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Combining autophagy and
immune characterizations
to predict prognosis and
therapeutic response in
lung adenocarcinoma
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Background: Autophagy, a key regulator of programmed cell death, is critical

for maintaining the stability of the intracellular environment. Increasing

evidence has revealed the clinical importance of interactions between

autophagy and immune status in lung adenocarcinoma. The present study

evaluated the potential of autophagy-immune-derived biomarkers to predict

prognosis and therapeutic response in patients with lung adenocarcinoma.

Methods: Patients from the GSE72094 dataset were randomized 7:3 to a

training set and an internal validation set. Three independent cohorts, TCGA,

GSE31210, and GSE37745, were used for external verification. Unsupervised

hierarchical clustering based on autophagy- and immune-associated genes

was used to identify autophagy- and immune-associated molecular patterns,

respectively. Significantly prognostic autophagy-immune genes were

identified by LASSO analysis and by univariate and multivariate Cox

regression analyses. Differences in tumor immune microenvironments,

functional pathways, and potential therapeutic responses were investigated

to differentiate high-risk and low-risk groups.

Results: High autophagy status and high immune status were associated with

improved overall survival. Autophagy and immune subtypes were merged into

a two-dimensional index to characterize the combined prognostic classifier,
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with 535 genes defined as autophagy-immune-related differentially expressed

genes (DEGs). Four genes (C4BPA, CD300LG, CD96, and S100P) were

identified to construct an autophagy-immune-related prognostic risk model.

Survival and receiver operating characteristic (ROC) curve analyses showed

that this model was significantly prognostic of survival. Patterns of autophagy

and immune genes differed in low- and high-risk patients. Enrichment of most

immune infiltrating cells was greater, and the expression of crucial immune

checkpoint molecules was higher, in the low-risk group. TIDE and

immunotherapy clinical cohort analysis predicted that the low-risk group had

more potential responders to immunotherapy. GO, KEGG, and GSEA function

analysis identified immune- and autophagy-related pathways. Autophagy

inducers were observed in patients in the low-risk group, whereas the high-

risk group was sensitive to autophagy inhibitors. The expression of the four

genes was assessed in clinical specimens and cell lines.

Conclusions: The autophagy-immune-based gene signature represents a

promising tool for risk stratification in patients with lung adenocarcinoma,

guiding individualized targeted therapy or immunotherapy.
KEYWORDS
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Introduction

Lung cancer is one of the most common cancers worldwide

with a high mortality rate and poor prognosis. About 85% of

patients with lung cancer have non-small cell lung cancer

(NSCLC), with the most prevalent histological form of NSCLC

being lung adenocarcinoma (LUAD) (1). The prognosis of LUAD

patients is still dismal despite advances in diagnosis and treatment,

including the introduction of target therapy and immune

checkpoint inhibitors (2). As a complex multi-step process, the

formation of LUAD may be intimately linked to the expression of

various genes (3). Additional molecular indicators are needed to

predict the prognosis of patients with LUAD.

Autophagy, a major regulator of programmed cell death,

maintains the stability of the intracellular environment by

eliminating damaged organelles, misfolded proteins, and

pathogens (4). Autophagy has been found to have a key

function in various diseases, including infectious diseases,

neurodegenerative diseases, and cancer (5). However, the

biological mechanism of autophagy in cancer is dependent on

cancer type, stage, and other variables (6). Autophagy can

suppress tumors by eliminating harmful substances and

maintaining genome stability, especially during early stages of

tumor growth (7). However, once a tumor has progressed to an

advanced stage, autophagy protects tumor cells by enabling

them to adapt to hypoxia and nutrient deprivation (8). The
02
overexpression of Beclin1, an essential autophagy gene, is linked

to the progression of various tumor types (9). Moreover,

autophagy may act as a promoter, enhancing tumor metastasis

and aggressiveness (9). Thus, modulation of autophagy has a

significant impact on the tumor microenvironment (TME),

promoting or inhibiting tumor growth.

Immune cells that infiltrate tumors have been linked to

tumor growth, metastasis, and progression (10). The levels of

expression of immune checkpoints, such as PD-L1, PD-1, and

CTLA-4, play an important role in cancer prognosis and

response to immunotherapy (11). Autophagy has been shown

to influence the immunological state of the TME, either directly

or indirectly (12). Interplay between autophagy and immunity

may affect tumor occurrence and development. Autophagy has

been reported to be associated with T-cell survival, activation,

and effector function (13), whereas tumor autophagy has been

shown to weaken NK-cell-mediated tumor cell lysis in a mouse

cancer model (14). Additional studies, however, are needed to

better understand the mechanism underlying the interactions

between autophagy and immunity.

Interactions between autophagy and immunity may have

prognostic relevance in patients with LUAD. The present study

was designed to create and validate a comprehensive index of

molecules and cells associated with immunological and

autophagy status that might be used to better describe the

TME and predict prognosis in patients with LUAD. This
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autophagy-immune-related prognostic risk model may be a

more accurate prognostic and therapeutic indicator in LUAD.
Materials and methods

Data acquisition

All the clinical information and gene expression profiling of

patients with LUAD were accessed from The Cancer Genome

Atlas (TCGA, https://portal.gdc.cancer.gov/) and Gene

Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/

geo/) databases, including the TCGA-LUAD (n = 500),

GSE72094 (n = 398), GSE31210 (n = 226), and GSE37745

(n = 106) datasets. Table 1 shows the clinical baseline

characteristics of these datasets in detail. The immunotherapy

clinical cohorts included 82 patients with advanced solid tumors

(15) and the GSE100797 dataset. Fragments per kilobase per

million mapped reads (FPKM) format data were downloaded for

the cohorts from the TCGA-LUAD dataset. Autophagy-related

genes were obtained from the HADb dataset (http://
Frontiers in Immunology 03
www.autophagy.lu/), and immune-related genes were obtained

from the ImmPort dataset (https://www.immport.org/home).

