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Abstract: In this study, a CMOS compatible capacitive humidity sensor structure was designed and
fabricated on a 200 mm CMOS BEOL Line. A top Al interconnect layer was used as an electrode with
a comb/serpent structure, and graphene oxide (GO) was used as sensing material. XRD analysis
was done which shows that GO sensing material has a strong and sharp (002) peak at about 10.278˝,
whereas graphite has (002) peak at about 26˝. Device level CV and IV curves were measured in
mini-environments at different relative humidity (RH) level, and saturated salt solutions were used
to build these mini-environments. To evaluate the potential value of GO material in humidity
sensor applications, a prototype humidity sensor was designed and fabricated by integrating the
sensor with a dedicated readout ASIC and display/calibration module. Measurements in different
mini-environments show that the GO-based humidity sensor has higher sensitivity, faster recovery
time and good linearity performance. Compared with a standard humidity sensor, the measured RH
data of our prototype humidity sensor can match well that of the standard product.
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1. Introduction

With the developing of the Internet of Things and sensor networks, MEMS/sensor
“consumerization” has begun to emerge, and more and more new applications of MEMS/sensors have
begun to be found in consumer products such as mobile phones, PAD, etc. With the consumer market
growth, requirements for high performance and low cost MEMS/sensors are increasing, especially for
digital multimedia products [1,2]. Humidity sensors is some of the most widely used sensors, found
in industry control, automobile defogger, agriculture, and environment monitoring applications, etc.
Recently, humidity sensors have been successfully integrated into high-end mobile phone products
including the Samsung Galaxy S4, and their market will increase dramatically with the growing
consumer electronics demands.

Based on their measurement units, humidity sensors can be divided into two types: relative
and absolute humidity sensors. According to the operating principles, these are three main types:
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Capacitive, resistive, and thermal conductivity humidity sensors. Most humidity sensors are capacitive
RH sensors because of their low cost, linearity, minimal long-term drift and hysteresis [3].

Graphene is one of the most promising materials developed in this century with its exceptional
mechanical, thermal and electrical properties [4–7]. GO is made up of single or several closely-spaced
graphene sheets, and has sp2 and sp3 hybridized carbon atoms which can be considered as
insulators [8]. GO is slightly soluble in water, and has plenty of oxygen-containing functional groups,
such as epoxy, hydroxy (–OH), and carboxy (–COOH) groups, covering its surface [9–12]. GO materials
have already attracted significant interest in various sensing applications because of their ultrasensitive
detection properties [13–17], but little work has been done on evaluation of its critical properties
for sensor applications, such as leakage current control, CMOS compatible performance, stability,
linearity, etc.

In this work, a capacitive humidity sensor was designed and fabricated with GO as sensing
material. The capacitance of the sensor device was increased about four times from ~22.5% RH to
~85% RH, which shows excellent sensitivity. After integrating the sensor device with a dedicated
readout ASIC, a prototype humidity sensor was built and its measured data was compared with that
of a standard humidity sensor.

2. Experimental Details

Figure 1 shows the whole workflow of this study. Firstly, The CMOS compatible capacitive sensor
structure was designed and fabricated on a 200 mm CMOS BEOL line. After that, the wafer dicing
was done, and the sensor was fabricated by filling GO material in this structure. Finally the prototype
humidity sensor was designed and built to evaluate its performance.
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Figure 1. Workflow of this study.

The sensor structure was designed and fabricated with a comb/serpent capacitor structure by a
standard 0.35 µm CMOS compatible process, as shown in Figure 2. The top Al interconnect layer was
used as the capacitor electrode with a line/space/height = 0.78 µm/0.54 µm/0.8 µm. After the sensor
structure fabrication, a full wafer CV/IV mapping test was done to check the process uniformity and
leakage performance.
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After wafer dicing was finished, and the sensor was fabricated by filling GO material in the
structure. In this post CMOS process, a GO-based water dispersion solution was used as filling
material, and after the filling process the sensor was thermally treated to remove the water. XRD was
used to check the sensing material properties, and CV/IV data was measured in different environments
to check the leakage and capacitance properties.

