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Abstract

Background: Pseudomonas putida is the best studied pollutant degradative bacteria and is
harnessed by industrial biotechnology to synthesize fine chemicals. Since the publication of P. putida
KT2440's genome, some in silico analyses of its metabolic and biotechnology capacities have been
published. However, global understanding of the capabilities of P. putida KT2440 requires the
construction of a metabolic model that enables the integration of classical experimental data along
with genomic and high-throughput data. The constraint-based reconstruction and analysis
(COBRA) approach has been successfully used to build and analyze in silico genome-scale metabolic
reconstructions.

Results: We present a genome-scale reconstruction of P. putida KT2440's metabolism, i|N746,
which was constructed based on genomic, biochemical, and physiological information. This
manually-curated reconstruction accounts for 746 genes, 950 reactions, and 911 metabolites.
iIN746 captures biotechnologically relevant pathways, including polyhydroxyalkanoate synthesis
and catabolic pathways of aromatic compounds (e.g., toluene, benzoate, phenylacetate, nicotinate),
not described in other metabolic reconstructions or biochemical databases. The predictive
potential of jN746 was validated using experimental data including growth performance and gene
deletion studies. Furthermore, in silico growth on toluene was found to be oxygen-limited,
suggesting the existence of oxygen-efficient pathways not yet annotated in P. putida's genome.
Moreover, we evaluated the production efficiency of polyhydroxyalkanoates from various carbon
sources and found fatty acids as the most prominent candidates, as expected.

Conclusion: Here we presented the first genome-scale reconstruction of P. putida, a
biotechnologically interesting all-surrounder. Taken together, this work illustrates the utility of
ijN746 as i) a knowledge-base, ii) a discovery tool, and iii) an engineering platform to explore P.
putida's potential in bioremediation and bioplastic production.

Background ferent environments and is well known for its broad met-
Pseudomonas putida is a non-pathogenic member of IRNA  abolic versatility and genetic plasticity [1,2]. P. putida
group I of the genus Pseudomonas that colonizes many dif- ~ KT2440 is a TOL plasmid cured, spontaneous restriction
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deficient derivative of P. putida mt-2 [3,4]. This strain rep-
resents the first host-vector biosafety system for cloning in
gram-negative soil bacteria and hence, has been exten-
sively used as a host for gene cloning and expression of
heterologous genes [5-8]. Consequently, large efforts have
been made in exploiting these capacities in a diverse range
of biotechnological applications including i) bioremedia-
tion of contaminated areas [9,10]; ii) quality improve-
ment of fossil fuels, e.g., by desulphurization [11]; iii)
biocatalytic production of fine chemicals [9,12-14]; iv)
production of bioplastic [15-17]; and v) as agents of plant
growth promotion and plant pest control [18,19].

Since the publication of P. putida KT2440's genome [20],
our knowledge about this strain has significantly
increased [21] and various "-omics" data sets have
become available, such as transcriptomic [22,23], pro-
teomic [24], and fluxomic data [25,26]. Subsequently,
some in silico analyses of its metabolic and biotechnolog-
ical capacities have been published [27,28]. However, sys-
temic understanding of metabolic and biotechnology
capabilities of P. putida KT2440 requires the construction
of a more comprehensive model enabling the integration
of the canonical experimental data along with genomic
and high-throughput data in a hierarchical and coherent
fashion [29].