An ethics statement was not required because all of the

datasets used in the present investigation were from open-

access databases. Genes associated with autophagy, immune

signatures, ferroptosis and HLA were included for further

analysis in different molecular patterns (Supplementary Table 1).
Identification of autophagy-related
and immune-related molecular patterns
of LUAD

The k-means machine learning technique was used for

unsupervised consensus clustering and to separate samples in

the GSE72094 dataset into different molecular patterns based on

autophagy- and immune-related genes. Briefly, k-means

clustering implemented in the “ConsensusClusterPlus” R

package was applied to 1,000 iterations by taking 80% of the

samples in each iteration. The optimal number of clusters was

determined by the proportional change in the area under the
TABLE 1 Characteristic baseline of patients in clinical cohorts.

Variable GSE72094 (N = 398) TCGA
(N = 500)

GSE31210
(N = 226)

GSE37745
(N = 106)

Training cohort(N = 286) Testing cohort(N = 112) p-value

Gender 0.0572

Male 118 (41.3) 58 (51.8) 230 (46.0) 105 (46.5) 46 (43.4)

Female 168 (58.7) 54 (48.2) 270 (54.0) 121 (53.5) 60 (56.6)

Age, years 0.2509

≤60 years 52 (18.2) 15 (13.4) 157 (31.4) 108 (47.8) 46 (43.4)

>60 years 234 (81.8) 97 (86.6) 333 (66.6) 118 (52.2) 60 (56.6)

Missing 0 (0.0) 0 (0.0) 10 (2.0) 0 (0.0) 0 (0.0)

Pathological stage 0.4585

Stage I 186 (65.0) 68 (60.7) 269 (53.8) 168 (74.3) 70 (66.0)

Stage II 43 (15.0) 24 (21.4) 125 (25.0) 58 (25.7) 19 (17.9)

Stage III 42 (14.7) 15 (13.4) 81 (16.2) 0 (0.0) 13 (12.4)

Stage IV 12 (4.2) 3 (2.7) 25 (5.0) 0 (0.0) 4 (3.7)

NA 3 (1.1) 2 (1.8) 0 (0.0) 0 (0.0) 0 (0.0)

KRAS status 0.6595

Mutation 98 (34.3) 41 (36.7)

Wild type 188 (65.7) 71 (63.3)

EGFR status 0.5918

Mutation 28 (9.8) 13 (11.6)

Wild type 258 (90.2) 99 (88.4)

TP53 status 0.8551

Mutation 69 (24.1) 28 (25.0)

Wild type 217 (75.9) 84 (75.0)

Survival status 0.7665

Alive 206 (72.0) 79 (70.6) 318 (63.6) 188 (83.2) 29 (27.4)

Dead 80 (28.0) 33 (29.4) 182 (36.4) 38 (16.8) 77 (72.6)
fr
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cumulative distribution function (CDF) curves, the consensus

matrix heatmap, the proportion of ambiguous clustering (PAC),

and the NbClust method, with the number of clusters ranging

from 2 to 8 (16, 17). Principal component analysis (PCA) was

used to separate diverse subtypes of information in two-

dimensional space.
Validation of the autophagy-immune-
related prognostic risk model

Genes overlapping in the intersections of autophagy-,

immune-, and autophagy-immune-related DEGs were chosen

for univariate Cox regression analyses. Hub genes were filtered

using the “glmnet” R package and an autophagy-immune-

related prognostic risk model developed using least absolute

shrinkage and selection operator (LASSO) analysis and

multivariate Cox ratio hazard regression analysis. The risk

score of each sample was calculated as:

Risk   score = on

i=1
Coefi � xi

where Coefi represents the coefficients and xi represents the

expression of each hub gene. Based on their risk scores, patients

with LUAD in the TCGA, GSE72094, GSE31210, and GSE37745

cohorts were categorized into high-risk and low-risk subgroups.

The sensitivity and specificity of the autophagy-immune-related

prognostic risk model were assessed using the “survival” package

of R software by applying OS and survival-dependent receiver

operating characteristic (ROC) curves.
Immune cell infiltration

Single sample gene set enrichment analysis (ssGSEA) using

R software was utilized to determine the levels of infiltration of

subtypes of immune cells, including activated B cells, activated

CD4 T cells, activated CD8 T cells, and T follicular helper cells.

CIBERSORT and xCell algorithms were utilized to compare

differences in the infiltration of 22 and 64 types of immune cells,

respectively, based on gene expression profiles among different

groups. Tumor purity was assessed using the ESTIMATE

algorithm, with ESTIMATE score, immune score, and stromal

score determined using the “estimate” package of R software.
Functional enrichment analysis of
autophagy-immune-related prognostic
risk model

To investigate possible biological pathways among distinct

subtypes, DEGs in the GSE72094 cohort with |log2 fold change

(FC)| > 0.5 and an adjusted p-value of 0.001 were identified using
Frontiers in Immunology 04
the “Limma” program. Gene ontology (GO) term enrichment

analysis and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway analysis were performed based on DEGs

using R software. In addition, gene set enrichment analysis

(GSEA) provided by MsigDB was performed using GSEA,

version 4.1.0 (http://www.gsea-msigdb.org/gsea) (18).
Prediction of tumor chemosensitivity to
drugs and potential responses to
immunotherapy

Sensitivities to chemotherapeutic agents in the high- and

low-risk groups, based on their IC50 values, were evaluated using

the GDSC database (https://www.cancerrxgene.org/) and the

“pRRophe t i c ” packag e o f R so f twa r e . Po t en t i a l

chemotherapeutic medicines in the CTRP2.0 and PRISM

databases were investigated, based on the area under the dose–

response curve (SUC) as a measure of drug sensitivity (19).

Lower IC50 and AUC values were indicative of greater sensitivity

to the chemotherapeutic agent. Prospective responses to

immunotherapy in the high- and low-risk groups were

subsequent ly compared using the Tumor Immune

Dysfunction and Exclusion (TIDE) algorithm.
Cell culture

A normal lung epithelial cell line (BEAS-2B) and four LUAD

cell lines (H1975, HCC827, A549, and PC9) were purchased

from the China Center for Type Culture Collection (CCTCC).

