

Keywords: EEG, microstates, brain dynamics, functional connectivity, stroke, machine learning, lower extremity
motor function
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INTRODUCTION

It is now a consensus that the brain at rest is not truly “at rest”,
and the spontaneous brain activity exhibits complex dynamic
spatiotemporal configurations (Raichle et al., 2001; Fox and
Greicius, 2010; Pirondini et al., 2017). Of note, spontaneous
brain activity can predict behavioral performance, and intrinsic
activity plays a basic and functional role in brain function (Spisak
et al., 2020). On the other hand, brain injury (e.g., stroke)
causes behavioral deficits as well as widespread structural and
functional network dysfunction (Salvalaggio et al., 2020). Motor
and sensory impairments are the two most common deficits after
stroke, affecting approximately 85 and 50% of stroke patients,
respectively (Wu et al., 2015; Ramsey et al., 2017). To date,
using neurophysiological techniques, a tremendous number of
studies based on spectral analysis, functional connectivity, and
graph theory analysis have been reported in the field of brain
injury mechanisms and stroke rehabilitation (Wu et al., 2015;
Stinear, 2017; Trujillo et al., 2017; Mane et al., 2019; Chiarelli
et al., 2020; Ros et al., 2022). These studies laid an important
foundation for our understanding of stroke-related neurological
alterations and neuroplasticity and for finding neural markers
that can indicate prognosis and outcomes. However, given the
intrinsic non-stationary nature of brain neural signals, static
features are not time-resolved and lose the information about the
time dimension. Dynamic analysis methods may better reflect
the full profile of brain activity and capture critical features of
the spatiotemporal dimensions in health and disease (Kabbara
et al., 2017; Chang et al., 2018; O’Neill et al., 2018; Bonkhoff
et al., 2020; Wang et al., 2020). Dynamic functional connectivity
is the most commonly used method in functional magnetic
resonance imaging (fMRI) studies to investigate the connectivity
dynamics in stroke patients. It has shown that stroke alters the
brain’s preference for distinct connectivity states (Bonkhoff et al.,
2020; Wang et al., 2020). However, the sliding-window approach,
which is typically utilized in dynamic functional connectivity,
has the limitation of requiring a prior unknown window width
(O’Neill et al., 2018). Windows that are too short or too long
will not capture the true temporal dynamics of the brain. Several
alternative approaches have been applied to electrophysiological
data to describe the brain dynamics, including hidden Markov
models (HMMs) (Vidaurre et al., 2018; Bai et al., 2021a) and
microstate analysis (Pascual-Marqui et al., 1995; van de Ville
et al., 2010; Zanesco et al., 2020). Spatially distinct patterns of
oscillatory power and coherence at the source level have been
observed in health and disorders of consciousness by HMMs
(Vidaurre et al., 2018; Bai et al., 2021a). Nonetheless, it remains
unclear whether the assumptions underlying HMMs are met in
resting-state EEG (Gschwind et al., 2015; von Wegner et al.,
2016). In addition, little is known about the electromagnetic
properties of the brain injury regions, and techniques for
constructing accurate head models of patients with brain injuries
(e.g., stroke) have not yet been well developed. Microstates reflect
short periods (∼100 ms) of quasi-stable brain states that evolve
in time, resulting from the synchronous and coordinated activity
of brain networks (Pascual-Marqui et al., 1995; Koenig et al.,
2002; Zanesco et al., 2020). Importantly, microstate analysis is

traditionally at the sensor level and needs minimal assumptions
regarding the properties of the neural signals.

Numerous studies based on EEG have demonstrated that
resting-state functional connectivity and microstate analyses are
successful and valuable methods for studying neurological and
psychiatric diseases (Khanna et al., 2015; Zappasodi et al., 2017;
Zuchowicz et al., 2018; Eldeeb et al., 2019; Musaeus et al.,
2019a; Riahi et al., 2020; Tait et al., 2020). Additionally, there
are associations between EEG microstates and fMRI resting-state
networks (RSNs) (Britz et al., 2010; van de Ville et al., 2010;
Custo et al., 2017). Furthermore, motor scores are related to
EEG features (e.g., functional connectivity) of spontaneous brain
activity (Riahi et al., 2020; Hoshino et al., 2021). Given the tight
link between microstates and brain networks of spontaneous
brain activity, we speculated that microstate dynamics could
reflect the motor capacity (e.g., lower/upper limb function) to
some extent (Pirondini et al., 2017; Spisak et al., 2020; Zhang
et al., 2021). However, the current microstate studies have mainly
focused on the cognitive functions of the brain in health (Brechet
et al., 2019; Pirondini et al., 2020; Zanesco et al., 2020) and
diseases like schizophrenia (da Cruz et al., 2020) and Alzheimer
(Musaeus et al., 2019b; Tait et al., 2020). Only a limited number
of studies focused on patients with brain injuries, such as stroke
(Zappasodi et al., 2017) and consciousness of disorders (Gui
et al., 2020; Bai et al., 2021b). To date, only one study (to our
knowledge) with the complete microstate analysis (Zappasodi
et al., 2017) focused on stroke (at the acute stage). This research
suggested that microstate B duration explained the 11% of the
effective recovery of the National Institute of Health Stroke Scale
(NIHSS), and there was a significant difference between patients
with left-sided and right-sided stroke in parameters of microstate
C and D. Further in-depth research is needed to verify and
explore the stroke-related alterations in microstate dynamics.

There are still three critical questions that need to be
deeply investigated. First, is each microstate class associated
with a specific functional connectivity pattern? Several studies
have explored state-wise functional connectivity in different
scenarios (Comsa et al., 2019; Duc and Lee, 2019), but the
connectivity pattern corresponding to each microstate class
in the resting state is still unclear. In addition, according
to previous studies, each microstate template has distinct
topographic distribution and bright characteristics (Michel
and Koenig, 2018; Li et al., 2021; Zanesco et al., 2021).
Therefore, we assumed that each microstate class corresponds
to a unique pattern of functional connectivity. It is instructive
for addressing this question to extend our understanding of
the mechanisms underlying microstates and help us explain
microstate dynamics. Second, how do the microstate parameters
evolve in time after stroke, and how are they perturbed or altered
by stroke? Third, do microstate parameters encode information
that reflects the motor capacity of the lower limbs? Lower limb
motor function is an important basis for restoring walking
function and activities of daily living after stroke. However,
currently few studies have assessed lower limb function by
neural features derived from EEG (Sebastian-Romagosa et al.,
2020; Hoshino et al., 2021). The answers to the latter two
questions will help us to explore the crucial characteristics
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of stroke patients, the possible patterns of brain functional
reorganization, and the possibility of using microstate dynamics
for functional assessment.