The constraint-based reconstruction and analysis
(COBRA) approach is one possible modeling approach
that uses stoichiometric information about biochemical
transformation taking place in a target organism to con-
struct the model. While a metabolic reconstruction is
unique to the target organism one can derive many differ-
ent condition-specific models from a single reconstruc-
tion. This conversion of a metabolic reconstruction of an
organism into models requires the imposition of physico-
chemical and environmental constraints to define systems
boundaries [30-32]. The conversion also includes the
transformation of the reaction list into a computable,
mathematical matrix format. In this so-called S matrix,
where S stands for stoichiometric, the rows correspond to
the network metabolites and the columns to the network
reactions. The coefficients of the substrates and products
of each reaction are entered in the corresponding cell of
the matrix. This conversion can be done automatically
(e.g., using the Matlab-based COBRA toolbox [33]). Once
in this format, numerous mathematical tools can be used
to interrogate the metabolic network properties in silico.
Many of the published mathematical tools have been
reviewed [34] and encoded in Matlab format [33]. A large
subset of these tools relies on linear programming (LP), a
mathematical tool used to find a solution to an optimiza-
tion problem (e.g., maximal possible growth rate of my
metabolic network under a given set of environmental
constraints). While LP-based tools are very helpful in
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studying reconstructed metabolic networks, some ques-
tions may better be addressed without having to choose
an objective function. Those methods are called unbiased
methods, in contrast to biased LP-based methods, because
they identify all feasible flux distributions under the given
set of environmental constraints rather than only the opti-
mal distributions. The COBRA approach [30,32] has been
successfully used to build and analyze genome-scale in sil-
ico reconstructions for representatives of archaea
(e.g.,Methanosarcina barkeri [35]), of bacteria (e.g., E. coli
[36]; B. subtilis [37]; H. pylori [38]; M. tuberculosis [39,40];
S. aureus [41,42]; L. lactis [43]), and of eukarya (e.g.,
Human [44]). The numerous mathematical tools have
been used for i) identification and filling of knowledge
gaps (e.g. missing gene annotations [45]); ii) prediction of
the outcome of adaptive evolution [46-48]; iii) design of
engineered production strains [49]; and iv) the under-
standing of topological features of metabolic networks
[50-53]. A recent review illustrates the variety of questions
that have been addressed to E. coli's metabolic network
using different biased and unbiased COBRA methods
[54].

Here, we describe a highly detailed, genome-scale, meta-
bolic reconstruction of Pseudomonas putida KT2440. Based
on the naming convention for metabolic networks [55],
this genome scale reconstruction was deemed iJN746,
where i stands for in silico, JN are the initials of the con-
structor, and 746 corresponds to the number of included
metabolic genes. The reconstruction was built using the
COBRA approach [30,32] and validated using flux bal-
ance analysis (FBA, [56]). The in silico metabolic network
was further evaluated by comparing i) predicted growth
rate capacities in different carbon sources and ii) predicted
essential genes with experimental data from P. putida
KT2440 and P. aeruginosa. Finally, we show the utility of
the P. putida reconstruction to analyze its biodegradative
(i.e. toluene degradation) and biotechnological (i.e. bio-
plastic production) capacities.

Results and discussion

Characteristics of the metabolic reconstruction of
Pseudomonas putida KT2440

The metabolic reconstruction of P. putida KT2440, i]N746,
was constructed based on its annotated genome sequence
[20], primary and review publications, various genetic
and biochemical databases (i.e., KEGG Database [57],
PSEUDOCYC [58], and SYSTOMONAS [59]), and bio-
chemical information found in Pseudomonas-specific [21]
and biochemical textbooks.

iJN746 accounts for 746 open reading frames (ORF),
whose corresponding gene products are involved in 810
metabolic and transport reactions (Table 1). A total of 140
non-gene associated reactions were included in iJN746
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Table I: Properties of metabolic reconstruction of P. putida KT2440
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Reconstruction & Organism iIN746 iAF1260 iYO844 iNJ661 iMO 1056
P. putida E. coli B. subtilis M. tuberculosis P. aeruginosa
Protein coding genes per genome 5,3502 4,464 4,1062 3,9892 5669
SKI valuec 0.74 55.87 4.97 7.84 5.12
Genes (% of genome) 746 (14%) 1260 (28%) 844 (21%) 661 (17%) 1056 (18,6%)
Reactions 950 2077 1020 939 883
Gene-reaction associated 810 1919 904 723 839
Non-gene- associated network reaction (% of network reactions) 140 (17%) 158 (8%) 116 (13%) 116 (16%) 44 (5%)
Exchange reactions 90 304 225 88 -
Metabolites 9l 1039 988 828 -