All cells were maintained in Roswell Park Memorial Institute

1640 (RPMI-1640) medium (Gibco; Thermo Fisher Scientific,

Inc.) containing 10% fetal bovine serum (FBS) (Gibco) in a

humidified incubator at 37°C and 5% CO2.
qRT-PCR

Seventeen paired LUAD and adjacent normal tissue samples

were obtained from Jiangxi Cancer Hospital after gaining ethical

approval from the Human Research Ethics Committee of Jiangxi

Cancer Hospital (No. 2022ky013). Total RNA was extracted

from cell lines and tissue samples using TransZol Up Plus RNA

Kits (Transgen Biotech, Beijing, China). A 1.0 mg aliquot of each

total RNA sample was reverse transcribed to cDNA using

TransScript II One-Step RT-PCR SuperMix. Gene expression

was quantified by real-time fluorescent quantitative PCR using

SYBR green mixture (Novoprotein) and specific primers

(Supplementary Table 2) on an ABI Step 1 Plus RT-PCR

system (Applied Biosystems, USA). The expression of each

target gene relative to that of GADPH was estimated using the

2−DDCT method.
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Statistical methods

The relationships between patient characteristics and overall

survival were analyzed by univariate and multivariate Cox

regression analyses. The correlations between overall survival

and tumor subtypes were calculated using the Kaplan–Meier

method with the “survminer” R package. Differences between

two groups were compared by two-tailed Student’s t-tests or

Wilcoxon rank sum tests, as appropriate, whereas differences

among three or more groups were compared by the Kruskal–

Wallis test. Correlations were analyzed using Pearson’s

or Spearman’s correlation methods. R software, version 4.1.0,

was used for all analyses, with p-values<0.05 defined as

statistically significant.
Results

Autophagy-associated molecular
patterns and autophagy-related DEGs in
lung adenocarcinomas

The intersection of the TCGA-LUAD, GEO, and HADb

datasets yielded a total of 208 autophagy-related genes (ARGs),

which were utilized to investigate autophagy-related molecular

trends in LUAD. Based on ARG expression levels, the R software

program ConensusClusterPlus categorized 398 LUAD patients

from the GSE72094 cohort into qualitatively different

autophagy-associated molecular patterns. The consensus

clustering matrix heatmap and the CDF curve indicated that

k = 2 was optimal (Figures 1A, B; Supplementary Figure 1A). In

addition, the PAC and NbClust algorithms indicated that k = 2

was the optimal number for cluster stability (Supplementary

Figures 1B, C). Thus, two autophagy-associated molecular

subtypes were identified, including 247 samples in subtype A

and 151 in subtype B. These subtypes were named AutCluster A

and AutCluster B, which differed significantly on principal

component analysis (Figure 1C). Kaplan–Meier analysis

showed that survival was significantly better in AutCluster A

(p< 0.0001, Figure 1D). To explore the molecular mechanisms

associated with these autophagy-associated subtypes, the

expression of ARGs was compared and GSEA enrichment

analysis was performed. The levels of most ARGs were

significantly higher in AutCluster A than in AutCluster B

(Figure 1E). GSEA showed that AutCluster A was enriched in

autophagy-related pathways, such as those associated with

selective autophagy, autophagosome organization, and

regulation of autophagy, whereas AutCluster B was enriched

mainly in pathways associated with the cell cycle (Figure 1F,

Supplementary Table 3). Overall, patients in AutCluster A and

AutCluster B were defined as the autophagyhigh and

autophagylow groups, respectively. In addition, ssGSEA and
Frontiers in Immunology 05
ESTIMATE analyses showed that the levels of tumor-

infiltrating immune cells were higher in the autophagyhigh than

in the autophagylow group (Supplementary Figures 1D–F), with

GSEA showing that immune-associated pathways were enriched

in the autophagyhigh group (Supplementary Table 3).

Comparisons of the levels of gene expression in autophagyhigh

and autophagylow groups identified a total of 259 autophagy-

related DEGs, with 215 genes overexpressed in the autophagyhigh

group and 44 overexpressed in the autophagylow group

(Supplementary Figure 1G).
Immune-associated molecular patterns
and immune-related DEGs in lung
adenocarcinoma

Combining the genes from the TCGA-LUAD, GEO, and

ImmPort datasets yielded 988 immune-related genes that were

used to implement consensus clustering in the GSE72094 cohort.

Based on the CDF curve of the consensus score, the GSE72094

cohort was divided into two immune-associated subtypes, with

263 patients having subtype A and 135 having subtype B

(Figures 2A, B; Supplementary Figure 2A). Similar results were

obtained following PAC and NbClust analyses (Supplementary

Figures 2B, C), with principal component analysis showing that

these two subtypes, defined as ImmCluster A and ImmCluster B,

respectively, could be clearly distinguished (Figure 2C). Kaplan–

Meier analysis showed that patients in ImmCluster A had better

survival than those in ImmCluster B (Figure 2D). The potential

immune landscape of these two subtypes was assessed using

ssGSEA and ESTIMATE analyses to investigate their

immunologic characteristics. ssGSEA showed that the levels of

tumor-infiltrating immune cells, including activated B cells,

activated CD8 T cells, effector memory CD8 T cells, activated

CD4 T cells, CD56+ natural killer (NK) cells, and T follicular

helper cells, were significantly higher in ImmCluster A than in

ImmClusterB (Figure 2E). CIBERSORT and xCell analysis also

showed that the level of adaptive immune cell infiltration was

higher in ImmCluster A (Supplementary Figures 2D, E).

Analysis of the associations between these two immune

subtypes and HLA genes showed that the levels of expression

of HLA genes were significantly higher in samples from the

mmCluster A than the mmCluster B group (Figure 2F).