A prototype humidity sensor was designed and built by integrating the sensor with a dedicated
readout ASIC and display/calibration module at the PCB level. A standard frequency-voltage
convertor (CAV444, Analog Microelectronics, Mainz, Germany) was used as readout circuit to extract
the capacitance variation by the RC oscillation mechanism. The prototype sensor was then evaluated
in different environments, and all the measured data was compared with a standard humidity sensor
(HM 34 Humidity & Temperature Meter, VAISALA, Vantaa, Finland) as shown in Figure 3.
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Figure 3. Standard temperature and humidity sensor.

All the measurements were done at a room temperature of 25 ˝C. CV was measured by a 4284A
instrument (Agilent, Santa Clara, CA, USA) and IV was measured by an Agilent 4156C device. This
study adopted a very convenient way to measure and calibrate humidity sensors by using saturated
salt solutions. As shown in Figure 4, the saturated salt solution, which is made up as a slushy
mixture with distilled water and chemically pure salt, is enclosed in a sealed glass chamber to build
mini-environments with different RH values.
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Figure 4. Mini-environment built with a saturated salt solution sealed in glass chamber.

The RH of the atmosphere above the saturated salt solution in the sealed chamber was fixed
at a given temperature, and it can cover almost the entire range of relative humidity, as shown in
Table 1. Because the concentration of a saturated salt solution is fixed at given temperature, it is very
easy to determine the saturation state when there is solid phase salt left in the solution. As the RH
value will be disturbed during putting device under test (DUT) into the mini-environments, all the
measurements will be done after the RH value of the mini-environment is stable which can be easily
determined by using the output data of a standard humidity sensor.
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Table 1. Relative humidity (RH) values of normally used saturated salt solutions.

Saturated Salt Solution Temperature (˝C) Relative Humidity (%)

LiCl 25 15
CaCl2 25 31
K2CO3 25 43
NaCl 25 75
KCl 25 84

K2SO4 25 98

3. Results and Discussion

A standard 0.35 µm CMOS BEOL process was used to fabricate the comb/serpent capacitor
structure. A BEOL Al metal layer was used as capacitor electrode with line/space/height = 0.78 µm/
0.54 µm/0.8 µm. The structure was designed with consideration of least fringing field and parasitic
capacitance, and PAD was formed by the same metal layer. A top-view photo of the structure can
be seen in Figure 5, in which the sensor structure was located on the left, with dimensions of about
500 µm ˆ 500 µm and the bonding PAD was on the right with dimensions of 150 µm ˆ 150 µm.
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Figure 5. Top view photo of the fabricated sensor structure.

After wafer fabout, a CV and IV mapping test was done to check the uniformity and leakage
performance of the structure. As can be seen in Figure 6, the capacitance of the sensor structure has a
mean value of ~1.25E´11 f, and a very good uniformity can be obtained with a standard deviation of
~1.76E´13 f and NU% of ~ 1.41%. From the IV data, the structure shows a very good leakage control
with a max leakage current of ~5E´14 A.
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Figure 6. Full wafer CV (Left) and IV (Right) mapping test data of the sensor structure.
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After wafer dicing, the sensor was fabricated by filling GO material in the sensor structure. A
GO-based water dispersion solution was used as filling material, and after the filling process the
sensor was treated in a baking oven at a temperature of 60 ˝C for about 50 min to remove the water.
Cross-sectional SEM was done to check the filling performance, and the GO filling performance can
meet the sensor requirements as can be seen in Figure 7.Sensors 2016, 16, 314 5 of 9 
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Leakage is very critical to any sensor application with a capacitive sensing mechanism, because
more leakage current will make capacitance measurement inaccurate and cause the device to
malfunction. Leakage of the sensor device was measured in voltage sweeping mode from 0 V to 5 V. As
shown in Figure 9, the sensor leakage can be controlled below 1E´11 A with a comb/serpent electrode
length of ~165 mm at about 50% RH level, which can meet well the sensor application requirements.Sensors 2016, 16, 314 6 of 9 
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Figure 9. IV curve of the sensor device after GO filling.