Properties of metabolic reconstruction of P. putida KT2440 were compared with recently published metabolic reconstructions of E. coli MG1655
(iAF1260 [36]), B. subtilis ('YO844 [37]), and M. tuberculosis H37Rv (iNJ66 1 [39]) and P. aeruginosa (iMO 1056 [64]). 2 taken from KEGG [57]; b based

on Riley et al. [98]; < Species Knowledge Index (SKI) was calculated as described in [65].

based on physiological evidence in literature supporting
their presence in P. putida's metabolism. Hence, the recon-
struction captures a total of 950 metabolic reactions and
911 metabolites distributed over three different cellular
compartments: cytoplasm, periplasm, and extracellular
space. Each metabolite was placed in one or more of these
compartments depending on the cellular localization of
the catalyzing enzyme, and the flux across outer and inner
membranes was enabled by transport reactions.

The reactions included in iJN746 were divided into 55
specific pathways, or subsystems, based on their func-
tional role (Figure 1A). In general, the transport subsys-
tem was found to be the subsystem with the highest
number of gene-associated reactions, highlighting the
importance of cellular transport for P. putida. This obser-
vation agrees well with the known lifestyle of P. putida
[28] and successfully reflects the fact that approx. 12% of
P. putida genome encodes for transport-associated gene
products [20]. Reactions related to amino acid metabo-
lism were also found to be very important since the de
novo synthesis pathways for all 20 amino acids are
present in P. putida's genome [20]. Moreover, P. putida is
known for its capability to utilize many amino acids as a
carbon and nitrogen source [21,60]. A third group of great
importance contained reactions involved in aromatic acid
degradation pathways, which reflects the physiological
ability of P. putida to use many of these compounds as a
carbon and energy source (see Figure 2) [27]. Further-
more, despite the absence of the TOL pathway in
KT2440's genome, the plasmid genes and the correspond-
ing reactions were included into the P. putida metabolic
reconstruction since the TOL plasmid is present in the
parental strain P. putida mt-2 and this paradigmatic plas-
mid is often used to expand P. putida KT2440's metabolic
capacities [6,12]. Finally, reactions associated with lipid
metabolism constituted another important subsystem
group. In fact, P. putida KT2440 can synthesize and accu-
mulate medium-side-chain polyhydroxyalkanoates (msc-

PHAs), which are lipid related polymers, from a wide
range of carbon sources [17,61]. This ability is of special
interest for biotechnological purposes (reviewed in
[62,63]) and therefore, we incorporated both the msc-
PHAs biosynthetic and TOL biodegradative pathways into
the metabolic reconstruction (see below).

Every network reaction was associated with confidence
scores based on the available evidence for its presence in
the P. putida metabolic network (Figure 1B). For instance,
reactions whose enzymes have been biochemically stud-
ied in P. putida received a confidence score of 4. If physio-
logical or genetic knockout information was available, a
score of 3 was associated with the network reaction. Reac-
tions associated with enzymes that were only annotated in
P. putida's genome but had no further experimental evi-
dence were given a confidence score of 2. Finally, during
the evaluation of the network functionality (i.e. biomass
precursor production) some reactions had to be added to
the network for which no genetic or experimental evi-
dence could be found. Those reactions represent mode-
ling hypotheses, which need further experimental
validation and thus received a confidence score of 1.
Upon completion, the reconstruction had an overall aver-
age confidence score of 2.83. In fact, two thirds of P. put-
ida's metabolic pathways have been very well or well
studied, while only a third of the subsystems were prima-
rily based on the genome annotation (Figure 1B). This
high level of confidence is also reflected by the number of
references that lead to this metabolic reconstruction.
Almost 90% of the internal reactions (844) have at least
one associated citation, while a total of 176 unique pri-
mary and review publications were reviewed and incorpo-
rated into this reconstruction. Subsequently, this first
genome-scale reconstruction of P. putida's metabolism
represents a comprehensive knowledge base summarizing
and categorizing the information currently available. The
content of this knowledge base will be easily accessible
through the BiGG database http://BiGG.ucsd.edu.
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Figure |