Moreover, the ESTIMATE algorithm showed that immune,

stromal, and ESTIMATE scores were higher in ImmCluster A

than in ImmCluster B, indicating that immune cell infiltration

was significantly higher and tumor purity was significantly lower

in the ImmCluster A group (p< 0.0001 each, Figure 2G). Based

on these findings, the ImmCluster A and ImmCluster B groups

were designated the immunityhigh and immunitylow groups,

respectively. A comparison of the immunityhigh and

immunitylow groups showed that 365 immune-related DEGs

were differentially expressed (Supplementary Figure 2F). GSEA
frontiersin.org
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B

C D

E F

A

FIGURE 1

(A) Consensus clustering matrix heatmap with autophagy-related molecular pattern in GSE72094 when k = 2. (B) The CDF curves with k valued
2 to 8 (indicated by colors). (C) Principal component analysis (PCA) was performed to distinguish AutCluster A and AutCluster B. (D) Survival
analysis showed better survival among AutCluster A in GSE72094. (E) Heatmap of autophagy-related genes in AutCluster A and AutCluster B.
(F) Autophagy-related pathways enriched in AutCluster A by GSEA.
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B
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G

A

FIGURE 2

(A) Consensus clustering matrix heatmap with immune-related molecular pattern in GSE72094 when k = 2. (B) The CDF curves with k valued 2
to 8 (indicated by colors). (C) Principal component analysis (PCA) was performed to distinguish ImmCluster A and ImmCluster B. (D) Survival
analysis showed better survival among ImmCluster A. (E) ssGSEA suggested that ImmCluster A has the higher level of tumor-infiltrating immune
cells, such as CD8+ T cell and CD4+ T cell. ns for p > 0.05, * for p < 0.05, ** for p < 0.01, *** for p < 0.001. (F) Gene expression of HLA gene
sets between two distinct clusters. (G) Higher immune score, stromal score, estimate score, and lower tumor purity are analyzed in ImmCluster
A by ESTIMATE algorithm. ssGSEA, Single sample gene set enrichment analysis.
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showed that autophagy-related pathways were enriched in the

immun i t y h i g h g roup (Supp l emen t a r y F i gu r e 2G ;

Supplementary Table 4).
Construction and verification of a
combined prognostic classifier and
autophagy-immune-related prognostic
risk model in lung adenocarcinoma

Autophagy and immune subtypes were merged into a two-

dimensional matrix to characterize the combined prognostic

classifier. Patients were split into three groups: autophagyhigh-

immunehigh, autophagylow-immunelow, and mixed groups (i.e.,

autophagyhigh-immunelow and autophagylow-immunehigh).

Survival analys is showed that the prognoses were

significantly better in the autophagyhigh-immunehigh and

mixed groups than in the autophagylow-immunelow group

(p< 0.0001 each, Figure 3A). A comparison of gene

expre s s ion in the au tophagyh i g h - immuneh i g h and

autophagylow-immunelow groups identified 535 DEGs, which

were defined as autophagy- immune-re la ted DEGs

(Supplementary Figure 3A).

The intersection of the autophagy-related, immune-related,

and autophagy-immune-related DEGs identified 182

overlapping genes for further investigation (Figure 3B). The

GSE72094 cohort of 398 patients was divided in a 7:3 ratio into a

training set of 286 patients and a testing set of 112. Univariate

Cox regression analysis showed that the levels of 24 autophagy-

immune-related genes in the training set correlated significantly

with OS. LASSO analysis and multivariate Cox ratio hazard

regression analysis identified four genes, C4BPA, CD300LG,

CD96, and S100P, that were used to construct an autophagy-

immune-related prognostic risk model (Supplementary

Figures 3B, C). The equation for the risk model from these

four genes was:

Risk score = (−0.08563) * expression of C4BPA + (−0.12297)

* expression of CD300LG + (−0.16202) * expression of CD96 +

0.14384 * expression of S100P (Figure 3C).

The relationships of these four genes with tumor-

infiltrating immune cells and with essential autophagy-

related target genes and the relationships of risk scores with

essential autophagy-related target genes and with tumor-

infi l trating immune cells were further investigated

(Supplementary Figures 3D–G). The training set was divided

into high-risk and low-risk groups based on the median cutoff

value of the prognostic risk grade. Survival analysis showed

that OS was significantly longer in the low-risk than in the

high-risk group (p = 0.00014), and the areas under the curves

(AUCs) for 1-, 3-, and 5-year survival were 0.686, 0.731, and

0.805, respectively (Figure 3D). Patients in the low-risk group

also had more favorable prognoses (p = 0.00015), with AUCs
Frontiers in Immunology 08
for 1-, 3-, and 5-year survival of 0.728, 0.775, and 0.779,

respectively (Figure 3E). To confirm the reliability of the

autophagy-immune-related prognostic risk model, it was

used to assess the entire GSE72094 dataset, as well as the

TCGA, GSE37745, and GSE31210 cohorts, with similar results

observed in all of these cohorts (p< 0.0001, Figure 3F;

Supplementary Figures 4A–C).
Clinical value of autophagy-immune-
related prognostic risk model

The prognostic abilities of the autophagy-immune-related

prognostic risk model and of many clinicopathological

characteristics were investigated using univariate Cox

regression analyses. Factors significantly prognostic for OS in

the GSE72094 dataset included risk score based on the four

autophagy-immune-related genes, as well as patient gender

and tumor TNM stage, KRAS status, and EGFR status.

Multivariate analysis showed that risk score, gender, and

TNM stage were independently associated with patient

prognosis (Table 2). Patients in the GSE72094 dataset were

subsequently stratified by the clinicopathologic characteristics

differentiating the high-risk and low-risk groups, including

gender (male vs. female), age (<60 vs. ≥60 years), tumor stage

(I–II vs. III–IV), KRAS status (wild type vs. mutant), and EGFR

status (wild type vs. mutant), and OS was compared in these

two groups. Because the number of patients with EGFR

mutations was relatively small, the difference in prognosis

between high- and low-risk groups, as determined by EGFR

mutation status, did not achieve statistical significance.

Stratification by other characteristics showed that OS was

significantly longer in the low-risk than in the high-risk

group (Figure 4A; Supplementary Figure 5A).