In the current study, we proposed a microstate-based
approach and leveraged the EEG datasets of patients at two-
time points (i.e., before and after the rehabilitation therapy)
and healthy controls to explore the three aforementioned
questions. The Lower-extremity part of Fugl-Meyer Assessment
(FMAL) was used to evaluate the lower limb functional status
of stroke patients at the two-time points (Fugl-Meyer et al.,
1975). Previous research has suggested that intra-cortical alpha
oscillations primarily account for the emergence of microstate
classes (Milz et al., 2017), and most microstate studies are
based on larger bandwidths such as 2–20 or 1–40 Hz (Khanna
et al., 2015). Here, we used the EEG signal in the 1–
20 Hz frequency band for microstate analysis. Phase-locked
synchronization of neural signals in the brain may be the
key mechanism for brain information integration (Michel and
Koenig, 2018). Therefore, in this study, functional connectivity
in the alpha band was constructed by the phase-locking value
(PLV) method (Lachaux et al., 1999; Duc and Lee, 2019; Yao
et al., 2021). Microstate-specific connectivity was computed
by connected instantaneous phase signals belonging to a
particular microstate class. We compared one microstate-specific
functional connectivity with the others to examine whether
there were differences among microstate-wise connectivity. The
results were also validated in an independent EEG dataset
(Babayan et al., 2019). In addition, due to the functional
and structural deficits after stroke, we predicted that some
microstate parameters would be significantly different in stroke
patients compared to those in healthy controls. We also tested
how microstate features changed after rehabilitation training,
and whether there were significant differences in microstate
features between patients with left-sided and right-sided stroke.
Moreover, we utilized support vector machine (SVM) models
to investigate their ability to distinguish stroke patients from
healthy controls by only microstate features. Finally, we explored
the cross-sectional correlations between the microstate features
and FMAL scores. This may allow us to identify potential
neural markers that provide insight into lower limb function
recovery after stroke.

In sum, we explored the functional connectivity patterns
underlying microstates and investigated how microstate
dynamics are altered in stroke patients at two-time points
compared to healthy individuals and the associations between
microstate features and FMAL scores. No such study exists
for microstates.

MATERIALS AND METHODS

Participants
Patients
Fifty-nine patients were recruited, and 31 patients (mean
age 56.7 years with range 31.7–77.4; SD = 12.1; 29 right-
handed; 24 males; 19 with left-sided stroke) satisfied
the post-enrollment inclusion criteria. No statistical

methods were used to predetermine the sample sizes in
this study, but our sample sizes were similar to those
reported in previous research (Pirondini et al., 2020;
Wang et al., 2021).

Inclusion Criteria of Patients
(1) Aged 30–80. (2) First-ever unilateral brain lesion. (3)
Subacute stroke (2 weeks to 6 months poststroke). (4) Sufficient
cognition (Mini-Mental State Examination, MMSE score > 21).
(5) Moderate-to-severe paralysis (Brunnstrom score ≤ IV). (6)
No other diagnosis substantially affecting the lower limbs. (7) No
other neurological or psychiatric disorders. (8) Medically stable.

Healthy Controls
Twenty-three healthy controls (mean age 58.9 years with
range 31.5–73.2; SD = 12.0; 21 right-handed; 13 males)
were recruited for this study. In addition, an external site
EEG dataset of healthy subjects (N = 32; age range 30–80;
29 right-handed; 21 males) selected from the “Mind-Brian-
Body dataset” (Babayan et al., 2019) was used to validate
the stability of the results of microstate-specific functional
connectivity (Supplementary Table 1). To distinguish the
external site EEG dataset from the healthy controls in
this study, “LEMON” was used to refer to the external
site dataset.

The study was conducted according to the tenets of the
Declaration of Helsinki, the guidelines for Good Clinical
Practice, and the Consolidated Standards of Reporting
Trials (CONSORT), approved by the Ethics Committee
of Beijing Tsinghua Changgung Hospital (18172-0-01).
All subjects provided written informed consent before
participating in the study.

Treatment Protocol and Clinical
Evaluation
All patients received 10-session ankle stretching training using
the robot-aided stretching (five times a week over 2 weeks,
20 min/session). An ankle rehabilitation robot (Beijing LTK
Science and Technology Co., Ltd., Beijing, China) was used
for intervention. The ankle rehabilitation robot was driven
by a servomotor controlled by a digital signal processor.
The stretching protocol has been described in detail in our
previous research (Zhai et al., 2021). During the 2 weeks,
all patients received standard medical care and rehabilitation,
which consisted of routine physiotherapy (PT) and occupational
therapy (OT). Patients completed a 1-h PT session and 1-h
OT per day, 5 days per week, for a total of 10 sessions. PT
included continued movement exercises for hemiplegia, muscle
strength training, and balance and walking function exercises.
OT focused on rehabilitation of arm and hand movements
used in daily activities. Subjects were evaluated before and after
the interventions by a designated physiotherapist. FMAL (0–34
points) was used to evaluate the lower limb motor function of
stroke patients and was conducted at two-time points: before
the therapy (T0, baseline) and immediately after 10 training
sessions (T1) (Fugl-Meyer et al., 1975; Gladstone et al., 2002; See
et al., 2013). In addition, EEG data were also collected for each
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TABLE 1 | Sample demographics and clinical information.

Patients (N = 31) Controls (N = 23) p Effect size

Age (M ± SD, range) 56.7 ± 12.1, 31.7–77.4 58.9 ± 12.0, 31.5–73.2 0.52 −0.18

Gender (female/male) 7/24 10/13 0.10 0.22

Handedness (left/right) 2/29 2/21 0.76 0.04

Lesion side (left/right) 19/12

Stroke type (hemorrhagic/ischemic) 6/25

Days poststroke at T0 (M ± SD, range) 65.9 ± 39.7, 15–154

M ± SD: mean ± standard deviation. The two-sample t-test for age and Pearson’s chi-squared tests for gender and handedness were performed between patients and
controls. The effect size was estimated using Cohen’s d for age and Cramer’s V for gender and handedness.

patient at two-time points (Supplementary Figure 1A). Group
characteristics and clinical information are presented in Table 1.

EEG Data Acquisition and Preprocessing
Eyes-closed resting-state EEG data were acquired from a 64-
channel electrode cap (NeuSen W64, Neuracle, China), with
59 scalp electrodes (Ag/AgCl) placed according to the 10-10
international system. The data file of the channel locations is
provided in Supplementary Material. EEG data were recorded
using a Neuracle amplifier with 24-bit resolution and a sampling
rate of 1,000 Hz, and lowpass filtered with the cutoff frequency
(−3 dB) at 250 Hz for between approximately 3–5 min. The
reference electrode was located at CPz, and the ground electrode
was located at AFz. During the recording, the impedance was
kept below 20 k� for all scalp electrodes. EEG data were
recorded in a specific, dimly lit, sound-attenuated, but not
electrically shielded room. An investigator focused on the status
of the participants, and they were requested to minimize their
movements and remain awake.

EEG data were preprocessed offline in MATLAB (R2020b,
Mathworks, Natick, MA, United States) using the EEGLAB
toolbox (version 2019.0, Swartz Center for Computational
Neuroscience, San Diego, CA, United States) and its extensions
in combination with some custom MATLAB scripts. All
preprocessing steps consistently maintained double-precision
computations. FIR filters were used in this study and designed
using the function pop_firws() with a Hamming window. First,
EEG data were lowpass filtered (order: 660, transition width:
5.0 Hz, −6 dB cutoff frequency: 45 Hz) to remove the line noise
and then resampled to 250 Hz. In addition, low-frequency noise
was attenuated using a high-pass filter (order: 826, transition
width: 1 Hz, −6 dB cutoff frequency: 0.5 Hz). Then, bad
channels and EEG segments containing large, non-stereotype
artifacts were discarded semi-automatically. The signal of the
bad channels was interpolated through spherical interpolation
and then EEG data were re-referenced to the common average
and the signal of the original reference CPz channel was
restored. Next, EEG data were decomposed by independent
component analysis (ICA) using the default binica method in
the EEGLAB toolbox. Artifactual components (e.g., eye blinks,
movement, channel noise, muscle activity, and heart) were
discarded via visual inspection with the help of plugin extensions
in EEGLAB (i.e., ICLabel, DIPIT, and ADJUST). There were
no significant differences in the number of bad channels or

artifactual components between stroke patients and healthy
controls. See Supplementary Table 2 for more details. EEG
data acquisition and preprocessing of the LEMON dataset were
extensively described in the previous studies (Babayan et al., 2019;
Férat et al., 2020; Zanesco et al., 2020).

