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Editorial: The microbiome as a source of new enterprises and job creation

Meta-analysis generates and prioritizes hypotheses for
translational microbiome research
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The potential for microbiome-based therapeutics and
diagnostics has generated significant excitement among
scientists, clinicians and entrepreneurs. Much of basic
microbiome research remains clinically relevant and
readily translatable. Most human-associated microbial
communities are fairly non-invasive to sample (e.g. stool,
skin swabs, vaginal swabs), allowing for relatively easy
access to clinical human samples. Once identified and
developed, microbiome-based interventions are likely to
be non-invasive and quickly adopted into standards of
care. For example, identifying new uses for existing
antibiotics and probiotics in microbiome-related diseases
could quickly transform clinical practice. From a clinical
perspective, the microbial communities in our guts have
been implicated in many diseases, including neurological
conditions, metabolic disorders and autoimmune dis-
eases. Encouraged by the remarkable success of faecal
microbiota transplants (FMTs) in treating recurrent
Clostridium difficile infection, clinicians are pursuing
FMTs in hundreds of ongoing clinical trials. Finally,
established biotechnology companies are expanding into
the microbiome and start-ups related to the microbiome
are rapidly growing in number. Although the potential for
impact is vast, successes have so far been limited: a
recent clinical trial testing a defined microbial consortia
for treating C. diff yielded disappointing results (Ratner,
2016), and results from FMT trials in conditions other
than recurrent C. diff infection indicate that many condi-
tions may have a variable and complex response to
FMT (Moayyedi et al., 2015).
Despite the increasing research in this field, we have

few generalizable insights into the human microbiome
and disease, which may partially explain our current lim-
ited translational successes. Microbiome research has
few established and standardized experimental and anal-
ysis methods, and individual studies often provide incon-
sistent or conflicting results. Clinical trials often report

only outcome measures (e.g. remission rates) and broad
microbial community characteristics (e.g. alpha diversity),
without investigating specific microbiome alterations in
detail. Microbiome studies which investigate specific
microbial changes associated with disease frequently
report finding ‘dysbiosis’, which is usually poorly defined
and of uncertain therapeutic or diagnostic relevance to
the disease of interest (Olesen and Alm, 2016; Hooks
and O’Malley, 2017). Improving our foundational under-
standing of the relationship between the human micro-
biome and disease would likely lead to more and faster
translational successes.
One way to generalize and integrate knowledge

across studies is to perform a meta-analysis of existing
work (Glass, 1976). In the microbiome field, where basic
science, clinical trials and commercialization are all hap-
pening simultaneously, meta-analysis can be used to
integrate the knowledge from these many perspectives
and choose avenues to pursue which are more likely to
lead to successful outcomes. For scientific researchers,
meta-analysis of existing studies increases our power to
detect true signals, reduces the number of false posi-
tives by identifying consistencies across independent
studies and can strengthen existing findings by demon-
strating their reproducibility. In clinical trials and
entrepreneurship, meta-analysis can help identify thera-
pies or products that are most likely to generalize across
a variety of patient cohorts. Meta-analysis across multi-
ple diseases could perhaps even identify therapies that
may be applicable to multiple indications.

Meta-analyses to better understand our tools

Early analyses that combined results from multiple
microbiome studies did so to better understand the tools
and methods used to process, analyse and interpret
microbiome data. Some studies examined how different
data processing methods impacted results and others
compared the performance of different analytical tech-
niques on various prediction tasks (Knights et al., 2011;
Werner et al., 2011; Pasolli et al., 2016; Wang et al.,
2016). These tasks were rarely motivated by a biological
question but were rather used as benchmarks to
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evaluate the performance of different machine learning
classifiers or analysis methods (e.g. statistical tests) on
microbiome data. Another type of early meta-analysis
combined data sets to investigate the relative technical
and biological contributions to variability in the micro-
biome (Lozupone et al., 2013). These authors found that
the variation related to different microbial habitats (i.e.
different body sites) is greater than the variation resulting
from different studies (i.e. batch effects). However, it
remains unclear how disease-related variation compares
to technical variation, and meta-analyses which attempt
to combine raw data from disparate studies should pro-
ceed with caution (Johnson et al., 2006; Sze and
Schloss, 2016; Gibbons et al., 2017). In the future, meth-
ods-focused meta-analyses should be undertaken to
identify ways to improve our tools, for example by devel-
oping methods to correct for batch across studies.