To explore the effects of the autophagy-immune-related

prognostic risk model in autophagy and immune groups, the

model was evaluated in the autophagyhigh, autophagylow,

immunityhigh, and immunitylow groups. The risk model

separated the patients in these four subtypes into high- and

low-risk groups, with the low-risk group having a better

prognosis. ROC curve analysis showed that the model had

better predictive accuracy in the autophagyhigh and

immunityhigh groups than in the autophagylow and

immunitylow groups (Supplementary Figures 5B–E).
Exploration of the tumor
microenvironment and responses to
immune therapy

To further investigate the TME in each endotype, the

expression of individual critical autophagy- and immune
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FIGURE 3

(A) Survival analysis between autophagyhigh-immunehigh, autophagylow-immunelow, and mix groups. (B) The intersection of autophagy-immune-
related genes between different molecular patterns. (C) Forest plot of hazard ratios for four autophagy-immune–related prognostic variables.
(D) The overall survival analysis of the GSE72094 training dataset; construction of the GSE72094 training dataset; the ROC curves at 1, 3, and 5
years of prognostic value of the prognostic in the GSE72094 training dataset. (E, F) The validation sets using the GSE72094 testing dataset and
the GSE72094 entire dataset.
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response-related genes was mapped to the low- and high-risk

groups. The expression of essential autophagy-related

target genes was found to be higher in the low-risk group

(Figure 4B) . Immune response-re la ted genes a lso

showed a similar pattern of differential expression, including

T-cell phenotypic and functional markers, myeloid

lineage phenotypic and functional markers, activating

immune receptors , immune modulators , and IFNg
signatures (Figure 4C). These results suggested that

the levels of autophagy and immune cell infiltration

were higher in the low-risk group. In addition, the

expression of ferroptosis-driver genes was higher and the

expression of ferroptosis-suppressor genes was lower in

the low-risk group (Figure 4D), suggesting that ferroptosis is

activated in the low-risk group and suppressed in the high-

risk group.

To further explore differences in the tumor immune

microenvironment of high- and low-risk patients with

LUAD, their levels of immune cell infiltration were

evaluated using ssGSEA, CIBERSORT, and xCell. ssGEA

showed that the low-risk group had higher levels of most

types of infiltrating immune cells, including activated B cells,

activated CD8 T cells, effector memory CD8 T cells, central

memory CD4 T cells, CD56+ natural killer cells, immature B

cells, mast cells, and T follicular helper cells (Figures 5A, B).

These findings, along with the results of CIBERSORT and

xCell analyses (Supplementary Figures 6A, B) showed that the

proportion of infiltrating immune cells was higher in the low-

risk group than in the high-risk group. Moreover, the

ESTIMATE algorithm showed that the low-risk group was
Frontiers in Immunology
 10
positively associated with higher ESTIMTE, immune, and

stromal scores, indicating lower tumor purity (p< 0.001,

Figure 5C). The potential responses to immune therapy in

the low- and high-risk groups were assessed by comparing

their expression of immune checkpoint genes, such as PD1,

PD-L1, LAG3, CTLA4, CD276, TIGIT, and HAVCR2.

The levels of CTLA4, HAVCR2, PD-L1, and TIGIT

were significantly higher in the low-risk group, while the

level of CD274 was higher in the high-risk group

(Figure 5D). The score on the TIDE algorithm, which

integrates T-cell dysfunction and exclusion signature

to evaluate tumor immune escape, was found to be

significantly higher (p< 0.001, Figure 5E), whereas the

predicted proportion of responders was lower (Figure 5F),

in the high-risk group. We further used Pender et al.’s cohort

(immune checkpoint inhibitors to treat advanced solid

tumors) and GSE100797 to analyze whether an autophagy-

immune-related risk score can predict immune efficacy.

The Kaplan–Meier survival analysis shows that the low-risk

group has a better survival prognosis than the high-risk

group in Pender et al.’s cohort (p = 0.013, Figure 5G).

Analyses of biologic pathways showed that autophagy- and

immune-related pathways were enriched in the low-risk

group (Supplementary Figure 6C). Simi lar results

were observed in the GSE100797 cohort (p = 0.042,

Figure 5G), with patients in this cohort achieving partial

response (PR) or complete response (CR) having

significantly lower risk scores than those who achieved

stable disease (SD) or progressive disease (PD) (p = 0.031,

Supplementary Figure 6D).
TABLE 2 Univariate and multivariate analysis of clinical characteristics in GSE72094.

Variable Univariate Multivariate

HR (95% CI) p-value HR (95% CI) p-value

Age (years) 1.395 (0.810–2.403) 0.229

Gender 1.552 (1.072–2.246) 0.020 1.506 (1.027–2.209) 0.036

Pathological stage

I 1 – 1 –

II 2.134 (1.324–3.439) < 0.001 2.335 (1.440–3.786) < 0.001

III 3.095 (1.927–4.972) < 0.001 2.685 (1.667–4.326) < 0.001

IV 3.351 (1.590–7.062) < 0.001 3.732 (1.754–7.939) < 0.001

KRAS status 0.6867 (0.472–0.999) 0.049 0.559 (0.265–1.181) 0.127

EGFR status 3.821 (1.408–10.37) < 0.001 2.553 (0.922–7.072) 0.071

TP53 status 0.8099 (0.964–1.009) 0.239

Tumor Purity 2.899 (0.8107–10.37) 0.101

riskScore 2.041 (1.661–2.508) < 0.001 1.506 (1.027–2.209) < 0.001
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FIGURE 4 (Continued)

(A) Survival analysis showed favorable survival for low-risk patients in different age, gender, pathological stage, and KRAS status. (B) The
expression of essential autophagy-related genes between the low- and high-risk group. (C) The expression of immune response-related genes
between the low- and high-risk group. (D) The expression of ferroptosis-driver and ferroptosis-suppressor genes between the low- and high-
risk group. ns for p > 0.05, * for p < 0.05, ** for p < 0.01, *** for p < 0.001.
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FIGURE 5

(A, B) ssGSEA suggested that the low-risk group has the higher level of tumor-infiltrating immune cells, such as CD8+ T cell and CD4+ T cell. (C)
Higher immune score, stromal score, estimate score, and lower tumor purity are analyzed in the low-risk group by ESTIMATE algorithm. (D) The
different expression of common immune checkpoint molecules between the low- and high-risk group, including PD1, PD-L1, LAG3, CTLA4, CD276,
TIGIT, and HAVCR2. (E, F) Estimating T-cell dysfunction and exclusion and predicting response of immunotherapy in the low- and high-risk group
by TIDE analysis. (G) Describing the model’s efficacy in immunotherapy cohorts by Kaplan–Meier survival analysis. ssGSEA, single sample gene set
enrichment analysis; TIDE, Tumor Immune Dysfunction and Exclusion. ns for p > 0.05, * for p < 0.05, ** for p < 0.01, *** for p < 0.001.
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Identification and functional enrichment
analysis of autophagy-immune-related
prognostic risk model