Microstate-Based Analysis of Brain
Dynamics
Microstate analyses were performed in MATLAB. Some steps
were based on the Microstate toolbox (MST, version 1.0) (Poulsen
et al., 2018) and Microstate1 (version 1.2). The complete analysis
pipeline used in this study is shown in Figure 1. EEG data were
first lowpass filtered (order: 208, transition width: 4.0 Hz, −6 dB
cutoff frequency: 22 Hz) and then re-referenced to the common
average before microstate analysis. Local maximal values (peaks)
of the global field power (GFP) were extracted from each EEG
recording. GFP was calculated as the standard deviation of the
amplitude across all channels at each time point. EEG maps at
GFP peaks are reliable representations of the topographic maps
because of their high signal-to-noise ratio (Koenig et al., 2002).
Considering the high uncertainty in the assignment of states for
maps with low GFP, we discarded the bottom 15% of GFP peaks
(Mishra et al., 2020). GFP peaks that were greater than three
times the standard deviation were also excluded. EEG maps at
the remaining GFP peaks (also called original maps) were used
for further analysis.

Identifying Recording-Specific Microstate Templates
For each recording, a modified k-means clustering algorithm
(ignoring the polarity) was used to find 2–10 (k = [2:10])
templates using the original maps (Murray et al., 2008; Poulsen
et al., 2018). For each k, the clustering procedure was repeated
100 times and returned the templates of the run with the largest
global explained variance (GEV). Meanwhile, the GEV and the
value of the Krzanowski–Lai (KL) criterion (Krzanowski and Lai,
1988; Murray et al., 2008) were determined for each k.

Identifying Group-Specific Microstate Templates
To have equal contributions of microstates per participant in the
group, each participant provided the same number of templates
to the second modified k-means clustering (van de Ville et al.,
2010; Nishida et al., 2013). For each group, the optimal number of

1https://www.thomaskoenig.ch/index.php/software/microstates-in-eeglab/
getting-started
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FIGURE 1 | Graphical representation of the analysis method in the study. The microstate templates used in this study are common templates of patients and healthy
controls. See “Materials and Methods” section for details. GFP, Global Field Power; GEV, Global Explained Variance; SC, Spatial Correlation metric; TP, Transition
Probability; FMAL, Lower-extremity part of Fugl-Meyer Assessment; SVM, Support Vector Machine; LOOCV, Leave-One-Out Cross-Validation.

templates at the group level (k∗) was determined by the number
of clusters corresponding to the maximum value of the mean
of the normalized KL across all recordings in the group. The k∗
templates from each participant of the group were concatenated,
and then k∗ clusters were determined by the modified k-means
algorithm. The centroids of the k∗ clusters were the group-
specific microstate templates.

Identifying Common Microstate Templates
In this study, the optimal number was five in both the stroke
patients and healthy controls. To avoid systematic variances
derived from the differences of group-specific microstate
templates between patients and healthy controls, the common
microstate templates were used. To get the common templates,
the modified K-means method was utilized for the group-specific
microstate templates of patients and controls. The common
templates were labeled A–E according to their similarities to the
templates in the previous research (Férat et al., 2020; Shi et al.,
2020; Zanesco et al., 2020).

Back-Fitting of the Microstate Templates
The common templates were fitted back to all the EEG maps
(not just the maps at the GFP peaks) of each preprocessed EEG
recording. EEG map at each time point was assigned a label

according to the map with which the template demonstrated
the highest absolute spatial correlation. Thereafter, EEG maps
were converted into microstate sequences. Temporal smoothing
was then employed in the microstate sequence by changing
the labels of small segments (<30 ms) to the next most likely
microstate class until no microstate segment was smaller than
30 ms (Poulsen et al., 2018; Liu et al., 2020). Note that the first and
last microstates in each EEG segment (caused by the removal of
artifacts) were potentially truncated. Thus, these microstates were
not taken into consideration when calculating the parameters of
each microstate class.

Microstate-Wise Functional Connectivity
In this study, the functional connectivity of each microstate class
was computed by a phase-based method (i.e., PLV) across all
channel pairs for the alpha band (8–12 Hz). EEG data were first
applied with surface Laplacian transform using the CSD toolbox
(Kayser and Tenke, 2006) to overcome the volume conduction
problem. The phase signal was then extracted by applying the
Hilbert transform to the band-filtered EEG data, and 10% phase
angles of each side were discarded due to the edge effects. The
segments of the phase angles belonging to a particular microstate
class were picked up and concatenated together. Thereafter,
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the microstate-wise functional connectivity over time across all
channel pairs was calculated. For instance, PLV of microstate
class m between two channels i and j is calculated by the formula:

PLVm
i,j =

∣∣∣∣∣ 1
N

N∑
n=1

e−i(ϕjn−ϕin)

∣∣∣∣∣ ,
where N is the number of time points belonging to microstate m,
and ϕi, ϕj are phase angles from channels i and j.

Microstate Parameters
For each EEG recording, the microstate sequence and microstate
spatial correlation time series (dimension: # microstate classes
× # time points) were computed (see Figure 1). Subsequently,
dynamic parameters per microstate class were estimated. GEV,
which measures the percentage of variance explained for the
EEG maps across all time points by each specific microstate
template. Mean duration, defined as the average of the continuous
length of time during which the EEG time series is determined
to be a certain microstate class. Occurrence, the average number
of occurrences per second of each microstate class. Coverage,
defined as the percentage of total analysis time occupied by
each microstate class. Mean interval, the average across all the
lengths of time from the end of a particular microstate class
to the start of the next same microstate class. Mean GFP,
the average amplitude of GFP during each microstate class
dominance. Spatial correlation metric (SC), the mean absolute
correlation values of each microstate template with maps of a
given microstate class. For example, SCAB is the average absolute
correlation coefficients between the template of microstate A and
all the maps belonging to microstate B. Transition probability
(TP), defined as the probability (observed transition probability
minus expected transition probability) from each microstate class
to another (Nishida et al., 2013). See Murray et al. (2008), Nishida
et al. (2013), Khanna et al. (2015), and Michel and Koenig (2018)
for the details of the interpretation of microstate parameters.

Statistical Analysis
In the study, the significance level is 0.05. All statistical tests
are two-sided tests. All the reported p-values were based on the
non-parametric permutation method (Knijnenburg et al., 2009;
Zalesky et al., 2010). For multiple comparisons, we reported
the p-values corrected by the Bonferroni-Holm method, unless
specified otherwise.