A. Pie chart showing the distribution of ijN746's intracellular reactions over the different subsystems. The
number of reactions per subsystem is shown and subsystems of high importance were highlighted in bold. B. Heat map of the
confidence score of the different subsystems in i{N746. The 4 rows in the map represent the different confidence score (from
left to right: 4, 3, 2, |). The various colors correspond to the percentage of subsystems reactions that have the corresponding
confidence score (red = 100%, blue = 0%). The confidence level was based on a scale from | to 4. A level, or score, of 4 corre-
sponds to biochemical evidence for a gene product and its reaction(s); 3 represents physiological, genetic, or proteomic evi-
dence; 2 corresponds to only sequence-based evidence for a gene product and its reaction(s); and finally a score of | reflects
that the reaction had to be included for model functionality (e. g., production of biomass precursor).
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General depiction of the aromatic compound degradation routes present in iJN746. The protocatechuate (pca
genes) and catechol (cat genes) branches of the beta-ketoadipate pathway are shown as well as peripheral pathways by orange
arrows. The homogentisate pathway (hmg genes) is represented by green arrows and the phenylacetate pathway (paa genes) is
represented by purple arrows. The nicotinate and gallate pathways (unknown genes) are shown by green and red arrows,
respectively. Finally, the Tol pathway (xyl genes from pWWO0 plasmid) for toluene and xylene degradation is represented by
blue arrows. The initial aromatic compounds are indicated by green circles and the central metabolic compounds for each
pathway are also highlighted. A detailed list of reactions involved in aromatic acid degradation can be found in the Additional

file 9.

Comparison of scope and content of iJfN746 with published

metabolic networks

The properties of iJN746 were compared with the proper-
ties of recently published reconstructions of E. coli

MG1655 (iAF1260, [36]), B. subtilis (iYO844 [37]), M.

tuberculosis H37Rv (iNJ661 [39]), and P. aeruginosa PAO1

(iIMO1056 [64] (Table 1). We found that the percentage
of included ORFs was smaller in i{JN746 than in the other
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reconstructions. Subsequently, it can be expected that the
number of metabolic functions present in P. putida is
larger than currently identified in the genome annotation
and literature. In fact, the number of included non-gene
associated reactions was twice that of the E. coli metabolic
reconstruction. Furthermore, the species knowledge index
(SKI) [65], which relates the number of PubMed abstracts
of an organism to its number of ORFs, was much lower for
P. putida compared to the other reconstructions. In sum-
mary, this comparison indicates that the overall context
coverage in iJN746 is comparable with other high-quality
network reconstructions when the amount of available lit-
erature is considered.

A metabolic reconstruction for another representative of
the Pseudomonas genera was published recently [64]. A
comparison of P. putida and P. aeruginosa metabolic
reconstructions was performed (Table 1). In contrast to P.
putida, P. aeruginosa is an opportunistic human pathogen
and as such more information about its metabolism and
physiology is available, which is directly reflected by a SKI
value 7 times higher than that of P. putida (Table 1). As a
consequence, a larger number of metabolic genes were
included in the metabolic reconstruction (14% of P. put-
ida's genome vs. 18% of P. aeruginosa's genome). Despite
being close relatives, these two representatives have signif-
icant differences in lifestyle and metabolic capabilities.
Subsequently, the two metabolic reconstructions have sig-
nificant differences, emphasizing the importance of
organism-specific reconstructions. For instance, the P. aer-
uginosa reconstruction contains pathways necessary for
growth and production of common virulence factors,
including alginate, rhamnolipids, phenezines, and quo-
rum-sensing molecules [64], which are not present in P.
putida's metabolic network. In contrast, P. aeruginosa's
metabolic network does not account for pathways neces-
sary to degrade aromatic compounds.