A comparison of the high- and low-risk groups with the

“Limma” package, using the criteria p< 0.05 and log (fold

change) > 0.5, identified 1,342 DEGs (Supplementary

Figure 6E). GO functional enrichment analysis showed

significant enrichment of DEGs associated with T-cell

activation, immune receptor activity, chromosomal region, and

glycosaminoglycan binding (Figure 6A). KEGG pathway

analysis indicated that DEGs associated with cell adhesion

molecules, cytokine receptor interaction, and T-cell receptor

signaling pathways were enriched in the low-risk group, whereas

DEGs associated with the cell cycle and metabolic pathways were

upregulated in the high-risk group (Figure 6B). GSEA pathway

enrichment analysis showed that several autophagy-related

pathways, such as selective autophagy, positive regulation of

autophagosome, and regulat ion of autophagy and

autophagosome organizational pathways, were enriched in the

low-risk group, whereas the mTORC1 signaling pathway was

upregulated in the high-risk group (Figure 6C, Supplementary

Table 5). These findings indicated that the low-risk group had

higher levels of immune cell infiltration and autophagy, as well

as higher levels of lysosomes and higher levels of expression of

genes associated with Fc epsilon receptor signaling, T-cell

receptor signaling, Toll-like receptor signaling pathway,

IL6_JAK_STAT3 signaling, apoptosis, interferon-g responses,

and inflammatory responses (Figure 6C, Supplementary

Table 5). Pathways upregulated in the high-risk group

included those associated with MYC targets, DNA replication,

ce l l cyc le , r ibosomes , and g lyco lys i s (F igure 6C,

Supplementary Table 5).
Predicting the chemosensitivity of high-
and low-risk groups to drugs

Because chemotherapy plays an important role in the

treatment of LUAD, three separate drug response databases

(GDSC, CTRP, and PRISM) were evaluated to identify possible

treatment candidates with high drug sensitivity in high- and low-

risk LUAD groups. Determination of the IC50 values of tumor

cells treated with several targeted anticancer agents from the

GDSC dataset showed that the estimated IC50 levels of cisplatin

and docetaxel were significantly lower in the high-risk group,

suggesting that this group was more sensitive to these drugs.

Patients in the high-risk group were also found to be sensitive to

gemcitabine. In addition, several inducers of autophagy, including

sorafenib, AKT inhibitor VIII, AZD8055, rapamycin, MK2206,

and NVP BEZ235, were identified as potential chemotherapeutic

drugs for patients in the high-risk group (Figure 6D). Further
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assessment of chemotherapy candidates using PRISM and CTRP

showed that several inducers of autophagy, such as AZD8055,

KU-0063794, and deforolimus, were more suitable for patients in

the high-risk group, whereas AZD8330, ixazomib, LY2090314,

narasin, YM-155, and TAK-733 were found to be potentially

effective in the low-risk group (Figure 6E). Six CTRP-derived

compounds, namely, AZD8055, brefeldin A, paclitaxel,

vincristine, KX2-391, and BI-2536, showed high sensitivity in

the high-risk group, whereas fumonisin B1, an autophagy

inhibitor, was identified as a potential chemotherapeutic drug in

the low-risk group (Figure 6F). To further validate the synergistic

effects of chemoimmunotherapeutic agents, potential drug

responses were assessed in immunotherapy cohorts by GDSC.

AKT inhibitor VIII, rapamycin, MK2206, and NVP BEZ235

showed greater sensitivity in patients with poorer prognosis for

survival (Figure 6G). These findings indicate targeted

multichannel combinations of autophagy inducers and immune

checkpoint inhibitors may enhance immune responses and

increase survival rates.
Expression level of four autophagy-
immune-related genes by qRT-PCR

The expression of the four major autophagy-immune genes

was assessed by qRT-PCR in 17 paired LUAD and adjacent

normal tissue samples. The level of CD300LG mRNA was found

to be significantly higher in normal lung than in LUAD tissue

samples (Supplementary Figure 7A). Similarly, the levels of

expression of CD96 and C4BPA were higher in normal lung,

although the differences were not statistically significant

(Supplementary Figures 7B, C). In contrast to previous

findings, however, the present study found that level of

expression of S100P mRNA was significantly higher in tumor

samples than in adjacent normal tissue (Supplementary

Figure 7D). To further evaluate the role of S100P in lung

cancer, its level of expression was compared in the normal

lung epithelial cell line (BEAS-2B) and four LUAD cell lines

(H1975, HCC827, A549, and PC9). These findings showed that

the levels of S100P were higher in all LUAD cell lines than in

normal lung epithelium (Supplementary Figure 7E).
Discussion

Autophagy and the immune status of LUAD have been

found to affect tumor progression and patient prognosis. Thus,

in developing a prognostic strategy, focusing on a single feature

may not be sufficient to classify patients with LUAD. The present

study explored the potential role of a classifier based on

autophagy and immune expression profiles in determining the

prognosis of patients with LUAD.
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FIGURE 6

(A) GO analysis of differentially expressed genes between the high- and low-risk group. (B) KEGG pathways enrichment analysis of differentially
expressed genes between the high- and low-risk group; blue represents the high-risk group and red represents the low-risk group. (C) GSEA
enrichment results of the low-risk group and the high-risk group. (D) The results of potential chemotherapy response by the GDSC dataset.
(E) The results of Spearman’s correlation analysis and differential drug response analysis of 12 PRISM-derived compounds. (F) The results of
Spearman’s correlation analysis and differential drug response analysis of 12 CTRP-derived compounds. (G) The results of potential autophagy
inducers in the immunotherapy cohort by the GDSC dataset. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA,
Gene set enrichment analysis. ns for p > 0.05, * for p < 0.05, ** for p < 0.01, *** for p < 0.001.
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LASSO and univariate and multivariate Cox regression

analyses identified four signature genes that comprised an

autophagy-immune-related gene model. Three of these genes,

C4BPA, CD96, and CD300LG, were associated with better OS,

whereas the fourth, S100P, correlated with poorer prognosis.