For Microstate-Wise Functional Connectivity
A method based on the network-based statistic (NBS) was
constructed to control the family-wise error rate as massive
univariate tests were performed in connection comparisons
(Zalesky et al., 2010). Briefly, the NBS-based algorithm utilized
in this study comprises the following steps. (1) Compute both
p-value and test-statistic (e.g., t-value or correlation coefficient)
maps resulting from the statistical test of all connections. (2)
A threshold (pthr) was applied to the p-value map. Elements
below the threshold were set to 1, and the others were set to
0. The resulting mask was applied to the test-statistic map. The
sparse test-statistic map was divided into two parts according

to the signs of the elements. MATLAB function conncomp was
used to determine the connection components for each part. The
connected components and the size (e.g., the sum of t-values or
correlation coefficient) of each component were determined for
each part. (3) Perform permutation tests (2,000 permutations).
For each iteration, the labels were randomly shuffled. More
specifically, for between-subjects designs, condition labels were
randomly shuffled; for within-subjects designs, the signs of the
differences of a feature for each subject between two conditions
were randomly assigned; for Pearson correlations, the orders
of the FMAL scores were randomly shuffled. Repeat steps (1)
and (2). Then, calculate the sizes of the largest positive and
negative components and store them in a matrix, respectively.
Note that the observed connected components and their sizes
were computed and stored before the permutation procedure. (4)
After all iterations, two null distributions were obtained, namely
the sizes of the largest positive and negative components. For each
observed connected component, the p-value was computed as the
following formula:

p = 2×
sum

(
abs (Snull) > abs (sobs)

)
+ 1

N + 1
,

where N is the number of permutations, sobs is the size of the
observed connected component, and Snull is one null distribution
chosen based on the sign of the observed connected component’s
size. For difference or correlation analysis, computing the
mean of the functional connectivity strength within the
connected component (mean FCSCC) is one way to reduce the
feature dimension.

For Microstate Parameters
For patients at T0/T1 vs. healthy controls, for each microstate
parameter, we conducted a two-way mixed ANOVA, with
Group, Microstate Class/Spatial correlation Pair/Transition Pair
as factors. Accordingly, for patients at T0 vs. patients at T1, for
each microstate parameter, we conducted a two-way repeated
ANOVA. If the interaction effect was significant, post hoc
permutation tests were used for pairwise group comparisons
for each level of the Microstate Class/Spatial correlation
Pair/Transition Pair factor.

For ANOVAs above, the sphericity, normality, and
homogeneity of variance were assessed by the Mauchly’s
test, Kolmogorov-Smirnov test, and Levene’s test, respectively. If
the assumption of sphericity was violated, the degrees of freedom
were corrected using Greenhouse-Geisser correction if ε < 0.75,
otherwise, using Huynh-Feldt correction. If the assumption of
normality or homogeneity of variance was violated, pairwise
group comparisons were directly performed using permutation
tests. Permutation tests for two samples and paired samples
were computed with 100,000 replications using the t-value as
a measure of group difference. We also performed correlation
analysis between microstate parameters and FMAL scores.
p-values were calculated by permutation test with 100,000
replications using Pearson correlation coefficient as the test
statistic. The 95% confidence interval (CI) was generated by the
bootstrap method (10,000 bootstrap data samples; CI = bias
corrected and accelerated).
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Classification
We employed SVM models to assess whether microstate-wise
features could provide reliable signatures of stroke. Due to the
massive number of features, the microstate parameters, including
mean FCSCC, which were significantly different between stroke
and health at both T0 and T1 were retained for further
analysis. SVM models were conducted with the Python package
scikit-learn. We constructed the SVM classifiers using linear
and radial basis function (RBF) kernels, respectively. To avoid
an optimistically biased evaluation of the model performance,
the nested leave-one-out cross-validation (nested LOOCV) was
utilized to evaluate the tuned SVM models. Moreover, the
scikit-learn pipeline of the preprocessing steps was employed to
prevent data leakage in the cross-validation and hyper-parameter
tuning procedures. For each iteration of the outer LOOCV loop,
one sample was split as the test dataset and the rest as the
training dataset. We first scaled the features to have mean 0
and variance 1 and then used principal component analysis
(PCA) for feature reduction (retaining 95% variance) before
training each model. Then, in the inner LOOCV loop, select
the best hyperparameters based on grid search hyperparameter
optimization and refit a model with the entire training dataset
with the parameters. This model then was used to predict the
test dataset of the outer LOOCV loop. After all iterations of the
outer loop, the prediction results of all samples were collected,
and then the model performance was evaluated by the receiver
operating characteristic (ROC) curve and the area under the
curve (AUC) of the ROC.

Statistical and Visualization Tools
All ANOVAs were carried out in IBM SPSS Statistics 26
(SPSS IBM, Armonk, New York, United States). The other
statistical analysis was conducted with custom MATLAB
scripts. Schemaball plots were made with some modifications
to the schemaball project.2 Networks with EEG electrodes as
nodes (Koessler et al., 2009) were created by BrainNet Viewer
software (Xia et al., 2013). Violin plots were generated by
OriginPro 2022 Beta2 (OriginLab Corporation, Northampton,
MA, United States). Other figures were created using
custom MATLAB scripts.

RESULTS

Patients Findings
The sample demographics and clinical information are
summarized in Table 1. After 10 sessions of training, patients
(N = 31) showed significantly increased FMAL scores (p = 1.000e-
5) compared to the baseline (Supplementary Figure 1B).
Moreover, patients with right-sided stroke (N = 12) presented
higher FMAL scores than those with left-sided stroke, but the
differences were not significant at both T0 (p = 0.131) and T1
(p = 0.161). On average, the time poststroke at T0 was 65.9 days
(SD = 39.7 days) and patients with left-sided stroke showed
a slightly shorter time than patients with right-sided stroke

2https://github.com/okomarov/schemaball

FIGURE 2 | Microstate templates and spatial correlations. (A) Microstate
templates. (B) Spatial correlations between the microstate templates of
patients and controls. Polarity was ignored when computing the correlations.
The templates of the patients were calculated from all their EEG data at T0
and T1.

(p = 0.419). In this study, only six patients had a hemorrhagic
stroke and seven patients were female. Considering the reliability
of the results, no further statistical analysis was conducted
to compare the differences between stroke-type subgroups or
between gender subgroups.

Microstate Templates
The optimal number of microstate classes was five for both
the patients and controls. The five microstate templates of the
patients and controls were provided in Figure 2A. Interestingly,
the microstate templates of patients and controls were highly
similar (all rs > 0.99), as shown in Figure 2B. Nevertheless,
to reduce the potential systematic variances caused by the
template differences between patients and controls, the common
microstate templates were utilized in further analysis. The five
common microstate templates were labeled A–E according to
their similarities to the templates reported in the previous large
sample size study (Zanesco et al., 2020). On average, the templates
explained 80.52, 80.82, and 79.86% of the GEV (fitting to maps at
GFP local maxima) for patients at T0, patients at T1, and healthy
controls, respectively.