i/N746's metabolic versatility

Flux balance analysis (FBA [56]) can provide insight into
the growth capabilities of the reconstructed network.
Comparison of in silico growth performance with experi-
mental data allows for the assessment of the predictive
potential of the metabolic reconstruction and thus repre-
sents a valuable tool for network evaluation. Furthermore,
in silico growth analysis may expand the known array of
carbon-, nitrogen-, and energy sources of the recon-
structed organism. In this study, the aerobic growth capa-
bilities of iJN746 in iM9 medium substituted with
different carbon sources were determined qualitatively
(Table 2) and quantitatively (Table 3). The growth simu-
lation results reflected the metabolic versatility for which
P. putida is well known, with a total of 59 carbon sources
enabling in silico growth when added to the iM9 minimal
medium (Table 2). Furthermore, we compared the in silico

http://www.biomedcentral.com/1752-0509/2/79

growth performance on different carbon, sulfur, and
nitrogen sources with phenotyping data derived from lit-
erature [see Additional file 1]. For instance, P. putida is
found in terrestrial and aquatic environments around the
world, with preference for the rhizosphere [21], which is
especially rich in carbon sources, amino acids, organic
acids, and aromatic acids derived from seeds, roots, and
other plant parts [66,67]. This niche specificity accounts
for the broad carbon source usage of KT2440 and there-
fore, most of the known soil carbon sources were captured
in iJN746 (Table 2). Of particular biotechnological
importance is the ability of iIN746 to metabolize aro-
matic compounds, thus, representing the first metabolic
reconstruction accounting for growth on these carbon
sources. For example, aromatic compounds such as tolu-
ene or xylene are of special interest as they are archetypical
pollutants. Subsequently, we studied the toluene degrada-
tion process using iJN746 (see below).

No false positive carbon, nitrogen, or sulfur sources were
found in iJN746, as expected, as only exchange reactions
were included in the reconstruction for metabolites,
which have been reported to be taken up or secreted by P.
putida KT2440. In contrast, some disagreements, such as
false negatives, were observed despite a good overall
agreement with the in vivo data [68] [Additional file 1].
For example, it was reported that P. putida can use L-
alanine as a carbon- and nitrogen-source [68] but iJN746
cannot use this compound as a carbon or nitrogen source.
This disagreement could not be resolved. In contrast,
iJN746 was initially unable to use choline-O-sulphate,
choline, or glycine betaine as carbon- and nitrogen-
sources despite experimental evidence [69]. However, the
addition of two non-gene-associated reactions, betaine-
homocysteine S-methyltransferase (EC- 2.1.1.5) and
dimethylglycine dehydrogenase (EC- 1.5.99.2), enabled
iJN746 to use these metabolites as carbon- and nitrogen-
sources through the glycine metabolism. In addition,
choline-O-sulphate could also be used as sulfur source
[see Additional file 1]. The two added reactions represent
a hypothesis that needs further experimental verification.
These examples show how discrepancies between in silico
predictions and physiological properties can be used to
drive new discoveries, as was shown for E. coli [45].

Growth on glucose

P. putida KT2440, like other Pseudomonas species and
rhizosymbionts, has an incomplete glycolytic pathway
because of a missing 6-phosphofructokinase [70]. How-
ever, P. putida KI2440 has a complete Entner-Doudoroff
pathway, which allows for the utilization of glucose and
other sugars as carbon sources (Table 2). Therefore, we
investigated the properties of glucose metabolism in
iJN746 to validate and evaluate the reconstructed network
[71]. For instance, comparison of predicted in silico
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Table 2: Carbon sources enabling growth of iJN746 in iM9 mineral medium.

Class Compound Class Compound
Aromatic and related compounds Amino acids
Protocatechuate L-Arginine
Caffeate L-Aspartate
Oxoadipate L-Glutamate
4-Hydroxybenzoate L-Glycine
Benzoate L-Histidine
Catechol L-Isoleucine
Coniferyl alcohol L-Leucine
Ferulate L-Lysine
Gallate L-Proline
m-Xylene L-Serine
Nicotinate L-Threonine
p-Xylene L-Valine

Phenylacetate

L-Phenylalanine
Quinate
p-Coumarate
Toluene
L-Tyrosine
Vanillin
Vanillate
Fatty acids