Meta-analyses to better understand relationships
with disease

More recent meta-analyses have combined insights from
multiple data sets to investigate the generalizability and
reproducibility of biological associations between human
disease and the microbiome. These studies employ more
traditional meta-analytical techniques to synthesize find-
ings from multiple studies with similar biological ques-
tions. The earliest of these focused on well-studied
conditions such as inflammatory bowel disease and obe-
sity, and found few consistencies across multiple studies
(Finucane et al., 2014; Walters et al., 2014; Sze and
Schloss, 2016). Another approach has been to combine
data sets to build generalized classifiers that could iden-
tify common features of a ‘healthy’ microbiome (Pasolli
et al., 2016). In recent work, we extended these
approaches to compare results across ten disease
states, and found that there are consistent disease-asso-
ciated shifts and a shared response to disease (Duvallet
et al., 2017). As the number of studies continues increas-
ing, such meta-analyses should continue to be under-
taken to confirm and generalize biological insights across
different patient cohorts and experimental designs.
Moving forward, meta-analysis of microbiome studies

could also be used to generate new hypotheses and
motivate new microbiome-based therapies. For example,
in our study, we identified consistent disease-associated
patterns that suggested possible treatment strategies
(Duvallet et al., 2017). We found that some diseases are
consistently characterized by a depletion of commensals,
which may therefore be suitable to probiotic interven-
tions. On the other hand, diseases characterized by an
overabundance of potentially pathogenic microbes may
respond to narrow-spectrum antimicrobial therapies. By
comparing microbiome data across many diseases, we

also found a set of bacteria which respond non-specifi-
cally to disease, suggesting the potential for broad probi-
otic or antibiotic interventions that could work across a
variety of conditions. Additionally, excluding these non-
specific microbes from follow-up mechanistic studies or
quests for diagnostic biomarkers in individual, diseases
may help ensure that follow-up findings are specific to
the disease of interest.
Comparing results across diseases can also guide

emerging research on conditions which have suspected
links to the microbiome but little established research.
Researchers can compare disease-associated shifts
found in these less-studied conditions with those seen in
diseases with established microbiome-related aetiologies
to identify shared mechanisms and potential successful
therapies. In other words, if a disease which is newly
being investigated exhibits similar patterns to diseases
with established microbiome-based interventions, then
perhaps those interventions could work in this disease as
well.
Finally, researchers could compare results from dis-

eases with similar symptoms or aetiologies to identify
microbiome alterations associated with more general
physiological changes. For example, autoimmune disor-
ders could be compared across multiple conditions and
patient cohorts to better understand host–microbe
immune interactions and to guide the development of
general immune-microbial therapies. Furthermore, com-
paring microbiome studies from neurological conditions
may identify common mechanisms that could help us
better understand the ‘gut-brain’ axis and discover neu-
roactive microbial metabolites which could be used as
targets for new treatments.

Considerations for performing microbiome meta-
analyses

To perform a microbiome meta-analysis, researchers
must consider general meta-analysis study design as well
as certain challenges specific to microbiome data. As in
any meta-analysis, researchers must first decide which
data sets to include and exclude. Many microbiome stud-
ies, however, contain information that can be used for
additional analyses that were not included in the original
publications. For example, Sze et al. used BMI metadata
from non-obesity studies to expand their obesity meta-
analysis (Sze and Schloss, 2016). In our meta-analysis,
we re-purposed non-Clostridium difficile diarrhoeal con-
trols from the original Schubert et al. study as a separate
case group for diarrhoea (Schubert et al., 2014; Duvallet
et al., 2017). Researchers must decide whether and how
to incorporate studies where the originally published anal-
yses differ from but can be re-purposed to fit the goals of
the meta-analysis. Additionally, confounders are common
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in microbiome research and patient cohorts are often
quite heterogenous across studies (e.g. different inclusion
and exclusion criteria and/or using healthy or non-healthy
controls; Morgan et al., 2012; Papa et al., 2012; Noguera-
Julian et al., 2016). Thus, researchers must ensure that
enough data sets are being combined such that hetero-
geneity or confounded results do not drive the findings of
the meta-analysis (Glass, 1976).
In microbiome research, performing a traditional meta-