Microstate-Wise Functional Connectivity
The functional connectivity associated with each microstate
class is displayed in Supplementary Figure 2. Intuitively, the
functional connectivity of microstate C appeared to be stronger
compared to the other microstate classes. The microstate-
wise connectivity seemed similar to each other due to the
masking of strong short-range connections. However, the
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FIGURE 3 | Comparisons between functional connectivity of microstates A and B for the four groups. (A) Healthy controls. (B) LEMON. (C) Patients at T0.
(D) Patients at T1. For visual clarity, only the top 50 connections (according to absolute t-values) in the connected components with significant differences (p < 0.05,
NBS-based method corrected) are displayed in the figure. The red color indicates greater connectivity for microstate B vs. microstate A, while the blue color
indicates greater connectivity for microstate A vs. microstate B. Color depth represents the size of the connection difference (t-value). The complete connected
components are provided in the first column of Supplementary Figure 3.

comparison results (pthr = 0.001) demonstrated significant
differences between functional connectivity of microstate classes
(Supplementary Table 3). For convenience, FCX refers to the
functional connectivity of microstate X. To further evaluate
the stability and robustness of the results, an independent
EEG dataset of healthy subjects, LEMON, was introduced in

the present study. Briefly, after NBS-based correction, all but
two of the comparison pairs of microstate-wise functional
connectivity were significant (ps < 0.05) for all four groups
(the smallest p-value of FCC < FCA of controls p = 0.096 and
FCC < FCB of patients at T1 p = 0.099). Strikingly, the patterns
of differences between microstate-wise functional connectivity
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FIGURE 4 | Microstate-wise functional connectivity comparisons in healthy controls. For X vs. Y, the red color indicates greater connectivity for microstate X vs.
microstate Y, while the blue color indicates greater connectivity for microstate Y vs. microstate X. Color depth represents the size of the connection difference
(t-value). For visual clarity, only the top 50 connections (according to absolute t-values) of the connected components with significant differences (p < 0.05,
NBS-based method corrected) are displayed in the figure. The complete significant connected components of the four groups are shown in the first column of
Supplementary Figures 4–12.

were highly consistent and stable for all groups, as provided
in Figure 3 and Supplementary Figures 3–12. For instance, as
illustrated in Figure 3 and Supplementary Figure 3, for the
comparison between FCA and FCB of each group, there was a
significant connected component for FCA > FCB (p = 0.001)
and FCA < FCB (p = 0.001) respectively. FCA showed a stronger
strength of PLV mainly involving interhemispheric connections
between the left parietal and right frontocentral-central areas,
and intrahemispheric connections between the left parietal and
left frontal areas and connections within the left parietal/right
frontocentral areas compared to FCB. However, for FCA < FCB,
there was a symmetrical pattern about the anterior-posterior axis
relative to FCA > FCB. Microstate templates A and B exhibited
a left-posterior right-frontal orientation and right-posterior left-
frontal orientation, respectively (see Figure 3A). Interestingly,
the patterns of the differences between FCA and FCB also revealed
the corresponding symmetry and harmony.

We recapitulated the unique connectivity pattern of each
microstate class based on the patterns of differences between
the functional connectivity of one microstate class and the other
microstate classes (Figure 4). See Supplementary Figures 3–
12 for more details. FCA showed stronger connections mainly
between the left parietal (e.g., CP3, CP5, P1, P3, P5, P7)
and right frontocentral-central (e.g., FC2, FC4, FC6, FT8,
C4, C6) areas and within the left parietal/right frontocentral
areas. Accordingly, FCB displayed greater connections mainly

between the right parietal (CP4, CP6, P2, P4, P6, P8) and
left frontocentral-central (e.g., FC1, FC3, FC5, FT7, C3, C5)
areas and within the right parietal/left frontocentral areas.
FCC exhibited a stronger strength of PLV mainly involving
bilateral frontocentral-parietal (e.g., FC1, FC3, FC5, P3, P5, P7;
FC2, FC4, FC6, P4, P6, P8) connections and interhemispheric
parietal (e.g., P5, P6, P7, P8) connections. The pattern of FCC
displayed a U shape and was symmetrical about the anterior-
posterior axis like template C. Moreover, FCD presented greater
connections mainly within the central areas (e.g., Cz, C1, C2,
CPz, CP1, CP2). Furthermore, FCE showed stronger connections
mainly between the left frontocentral (e.g., FCz, FC5, FT7)/left
parietal (e.g., CPz, CP1, P3) and right frontocentral (e.g., FC6,
FT8) areas/right parietal areas (e.g., CP2, P4) and between
middle line channels (e.g., FCz, Cz, CPz, Pz). In sum, these
results suggest each microstate class has a distinct connectivity
preference and corresponds to a unique functional connectivity
pattern. Intriguingly, the connectivity pattern of a microstate
class appeared to reflect its template.

For patients with left- or right-sided stroke, the connectivity
patterns were weakened to varying degrees, but the main skeleton
of the patterns seemed to be preserved (see Supplementary
Figures 13–16). Next, we examined the difference in microstate-
specific connectivity between the patients at T0 and patients
at T1 (pthr = 0.01). Patients at T1 showed weaker connections
mainly in the anterior regions in FCA (p = 0.176) and stronger
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long-range connections (e.g., frontal-parietal connections) in
FCD (p = 0.075), but none connected components survived the
NBS-based correction (see Supplementary Figure 17). We then
examined the differences between patients at T0/T1 and controls
(pthr = 0.01). Once again, none of the connected components
survived the correction.

Microstate Parameters
Two-Way ANOVAs
For patients at T0 vs. patients at T0, two-way repeated-measures
ANOVAs showed non-significant Time × Microstate Class
interaction effects for all microstate features. The main effects of
Time were also non-significant. Therefore, post hoc comparisons
were not further performed.

For patients at T0 vs. healthy controls, two-way mixed
ANOVAs showed significant Microstate Class × Group
interaction effects for occurrence [F(3.721, 193.488) = 5.728,
p = 3.268e-4, η2

p = 0.099], coverage [F(2.370, 123.251) = 9.228,
p = 7.073e-5, η2

p = 0.151], and mean GFP [F(2.965,
154.176) = 7.741, p = 8.092e-5, η2

p = 0.130]. The analysis
also revealed significant Spatial Correlation pairs × Group
interaction for SC [F(4.515, 234.781) = 6.090, p = 5.149e-5,
η2

p = 0.105], and Transition pairs × Group interaction for TP
[F(6.715, 241.758) = 3.591, p = 0.001, η2

p = 0.091]. For patients at
T1 vs. healthy controls, two-way mixed ANOVAs demonstrated
significant Microstate Class × Group interaction effects for
occurrence [F(3.533, 183.693) = 3.042, p = 0.025, η2

p = 0.055],
coverage [F(2.148, 111.693) = 5.446, p = 0.004, η2

p = 0.095], and
mean GFP [F(2.712, 141.039) = 5.059, p = 0.003, η2

p = 0.089].
There was also significant Spatial Correlation Items × Group
interaction for SC [F(4.418, 229.711) = 4.957, p = 4.710e-4,
η2

p = 0.087], and Transition pairs × Group interaction for
TP [F(5.834, 204.174) = 2.795, p = 0.013, η2

p = 0.074]. The
two-way mixed ANOVAs for GEV, duration and interval at
both T0 and T1 had one combination of two factors severely
violating the homogeneity of variances hypothesis. For these
three microstate parameters, pairwise comparisons for each
microstate class between patients and controls were performed
by permutation test directly.

Post hoc Comparisons
Global Explained Variance (GEV)
On average, the GEV for each microstate class ranged from
4.84 to 20.05% in patients at T0, from 5.22 to 21.31% in
patients at T1, and from 5.06 to 27.74% in healthy controls.
Group average statistics (± SD) for microstate parameters
are provided in Supplementary Table 4. It is worth noting
that microstate template C explained more variance relative
to other templates (all ps < 0.05), and was the only template
that explained more than 15% variance for each group
(Figure 5). Furthermore, microstate C showed a significantly
higher GEV in healthy controls compared to patients at T0
(p = 0.002) and T1 (p = 0.027), whereas microstates A
and B showed significantly lower GEV in healthy controls
compared to patients at T0 (p = 1.000e-4, p = 0.001) and T1
(p = 0.006, p = 0.010). For microstates D and E, there was

no significant difference between the patients and controls. The
detailed statistical results are summarized in Supplementary
Tables 5, 6.