Capacitance was measured at frequency of 100 kHz by an Agilent 4284A instrument. C/C0 ratio is
plotted in Figure 10, in which C is the capacitance at given RH level and C0 is the capacitance at minimal
RH level of ~22.5% RH. With the RH value changing from ~22.5% to ~85%, the sensor capacitance
has increased around four times, whereas normally used humidity materials, such as polyimide, only
have a capacitance variation of about 20%. In addition to plenty of oxygen functional groups on the
GO material, its high surface to volume ratio also contributes to this larger capacitance change.
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Figure 10. Sensor capacitance variation ratio of C/CO with different RH.

To evaluate the potential value of GO material in humidity sensor applications, a prototype
humidity sensor was designed and built by integrating the sensor with a dedicated readout ASIC
and a display/calibration module on the PCB level. A standard Analog Microelectronics CAV444
frequency-voltage convertor was used as a readout circuit to extract the capacitance variation caused
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by the RC oscillation mechanism. A schematic circuit block of the prototype sensor and block diagram
of the frequency-voltage convertor are shown in Figure 11.Sensors 2016, 16, 314 7 of 9 
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Figure 11. Schematic circuit block of the prototype sensor (Left) and block diagram of the
CAV444 (Right).

To build the prototype sensor, the sensor device was firstly wire-bonded with the CAV444 on the
PCB level, which can convert the change of capacitance to voltage. As can be seen in Figure 12, the
output voltage has a very good linear relation with the RH value, and the insert graph shows the PCB
photo after integrating the sensor device with the ASIC.
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After that, the prototype humidity sensor was built by further integrating a LCD display and
calibration module, which can be seen in Figure 13.
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After linear calibration, the prototype sensor was used to measure the RH value in environments
at different RH levels. The measured data was then compared with that of a standard humidity sensor,
as shown in Figure 14. It can be seen that output humidity data of our prototype sensor can match
well the output of the standard sensor.Sensors 2016, 16, 314 8 of 9 

 

  

Figure 14. Measured humidity data of the prototype sensor (Left) and measurement photo of the 

prototype sensor and standard sensor (Right). 

Response/recovery time was defined as the time (τ) required to achieve ~63% value of a humidity 

step function. Recovery time was measured by a simple method as shown in Figure 15. The standard 

and prototype sensor was put into a mini-environment of the same saturated salt solution. After 

stabilization, the sensor was quickly taken out from the high RH mini-environment to the outside 

atmosphere, and the recovery time was measured. From ~93% RH (mini-environment) to ~52% RH 

(outside environment), the recovery time of this work is less than 3 s compared with ~8 s for the 

standard humidity sensor, so the GO-based humidity sensor shows about two times faster recovery 

time than the standard sensor, which is due to its special structure with much higher surface to 

volume ratio. 

 

Figure 15. Schematic recovery time test procedure. 

4. Conclusions 

In this work, a CMOS compatible capacitive humidity sensor structure was designed and 

fabricated on a 200 mm CMOS BEOL Line. BEOL Al with a comb/serpent structure was used as 

electrode, and GO was used as sensing material. The sensor device shows excellent sensitivity and 

faster recovery time than a standard sensor. A prototype humidity sensor was designed and built by 

integrating the sensor device with a dedicated ASIC at the PCB level, and the output value of the 

prototype sensor was shown to match well that of a standard humidity sensor. 

Acknowledgments: This work was the result of close cooperation with the ICR&D Center and received great 

help from HHGRACE. The authors would like to thank the colleagues from the R&D Department of Shanghai 

IC R&D Center and the PIE department III of HHGRACE. Special thanks are due to Meng Gao, Liangliang Jiang, 

Yong Wang, Shaojian Hu, Ming Li, Bin Jiang and Xiang Li for their strong support of this work. 

Author Contributions: Jinfeng Feng and Xiaoxu Kang contributed equally to the whole work. Qingyun Zuo and 

Weijun Wang designed the humidity test environment and performed the test. Chao Yuan performed the layout 

design and mask tapeout. Yuhang Zhao performed the CV/IV/XRD measurements and analyzed the data.  

Limin Zhu, Hanwei Lu and Juying Chen performed the process experiments of the sensor structure and PCM 

data analysis. 

Conflicts of Interest: The authors declare no conflict of interest. 