analysis by combining published P-values is not feasible
(Fisher, 1925; Glass, 1976). Studies often perform differ-
ent and incomparable types of analyses (e.g. LEFSe
(Segata et al., 2011), ‘enterotype’ analyses (Schubert
et al., 2014), machine learning (Pasolli et al., 2016), etc.)
which do not always provide readily available and compa-
rable P-values. Even if comparable P-values were avail-
able, matching the identities of bacteria across studies
can also be difficult. Different research groups use differ-
ent databases and tools for taxonomic assignment, which
often contain conflicting or non-overlapping taxonomies.
Many microbiome studies now provide their raw

sequencing data in public repositories, enabling meta-
analyses where raw data are re-processed and directly
compared. However, data reporting and deposition are
not standardized, and many data sets may have incom-
plete or missing metadata (e.g. disease labels, replicate
numbers, sample types). Additionally, issues related to
privacy in microbiome data have been raised and not
resolved (Franzosa et al., 2015). Thus, there are no
standards for distributing raw microbiome data, and
some data sets are publicly available, whereas others
require significant approvals to access. Researchers per-
forming microbiome meta-analyses must consider
whether to include controlled-access data sets (e.g. data
deposited in dbGaP or LifeLines-DEEP) or restrict them-
selves to publicly available data alone.
Although performing meta-analyses from raw data is

ideal, it also comes with challenges. DNA extraction,
amplification and sequencing methods all contribute to
non-biological artefacts, resulting in significant batch
effects between studies. Researchers can attempt to
correct for these batch effects computationally, but such
methods may be effective in only a limited number of
cases (e.g. case–control studies; Gibbons et al., 2017).
Another option is to process each data set separately
and compare results across studies. However, compar-
ing results across studies requires reference-based
approaches, which limit the possible taxonomic resolu-
tion of results (Duvallet et al., 2017).

Meta-analysis to narrow and prioritize hypotheses

The field of microbiome research is expanding rapidly
and raw microbiome data tend to be readily available,

providing ample opportunity for high-quality meta-ana-
lyses. Entrepreneurs, clinicians and researchers all ben-
efit from contextualizing their individual studies within the
corpus of existing work. Disease-associated microbiome
signals that are consistently identified across many stud-
ies are less likely to be spurious results related to indi-
vidual patient cohorts or confounders, and more likely to
be truly associated with the disease of interest. Many
microbiome-based companies are being established, but
early pioneers make it clear that we still have a ways to
go before basic microbiome research can be success-
fully and robustly translated into targeted engineered
therapies beyond FMTs.
Meta-analysis can contribute to microbiome research

and development efforts by narrowing and prioritizing
hypotheses without requiring significant additional
investment beyond supporting bioinformatics personnel
and infrastructure. Companies working to develop
robust therapies can leverage the existing knowledge
and data in the field to pursue targets with higher likeli-
hoods of success, which are those that rely on consis-
tent patterns across studies. Data to perform such
meta-analyses are by definition already collected, allow-
ing it to be integrated into many parts of the micro-
biome research and development pipeline without
incurring many additional costs. Specifically, meta-ana-
lysis is a crucial tool in early explorations before clinical
trials are pursued. For example, commercializing a suc-
cessful product or therapy requires efficacy across a
variety of patients, and meta-analysis can be used to
computationally test hypotheses across a variety of
patient cohorts without embarking on expensive clinical
trials. As opportunities in the microbiome expand, so
does the demand for bioinformaticians to analyse and
interpret the increasing amount of data generated by
preliminary investigations and clinical trials. Meta-analy-
sis is becoming one important part of the analytical and
computational toolbox used by bioinformaticians to sup-
port and inform the translation of preliminary hypothe-
ses into commercializable products.
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