Mean Duration
On average, the mean duration for each microstate class
lasted between 51.42 and 68.63 ms in patients at T0, between
52.04 and 71.04 ms in patients at T1, and between 52.81
and 82.24 ms in healthy controls. The mean duration of
microstate C was predominant and significantly longer than
that of the other microstate classes (all ps < 0.001) in healthy
controls. However, the predominant pattern of microstate C was
considerably weakened in patients. No significant differences
between microstates A and C were observed in patients at either
T0 (p = 0.898) and T1 (p = 0.300). Microstate C showed a
significantly longer duration in healthy controls compared to
patients at T0 (p = 0.003) and T1 (p = 0.040). In contrast, The
mean duration of microstate A was significantly longer in patients
at T0 (p = 0.003) and T1 (p = 0.045) relative to healthy controls.

Occurrence
In healthy controls, on average, microstate C occurred 4.09 times
(SD = 0.46) per second, and microstates A, B, D, and E occurred
3.24 (SD = 0.65), 3.07 (SD = 0.56), 2.51 (SD = 0.61), and 2.80
(SD = 0.66) times per second, respectively. As shown in Figure 5,
in patients at T0 and T1, the occurrences of microstates A, B, and
C were all about 4 times per second on average. More specifically,
microstates A and B occurred more frequently in patients at T0
(p = 0.001, p = 0.015) and T1 (p = 0.037, p = 0.191) compared to
healthy controls, and the predominant pattern of microstate C in
controls disappeared in patients.

Coverage
There were significant differences between patients at T0 and
controls in microstates A (p = 1.800e-4), B (p = 0.012), and
C (p = 0.005), and between patients at T1 and controls in
microstates A (p = 0.023) and C (p = 0.043). The dominant
pattern of microstate C also existed in the coverage, especially in
healthy controls.

Mean Interval
For each group, the mean interval of microstate C was the
shortest among all microstate classes (all ps < 0.001). For patients
at T0 vs. healthy controls, the mean interval was significantly
shorter in microstates A (p = 0.001) and B (p = 0.018). In contrast,
the opposite pattern was observed in microstate C (p = 0.021). At
T1, only the mean interval of microstate A (p = 0.031) was still
significant between patients and controls.

Mean Global Field Power (GFP)
Microstate C exhibited a significantly stronger GFP compared to
the other microstate classes (all ps < 0.001) in healthy controls,
but for patients, this pattern was weakened. Microstate C
presented significantly stronger GFP in healthy controls relative
to patients at both T0 (p = 0.001) and T1 (p = 0.015), but
microstates A (p = 0.001, p = 0.116) and B (p = 0.003, p = 0.049)
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FIGURE 5 | Results of microstate parameter analysis for patients and controls. Post hoc pairwise comparisons (patients at T0 vs. controls; patients at T1 vs.
controls) were performed for GEV, mean duration, occurrence, coverage, mean interval, and mean GFP. The means of the three groups for each microstate class are
linked by the solid purple line. *p < 0.05; **p < 0.01; ***p < 0.001.

showed greater GFP in patients at T0 and T1 compared to
healthy controls.

Of Note, there were no differences in the summed/average
microstate parameters across the five microstate classes between
patients at T0/T1 and healthy controls. Moreover, although
the differences between the patients at T0 and T1 were not
significant, we observed that microstate parameters at T1 of
patients were closer to those of healthy controls compared to T0
at the group level.

Spatial Correlation Metric (SC)
As demonstrated in Supplementary Figure 18, intuitively, all
three groups followed a similar pattern in SC. However, patients
presented higher spatial correlations in SCAA, SCAB, SCBA,
SCBB, SCCC, SCDD, and SCEE at both T0 and T1 compared to

healthy controls (see also Supplementary Table 7). SCAB, SCBA,
and SCBB were still signifificantly higher for patients at both
T0 and T1 relative to healthy controls after correction for 25
times comparisons.

Transition Probability (TP)
We observed that TPBC, TPDC, and TPEC significantly decreased,
and TPBA and TPEA significantly increased in patients at T0
compared to controls, but none survived Bonferroni-Holm
correction for 20 times comparisons. At T1, similar patterns were
also observed, but to a lesser degree (Supplementary Figure 19).

We conducted further analysis to examine whether the
microstate parameters differed between patients with left- and
right-sided stroke. No significant differences were observed in
any of the microstate parameters at either T0 or T1. The results of
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FIGURE 6 | Classifications results between patients and controls. The ROC
curve and the corresponding AUC for each classification model are displayed.

mean duration and occurrence are presented in Supplementary
Figure 20.

Classification
To evaluate the ability to discriminate between patients
and healthy controls using only the microstate features, we
constructed SVM models with different kernel types. It is worth
noting that we only sought to assess whether there was a basic
discriminating ability of the microstate parameters instead to find
the best-performing model through complex feature selection
and parameter tuning procedures. For feature selection, we
first selected microstate features that were both significantly
different between patients and controls at T0 and T1. PCA
was utilized to further reduce the dimensions of the features
and retained only the 95% variance. To avoid the optimistically
biased evaluation of the model performance, the nested LOOCV
was used, and the scikit-learn pipeline was adopted to prevent
data leakage in the cross-validation and hyper-parameter tuning
procedures. As shown in Figure 6, AUCs were larger than 0.80
for patients at T0 vs. controls with both the linear and RBF
kernels. AUCs were slightly lower (linear: 0.78; RBF: 0.80) for
patients at T1 vs. controls. In addition, the AUC of the SVM
model with RBF kernel was slightly higher at both T0 and T1.
These results demonstrate that moderate discrimination between
patients and healthy controls can be achieved using only the
microstate features.

Correlation Analysis
We finally examined the correlations between the microstate
features and the FMAL scores. We also used the NBS-based
method for multiple comparison correction for correlations
between microstate-specific connectivity and FMAL score
(pthr = 0.005). Broadly speaking, there was a significant connected
component with negative correlations at T0 and T1 for most
microstate classes (see Supplementary Figure 21). At T0, the
significant connected components mainly involved the right

hemisphere. More connections involving the left hemisphere
and middle line channels were included in the significant
connected components at T1. For instance, the distribution
of the connected component of microstate C mainly affected
the connections between the right central (e.g., C2, C4, C6,
T8) and right posterior/frontal areas at T0 and between the
left central (C1, C3, C5, CP3)/right frontal-central (AF8, FC2,
FC4, C2, C4) and middle line (FCz, Cz)/right posterior areas at
T1 (Figure 7A).

Moreover, we identified significant correlations between the
mean FCSCC of microstate C and FMAL score at both T0
(r = −0.697, p = 5.000e-5, 95% CI [−0.830, −0.452]) and T1
(r = −0.779, p = 1.000e-5, 95% CI [−0.895, −0.546]). FMAL
score was moderately correlated with microstate parameters (e.g.,
occurrence, coverage) mainly in microstates C and D at T1
and similar relationships were observed at T0, but to a lesser
degree (see Supplementary Table 8). Intriguingly, the parameters
in microstates C and D showed opposite correlation patterns
with the FMAL score. For instance, at T1, the mean interval
was positively correlated with the FMAL score in microstate
C (r = 0.394, p0 = 0.027, p = 0.110, 95% CI [0.046, 0.645])
but negatively correlated with the FMAL score in microstate
D (r = −0.512, p0 = 0.003, p = 0.015, 95% CI [−0.755,
−0.045]) (see Figure 7B). p0 is the uncorrected p-value. On
the other hand, there were moderate correlations between the
FMAL score and SC at T0 (e.g., SCAA, SCAB, SCAD, SCAD,
SCAE). For example, SCAA at T0 was negatively correlated with
the FMAL score (r = −0.420, p0 = 0.020, p = 0.498, 95%
CI [−0.650, −0.087]), but none of them was significant after
the Bonferroni-Holm correction for multiple comparisons (see
Supplementary Table 9).