  

 

0 1 2 3 4 5
30

35

40

45

50

55

60

65

70

75

80

 

 

R
e

la
ti
v
e

 H
u

m
id

it
y
 (

%
)

Condition

 DUT

 Reference

Figure 14. Measured humidity data of the prototype sensor (Left) and measurement photo of the
prototype sensor and standard sensor (Right).

Response/recovery time was defined as the time (τ) required to achieve ~63% value of a humidity
step function. Recovery time was measured by a simple method as shown in Figure 15. The standard
and prototype sensor was put into a mini-environment of the same saturated salt solution. After
stabilization, the sensor was quickly taken out from the high RH mini-environment to the outside
atmosphere, and the recovery time was measured. From ~93% RH (mini-environment) to ~52% RH
(outside environment), the recovery time of this work is less than 3 s compared with ~8 s for the
standard humidity sensor, so the GO-based humidity sensor shows about two times faster recovery
time than the standard sensor, which is due to its special structure with much higher surface to
volume ratio.

Sensors 2016, 16, 314 8 of 9 

 

  

Figure 14. Measured humidity data of the prototype sensor (Left) and measurement photo of the 

prototype sensor and standard sensor (Right). 

Response/recovery time was defined as the time (τ) required to achieve ~63% value of a humidity 

step function. Recovery time was measured by a simple method as shown in Figure 15. The standard 

and prototype sensor was put into a mini-environment of the same saturated salt solution. After 

stabilization, the sensor was quickly taken out from the high RH mini-environment to the outside 

atmosphere, and the recovery time was measured. From ~93% RH (mini-environment) to ~52% RH 

(outside environment), the recovery time of this work is less than 3 s compared with ~8 s for the 

standard humidity sensor, so the GO-based humidity sensor shows about two times faster recovery 

time than the standard sensor, which is due to its special structure with much higher surface to 

volume ratio. 

 

Figure 15. Schematic recovery time test procedure. 

4. Conclusions 

In this work, a CMOS compatible capacitive humidity sensor structure was designed and 

fabricated on a 200 mm CMOS BEOL Line. BEOL Al with a comb/serpent structure was used as 

electrode, and GO was used as sensing material. The sensor device shows excellent sensitivity and 

faster recovery time than a standard sensor. A prototype humidity sensor was designed and built by 

integrating the sensor device with a dedicated ASIC at the PCB level, and the output value of the 

prototype sensor was shown to match well that of a standard humidity sensor. 

Acknowledgments: This work was the result of close cooperation with the ICR&D Center and received great 

help from HHGRACE. The authors would like to thank the colleagues from the R&D Department of Shanghai 

IC R&D Center and the PIE department III of HHGRACE. Special thanks are due to Meng Gao, Liangliang Jiang, 

Yong Wang, Shaojian Hu, Ming Li, Bin Jiang and Xiang Li for their strong support of this work. 

Author Contributions: Jinfeng Feng and Xiaoxu Kang contributed equally to the whole work. Qingyun Zuo and 

Weijun Wang designed the humidity test environment and performed the test. Chao Yuan performed the layout 

design and mask tapeout. Yuhang Zhao performed the CV/IV/XRD measurements and analyzed the data.  

Limin Zhu, Hanwei Lu and Juying Chen performed the process experiments of the sensor structure and PCM 

data analysis. 

Conflicts of Interest: The authors declare no conflict of interest. 

  

 

0 1 2 3 4 5
30

35

40

45

50

55

60

65

70

75

80

 

 

R
e

la
ti
v
e

 H
u

m
id

it
y
 (

%
)

Condition

 DUT

 Reference

Figure 15. Schematic recovery time test procedure.

4. Conclusions

In this work, a CMOS compatible capacitive humidity sensor structure was designed and
fabricated on a 200 mm CMOS BEOL Line. BEOL Al with a comb/serpent structure was used
as electrode, and GO was used as sensing material. The sensor device shows excellent sensitivity and
faster recovery time than a standard sensor. A prototype humidity sensor was designed and built
by integrating the sensor device with a dedicated ASIC at the PCB level, and the output value of the
prototype sensor was shown to match well that of a standard humidity sensor.
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