C4BPA had been identified as a novel serum biomarker for

pancreatic ductal adenocarcinoma (PDAC) and breast cancer

(20, 21). C4BPA was shown to enhance T cell-mediated

antitumor immunity in patients with PDAC by promoting

CD8+ cell proliferation (22). Regulation of C4BPA can inhibit

the PI3K/Akt/mTOR signaling pathway induced by the

overexpression of CADM1, thereby affecting the migration

and invasion of ovarian cancer cells (23). C4BPA was also

found to regulate NF-kB-dependent apoptosis (24). The

present study confirmed that C4BPA was overexpressed in the

low-risk group and was associated with a higher proportion of

infiltrating immune cells and better prognosis in patients with

LUAD, as well as being correlated with apoptosis. The

expression of CD96 was shown to be significantly elevated in

various cancers and to correlate positively with levels of

infiltration of several types of immune cells, including CD8+ T

cells, DCs, macrophages, monocytes, NK cells, neutrophils, and

Tregs (25). As a novel immune checkpoint, CD96 expression

was found to correlate strongly with the levels of expression of

several other immune checkpoints, such as PD-1, TIGIT, CTLA-

4, and CD266 (26). The TIGIT–CD96–CD266 axis was shown to

play an important role in regulating T- and NK-cell functions

and potential cancer immunotherapy (27). Blockade of CD96

can enhance PD-1/PD-L1 and anti-TIGIT inhibition, leading to

increased tumor regression and greater efficacy of

immunotherapy (25). The present study showed that CD96

was highly expressed in the low-risk group and was correlated

with greater immune cell infiltration and the expression of other

co-inhibitory receptors, such as TIGIT and PD-1. Moreover, the

higher expression of CD96 in the low-risk group suggested that

this group was more likely to benefit from immunotherapy. The

only gene associated with the risk of LUAD in the present study

was S100P, which had been identified as associated with the risk

of several other types of cancer and in the promotion of

metastasis. For example, S100P was found to be significantly

associated with early recurrence and poorer clinical outcomes in

patients with hepatocellular carcinomas (28). S100P was shown

to be highly expressed in pancreatic cancer, adult

rhabdomyosarcoma, colorectal cancer, and breast cancer (29–

32). S100P was also found to be associated with metastasis and

poorer survival in patients with LUAD (33). S100P

overexpression was also associated with increased angiogenesis

and metastasis in subcutaneous tumor xenograft models (34). In

addition, the interaction between Keap1 and Nrf2 was found to

suppress LUAD tumor progression by inhibiting the S100P

protein (35). Although the present study found that S100P

expression was associated with autophagy status, further

studies are needed to evaluate the relationship between LUAD
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progression induced by S100P overexpression and autophagy.

The present study also identified several potential anticancer

agents for treatment of high-risk and low-risk patients, based on

the different levels of expression of the four key genes.

Additional studies of the relationships of these four genes with

potential chemotherapeutic agents may be useful to guide

treatment options for patients with LUAD. Overall, the

present results provided valuable information on potential

biomarkers to determine molecular mechanisms in LUAD. To

our knowledge, this is the first composite signature risk model of

immunity and autophagy status in LUAD.

Differences in immune and inflammatory landscapes in the

low-risk and high-risk groups were evaluated by analysis of

tumor-infiltrating immune cells and by metagene analysis. The

low-risk group showed higher proportions of immune invading

cells, including activated CD8 T cells, effector memory CD8 T

cells, central memory CD4 T cells, M1 macrophages, activated B

cells, and T follicular helper cells than the high-risk group.

Cytotoxic CD8+ T lymphocytes have been identified as anti-

tumor immune cells (36). By directly presenting antigen to T

cells, B cells play a critical role in anti-tumor immunological

responses (37). ESTIMATE analysis in the present study showed

that both immune scores and stromal scores were higher in the

low-risk group. These results suggest significant associations

between immune landscapes and clinical outcomes in patients

with LUAD.

The involvement of autophagy in cancer progression

remains unclear, as the expression of autophagy-related genes

has been associated with both tumor suppression and tumor

enhancement (38). Autophagic death can systemically eliminate

pre-malignant cells (39). Defective autophagy can result in the

accumulation of damaged organelles and misfolded proteins,

which can lead to DNA damage and cancer (40). However,

autophagy has the potential to promote tumor growth by

facilitating immune evasion and cancer metastasis (41, 42). 5′-
AMP-activated protein kinase (AMPK) and mTOR complex 1

(mTORC1) have been identified as key regulatory kinases that

affect the autophagy process, with AMPK activating and

mTORC1 inhibiting autophagy (13). Based on enrichment of

autophagy-related pathways, the low- and high-risk groups in

the present study were characterized as having high- and low-

autophagy status, respectively. The levels of expression of several

core autophagic genes, including ATG3, ATG4A, ATG7,

ATG12, ATG16L2, and ULK3, were found to be higher in the

low- than in the high-risk group. ATG7, a major component of

the CK1a/PTEN/FOXO3a/ATG7 axis, has been shown to be

involved in the tumor-suppressive process in early LUAD (43).

The expression of other autophagy-related genes, such as

ATG13, BECN1, and ULK1, was found to be higher in high-

risk groups. ULK1-ATG13 was shown to influence the cell cycle

and promote tumor progression (44), with GSEA results in the

present study also suggesting that the cell cycle pathway was

enriched in the high-risk group. In addition, BECN1 and ULK1
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have been shown to promote tumor growth in various

cancers (45).

Autophagy occurs in all cellular components of the TME,

allowing active interventions in interactions among stromal,

immunological, and cancer cells (46). Autophagy was found to

be involved in modulating immune cell development and

differentiation (12). A greater knowledge of the link between

autophagy and the immune systemmight allow the development

of individualized cancer therapy. ssGSEA and ESTIMATE

analyses in the present study showed a correlation between

autophagy status and immune cell infiltration. GSEA pathway

analysis of autophagy-associated DEGs showed enrichment of

several immune-related pathways, whereas GSEA of immune-

associated DEGs showed enrichment of several autophagy-

related pathways. These findings indicated that autophagy

status and immune status were associated with each other.