DISCUSSION

The brain is a complex dynamically distributed information
processing system with stable structural connections that support
time-varying information transfer between brain regions (Park
et al., 2021). Yet, after the stroke, it remains unclear how the
dynamic neural signals of the brain are altered due to damage to
the neural tissue of the brain, together with changes in receptor
distribution. Understanding the mechanisms underlying brain
dynamics and the alterations in brain dynamics after brain injury
is a cutting-edge question in neuroscience and neurological
rehabilitation (Comsa et al., 2019; Bonkhoff et al., 2020; Zanesco
et al., 2020; Bai et al., 2021a; Ploner and Tiemann, 2021). We
explored the phase-coupling pattern of each microstate class
and the spatiotemporal dynamics of the brain in stroke patients
and healthy controls using microstate-based analysis. Our results
demonstrate that each microstate class corresponds to a distinct
pattern of functional connectivity, and the results of different
datasets are highly similar from a macroscopic point of view.
On the other hand, stroke patients showed significant changes
in almost all types of microstate parameters compared to the
healthy population. In addition, some microstate-related features
were significantly associated with lower limb motor function.
Together, our work demonstrates the close association between
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FIGURE 7 | Results of correlation analysis. (A) Correlation analysis between the functional connectivity of microstate C and FMAL score. Only the significant
connected components are displayed. Mean FCSCC refers to the mean of the functional connectivity strength within the significant connected component. The blue
color indicates negative correlations between the connectivity of microstate C and the FMAL score. Color depth represents the size of the correlation coefficient.
Dashed lines imply the 95% confidence intervals for the regression estimates. Pearson correlation coefficient (r) and the corresponding permutation-based p-value
are given. (B) Correlation analysis between microstate parameters and FMAL score. The black and gray dashed lines indicate the 95% prediction and 95%
confidence intervals, respectively. Pearson correlation coefficient (r) and the corresponding permutation-based p-value are given. p0 is the uncorrected p-value.

microstates and functional connectivity, and the importance of
studying altered neural features of the brain after stroke from a
dynamic perspective.

We found that the optimal number of microstate classes
was five in both healthy controls and stroke patients, and the
microstate topographies were highly similar between the groups.
There is no consensus on how to determine the optimal number
of microstate classes (Custo et al., 2017; Michel and Koenig,
2018; Gui et al., 2020). The number of microstate classes was
determined or set to four in many previous experimental and
clinical studies (Michel and Koenig, 2018). Although the optimal
number is associated with the dataset used and the selection
of the determination criterion, a low number of microstate
classes may leave a large amount of data variance unexplained
(for all maps, not only those at GFP peaks), as well as the
risk of merging different classes (Custo et al., 2017). Here, the
microstate templates were highly similar to those reported in
previous studies (Shi et al., 2020; Zanesco et al., 2020, 2021). Yet,
only one previous study, to our knowledge, used the complete
microstate analysis in stroke patients (Zappasodi et al., 2017).
In the study by Zappasodi and colleagues, the optimal number
determined using the KL criteria and cross-validation (CV)
criteria was four, and the microstate templates of healthy controls
differed from those of stroke patients (patients with the lesion

in the left/right hemisphere). Compared to our results, one
possible reason for the discrepancy is that they used a different
method for determining the optimal number of microstate classes
and utilized 19-channel EEG data from acute stroke patients,
whereas our study used 60-channel EEG data from subacute
stroke patients.

Having computed the common microstate templates, we
investigated the microstate-specific functional connectivity in the
sensor space. Many studies have explored the source localization
of microstates, and the association between the microstates and
RSNs (Britz et al., 2010; Yuan et al., 2012; Custo et al., 2017; Milz
et al., 2017; Michel and Koenig, 2018). Currently, only limited
studies have sought to uncover the relationship between resting
EEG microstates and their corresponding functional connectivity
(Comsa et al., 2019). The functional connectivity patterns
underlying each microstate class remain unclear. Moreover, a
popular approach for studying brain dynamics in EEG and fMRI
is dynamic functional connectivity (Hutchison et al., 2013; Allen
et al., 2014; Hansen et al., 2015; Kabbara et al., 2017; O’Neill
et al., 2018; Ploner and Tiemann, 2021). The major limitation of
the dynamic functional connectivity analysis based on the sliding
window approach is the need to manually select a fixed window
length. This means that the signals under this window length may
not belong to the same brain state. Microstate-specific functional
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connectivity analysis is similar in nature to dynamic functional
connectivity, but in this study, the connectivity template for
each microstate class is computed by the data belonging to this
microstate class. More specifically, microstate analysis provides
prior knowledge for computing the state-specific connectivity
templates. Our analysis highlighted that each microstate class is
associated with a unique phase synchronized pattern, and the
functional connectivity pattern seems to reflect the character
of the corresponding microstate template. These findings were
highly consistent across patients and healthy controls groups
and were replicated in an independent dataset. The connectivity
patterns were weakened to varying degrees in patients with left-
or right-sided stroke, but the main skeleton of the patterns
seemed to be preserved. Moreover, there were no significant
differences between patients and controls in microstate-wise
functional connectivity. These results indicate that the similarity
of connectivity patterns between groups may explain the
similarity of the microstate templates. Note that the similarity of
connectivity patterns was not a sufficient and necessary condition
for no significant differences between healthy controls and
patients. Due to the large heterogeneity of the patients, the effect
size may be reduced at the channel-level connection. Importantly,
these findings appear to prove that flipping the data in some
studies to unify the lesions to one side may have an unpredictable
effect on the results. For example, microstates A and B appear to
be exchanged after the data are flipped. Our study extends and
refines our understanding of microstates. Microstate analysis has
the potential to study dynamic functional connectivity from a
new perspective.

Due to the brain damage introduced by stroke, the cognition
and behavior of the patients were impaired. We found significant
changes in microstate parameters between patients and controls.
The most striking results were in the parameters of microstates A,
B, and C. In patients, microstate C explained less variance, was of
lower mean GFP, had a shorter duration, longer mean interval,
occupied less time and occurred less frequently compared to
healthy controls. In contrast, microstates A and B exhibited
the opposite pattern relative to microstate C. Importantly, no
difference was observed in the summed parameters across five
microstates between the patients and healthy controls. On the
other hand, functional connectivity of microstate C showed
stronger connectivity in a large connected component compared
to other microstate classes. Partially in line with the findings of
dynamic functional connectivity (Bonkhoff et al., 2020; Wang
et al., 2020), stroke patients prefer to spend more time in states
with low levels of connectivity. After brain injury, the alpha
power is generally considerably decreased (Edlow et al., 2021).
Herein stroke patients showed a decreased mean duration of
microstate C. This may be partly explained by the positive
association between the duration of microstate C and alpha
power (Croce et al., 2020). Moreover, our study did not find
significant differences between patients with left-sided and right-
sided stroke in all microstate parameters, whereas the duration,
occurrence, and coverage in microstates C and D significantly
differed between patients with left-sided and right-sided stroke in
a previous study (Zappasodi et al., 2017). A possible explanation
is that the microstate templates between the two groups were