Toll-like receptors are important mediators of immune

regulation that have been shown to promote the activation of

autophagy by upregulating the autophagy receptor p62 (47). In

addition, damage-associated molecular patterns (DAMPs) have

been found to activate innate immune cells and drive autophagic

responses via Toll-like receptors (48, 49). The present study

found that the Toll-like receptor signaling pathway was more

prevalent in the low-risk group with better immunological and

autophagy states. Tumor-derived lactate has been shown to

suppress FIP200 expression, which is required for

autophagosome formation, in tumor-infiltrating T cells,

resulting in T-cell apoptosis and attenuation of antitumor

immunity (50). PIK3C3, an early key player in autophagy,

plays a critical role in regulating T-cell differentiation (51).

ATG7 deletion results in autophagy-deficient effector CD4+ T

cells, which express low levels of IL-2 and IFN (52). Inhibition of

autophagy results in the accumulation of depolarized

mitochondria in memory CD8+ T cells, resulting in terminal

exhaustion of T-cell functional and epigenetic features (53). In

contrast, activation of CD8+ cytotoxic T cells by the major

histocompatibility complex (MHC) class I frequently results in

an immune response, with intact autophagosomes of dead

tumor cells required for MHC class I-mediated cross-

presentation to CD8+ T lymphocytes (54). The findings of the

present study are in agreement with results showing the roles of

autophagy in T-cell survival, differentiation, and function.

Moreover, autophagy can influence chemokine expression in

tumor cells as well as immune cell migration to the tumor.

KrasG12D-driven lung cancer cells with defective autophagy

exhibit high levels of the proinflammatory chemokine

CXCL5 (55).

Ferroptosis has been shown to be an important mechanism

by which CD8+ T lymphocytes influence tumor death (56).

Autophagy plays an indispensable role in the process of

ferroptosis, including in ROS accumulation (57). Thus,

activation of autophagy may enhance tumor ferroptosis and

increase the effectiveness of tumor immunotherapy. The present
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study found that the expression of ferroptosis-driver genes was

higher in the low-risk group, consistent with results linking

increases in autophagy and immunity with increases in

ferroptosis. Evaluations of cell metabolism has shown that

glycolysis is activated following reduction in autophagy flux,

with this being corrected by decreased CD8+ T-cell infiltration

(58). The present study found that the glycolysis pathway was

more prevalent in the high-risk group, confirming the

relationships among glycolysis, autophagy, and immunity.

Overall, autophagy appears to change tumor antigen

presentation, immune cell survival, and function in the TME.

Because autophagy is required for the modulation of tumor

immunity, targeting autophagy in combination with other

cancer therapies may enhance patient prognosis. Autophagy is

involved in the regulation of immunogenic cell death (ICD),

which is important for tumor-specific immunity and anticancer

immune responses. In response to ICD inducers, such as

oxaliplatin, tumor autophagy can promote the preservation of

lysosomal ATP reserves and increase the number of dendritic

cells to enhance antitumor immunity (59). Autophagy may

induce tumor immunogenicity during radiotherapy (60). In

contrast, preclinical studies have found that high autophagic

flux may lead to chemotherapy resistance of several cancers,

such as NSCLC and bladder cancer (61, 62). A comprehensive

understanding of the nature of chemotherapy-induced

autophagy will guide the development of future clinical trials.

Because autophagy is involved in tumor-infiltrating immune

cell development, inducers of autophagy may enhance the

efficacy of immunotherapy. Several preclinical models,

however, have shown that the immune system may tolerate a

certain level of autophagy suppression (63). The efficacy of

autophagy inhibitors in combination with immunotherapy has

therefore been evaluated. For example, when combined with ICB

therapy, CQ, a traditional inhibitor of autophagy, was found to

improve antitumor immune response by preventing autophagy-

mediated MHC class I degression (64). In addition, CQ was

found to limit the toxicity and enhance the immunotherapeutic

efficacy of high-dose IL-2 in a mouse model of metastatic liver

cancer (65). Clinical trials testing HCQ in combination with

immunotherapy are currently underway in patients with

metastatic RCC and pancreatic cancer (13). The present study

found that patients in the high-risk group in the GSE72094

dataset, with poorer immunological and autophagy status, were

more sensitive to inducers of autophagy, such as AKT inhibitor

VIII, AZD8055, rapamycin, MK2206, NVP BEZ235, and KU

−0063794, than patients in the low-risk group. Several inducers

of autophagy were identified as potential chemotherapeutic

drugs for patients in the high-risk group. In contrast, patients

in the low-risk group were found to be highly sensitive to

fumonisin B1, an inhibitor of ceramide synthesis that

interferes with autophagy. These findings suggest the following

hypothesis: At lower levels of immune cell infiltration,

autophagy plays a protective role in inhibiting tumor growth,
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with autophagy-inducing agonists improving the prognosis of

patients with LUAD. At higher levels of immune cell infiltration,

however, autophagy may impair immune function and promote

tumor growth, such that autophagy inhibitors can be used to

effectively treat these patients. Evaluation of the tumor immune

microenvironment is therefore required to determine the

optimal patient treatment strategy, which may consist of

combinations of immunotherapeutic agents and either

inhibitors or inducers of autophagy. Additional studies are

needed to fully determine the various functions of autophagy

pathways and their possible interactions in tumor immunity and

immunotherapy. Combining autophagy and immunity may not

only serve to classify patient prognosis but to guide treatment.

The present study had several limitations. First, all analyses

were performed on data obtained from public databases.

Prospective, multicenter studies are therefore required to

validate the generalizability of this model. Second, because the

microenvironmental properties of various tumor regions differ,

the autophagy and immunological states at distinct tumor

locations may not be distinguishable when the tumor is

viewed as a whole. In addition, because of the limitation of the

drug dataset, many autophagy core drugs, such as HCQ, CQ,

and 3-MA, were included in the present study. Additional

preclinical and clinical trials are required to verify the effect of

combinations of immunotherapeutic agents with autophagy

inducers and inhibitors. Third, the numbers of paired clinical

specimens and cell lines used to assess gene expression by qRT-

PCR may have been too small. The lack of a sufficient number of

samples may explain the disparate qRT-PCR results obtained in

clinical specimens and cell lines. Finally, because the regulation

of autophagy depends on the phosphorylation and

dephosphorylation of autophagy-related proteins, the present

findings based on RNA sequences do not provide a complete

picture of the role of autophagy in LUAD. Proteomic analyses

are needed prior to applying these findings to clinical practice.
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