different in the prior study and the poststroke time of the
patients was different from that of our study. Further studies
are needed to investigate this issue. In addition, stroke patients
showed clearer patterns of changes in spatial correlation metrics
relative to healthy controls. Briefly, the mean absolute correlation
coefficients between the maps belonging to each microstate
class and the corresponding template increased. The previous
study has demonstrated that there were gradual map changes
from one microstate to another (Mishra et al., 2020). These
results suggest that after stroke the signal variability over
time is diminished, and the microstate segregation seems to
increase. One potential explanation is that the disruption of
structural and functional connections after the stroke affects
brain information integration and transmission, and limits the
ability to dynamically configure the brain network. Moreover,
the stroke-related alterations were also reflected in transition
probability. TPBC, TPDC, and TPEC occurred less frequently,
while TPBA and TPEA were more likely to occur compared
to controls. Overall, the results of this study suggest that the
original dynamic balance between microstates is broken and
seems to reflect the compensation and reconfiguration of network
dynamics after stroke and that the reconfiguration of temporal
dynamics is state-selective.

Previous studies have investigated the association between
microstates and RSNs (Britz et al., 2010; Custo et al., 2017;
Milz et al., 2017; Brechet et al., 2019; Zoubi et al., 2020).
However, no complete consensus has yet been reached. Prior
study (Britz et al., 2010) suggested that microstate classes
and the corresponding most relevant RSNs were: the auditory
network (microstate A), visual network (microstate B), saliency
network (microstate C), and attention network (microstate D).
However, other studies suggested that microstate C reflects
a portion of the default mode network (Seitzman et al.,
2017), and microstates A and B considerably overlap with
the somatomotor network (Zoubi et al., 2020). An increase
in the coverage and occurrence of microstate B was observed
in certain cognitive tasks with direct visual input (Zappasodi
et al., 2019), and an increased presence in microstate C
and decreased presence in microstate D was observed in
schizophrenia (da Cruz et al., 2020). Moreover, One microstate
study demonstrated that spontaneous brain activity could encode
detailed information about motor control (Pirondini et al., 2017).
Given the complex relationships of microstate, cognition, and
behavior, it is arbitrary to reduce microstates to specific functions
with current knowledge.

Despite the high heterogeneity of stroke patients, we
demonstrated the ability to achieve a moderate level of
discrimination between stroke patients and healthy controls
using only microstate features. Although stroke patients did
not show differences in microstate parameters between T0 and
T1, microstate parameters at the group level were closer to
those of controls after the 2-week rehabilitation therapy. Finally,
we evaluated the associations between microstate parameters
and the clinical score of lower limb motor function. For
each microstate class, the connectivity in a large connected
component was negatively correlated with the FMAL score at
both T0 and T1. These connected components mainly involved
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connections between sensorimotor areas and frontal/posterior
regions and connections within sensorimotor areas. The negative
correlation between static functional connectivity and FMAL
was also observed in a recent study (Hoshino et al., 2021).
In addition, the microstate dynamics may reflect the selective
inhibition of specific intra-cortical regions (Milz et al., 2017).
Patients with eyes closed were in an internally focused state,
under the functional competition between different networks,
weaker phase synchronization may reflect a greater potential
for movement. Moreover, some spatial correlation metrics (e.g.,
SCAA) were negatively correlated with the FMAL score at
T0. At T1, the correlations between the FMAL score and
other parameters (e.g., occurrence, coverage, mean interval)
of microstates C and D increased. Brain dynamics may be
modulated by rehabilitation therapy, and resting-state brain
dynamics can encode information reflecting motor ability.
Furthermore, microstates C and D exhibited opposite patterns of
association with the FMAL score in occurrence, coverage, mean
interval, duration, etc. This may be due to the different functional
connection patterns underlying microstates C and D. Together,
these findings provide the first evidence that the microstate-
related features are associated with the lower limb function status.
Further studies are needed to validate these results and elucidate
these correlations.

Several considerations should be taken into account. First, for
patients in this study, we only focused on the stroke patients
in the subacute phase. Given the sample size of the study, the
analysis in more specific groups (e.g., grouping according to
gender, stroke type, or age) was not performed. In addition,
because of the large heterogeneity of stroke patients (e.g., age,
lesion location, poststroke time, stroke type, and treatment),
the results in this study are not sufficient to be applicable
across the entire spectrum of stroke patients and need to
be interpreted with caution. In addition, information on age-
and gender-related changes of microstate dynamics is sparse,
and there are huge discrepancies in the results of different
studies, especially on gender (Tomescu et al., 2018; Zanesco
et al., 2020). Second, although the differences in the microstate
templates between patients and controls were small, we used
the common templates to minimize the systematic errors. Due
to the possible differences in the number of microstate classes
or microstate templates, comparisons between studies need to
be made with caution. Third, for microstate-wise functional
connectivity, we only investigated the results in the alpha band.
This is because the study of phase synchronization using the
Hilbert transform approach requires the use of narrowband
signals (Lachaux et al., 1999), and microstates are predominantly
generated by intracortical sources in the alpha band (Milz et al.,
2017). In addition, functional connectivity is based on the phase
synchronization method, and phase- and amplitude-coupling
patterns may reflect partly distinct neuronal mechanisms (Siems
and Siegel, 2020). Fourth, a large number of dependent measures
and multiple comparisons were conducted in this study. After
strict p-value correction, there is a risk that the true effects will
not be identified as statistically significant. The original p-values
of the results are provided in Supplementary Material. To sum
up, given the limitations of this study and the unsolved problems

in this field, more meticulous and large sample size studies are
needed in the future to validate and expand this research in the
hope of gaining a deeper and more comprehensive understanding
of brain dynamics.

CONCLUSION

In a nutshell, our results provide a novel perspective on
one of the major issues in neuroscience and neurological
rehabilitation: the connectivity patterns underlying different
functional states and how the neural dynamics are altered
in brain injury patients (e.g., stroke) (O’Neill et al., 2018;
Bai et al., 2021a; Bian et al., 2021). Centered on this issue,
we proposed and implemented a microstate-based method to
investigate the phase synchronization pattern underlying each
microstate class and the alterations of microstate dynamics
on the order of milliseconds in stroke patients. The results
suggested that each microstate class was associated with a
specific functional connectivity pattern, and the findings were
highly consistent across different datasets. On the other hand,
most microstate parameters (e.g., mean duration, occurrence,
coverage, mean interval) in patients significantly differed from
healthy controls in microstates A, B, and C. Importantly, the
change patterns in stroke patients in microstate C relative
to healthy controls were opposite to those in microstates A
and B. Microstate integration and transmission were disrupted
to some degree after stroke. These findings indicated the
compensation and reorganization of neural dynamics after the
disruption of neural function due to stroke. Moreover, we
found that certain dynamic parameters were associated with
lower limb function and spontaneous microstate dynamics
seemed to encode information about motor ability. Overall,
we extend our understanding of the brain dynamics, uncover
the connectivity patterns underlying microstates, and provide
new insights not obtained in studies using static features. Since
the microstate dynamics can be modulated by neurofeedback
and external stimulation (Michel and Koenig, 2018; Gui et al.,
2020), our results open avenues for understanding the network
reorganization and the development of new treatments for
stroke patients.
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