Acetate

Decanoate
Dodecanoate
Hexadecanoate
Hexanoate
Octanoate
Propionate

Tetradecanoate
Polyalcohols and glycols

Glyceraldehyde
Glycerol
Glycolate

Organics acids

a-Ketoglutarate
Citrate
Fumarate
Isocitrate
D-Lactate
L-Lactate
Malate
Succinate

Carbohydrates

2-ketogluconate
D-Fructose
D-Glucose
D-Gluconate
D-Ribose
Miscellaneous compounds

4-Aminobuturate
Glycine betaine

Ornithine
Choline
Choline sulfate

Carbon sources enabling growth of iiN746 in iM9 mineral medium. The compounds were grouped based their structural characteristics. A
complete list of carbon sources tested, along with possible nitrogen and sulfur sources, as well as bibliographic support can be found in the

Additional file 2.

growth with experimental data permits a direct assess-
ment of the predictive potential of a reconstructed meta-
bolic network. Subsequently, we determined the aerobic
growth capability of iJN746 in Glucose-M9 minimal
medium (iM9). Interestingly, iJN746 grew faster in glu-
cose than experimental in vivo data suggested for P. putida
KT2442 (Table 3, [25]). A similar difference in growth rate
between in vivo and in silico measurements was reported
for P. aeruginosa [64]. The difference in growth rate might
be explained by an incomplete formulation of biomass
function or higher energy maintenance requirements not

accounted for in the current reconstruction [30,36] or
missing adaptation to glucose as primary carbon source.
Another explanation could be that P. putida KT2442 con-
verts only a part of glucose into biomass. In fact, a recent
study showed that P. putida KT2442 accumulated low,
extracellular concentrations of gluconate and 2-ketoglu-
conate when grown on glucose [25]. P. putida metabolizes
glucose exclusively via the Entner-Doudoroff pathway in
which 6-phosphogluconate is the key intermediate. This
compound is produced by three convergent pathways; the
glucokinase branch, the gluconokinase branch, and the 2-
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ketogluconate loop (Figure 3)[70]. The latter two path-
ways produce gluconate and 2-ketogluconate as interme-
diate compounds of the glucose catabolism. JN746
accounts for these alternate routes and corresponding
transport reactions for gluconate and 2-ketogluconate.

Growth on Toluene

Aromatic compounds such as toluene or xylene are found
in polluted soil. Some Pseudomonas species are known to
grow on these compounds as a sole carbon source [72],
making them interesting candidates for bioremediation of
contaminated areas [9,10]. As indicated above, P. putida
KT2440 can metabolize various aromatic acids, amino
acids, sugars, organic acids, fatty acids, and organo-sulfur
compounds (see Table 2). More specifically, P. putida
KT2440 degrades many aromatic compounds into a lim-
ited number of intermediates using a few catabolic path-
ways that were captured in iJN746 (Figure 2). In

http://www.biomedcentral.com/1752-0509/2/79

particular, the toluene biodegradation pathway has been
extensively studied in P. putida [73-75] and its genetic reg-
ulation is well known [76]. In this study, we assessed the
capability of iIN746 to quantitatively predict aerobic
growth on toluene (Table 3). The comparison showed a
much lower in silico growth rate when compared to in vivo
data, 0.421 versus 0.72 (60%) (Table 3). In the following,
we used different mathematical tools to elucidate reasons
for this significant discrepancy.

Reduced cost of toluene catabolism

Linear Programming (LP) problems have two parameters,
shadow price and reduced cost, which can be used to char-
acterize the optimal solution. While shadow prices are
associated with each network metabolite, reduced costs
are associated with each network reaction. The reduced
cost signifies the amount by which the objective function
(e.g. growth rate) would increase when the flux rate
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Figure 3

Glucose metabolizing pathways present in P. putida KT2440 and its metabolic reconstruction, ijN746.
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Table 3: Comparison of growth performance of the in silico strain ijN746 and KT2442.

Strain Carbon umax(h-') umax(h-') Carbon Uptake rate O, Uptake rate
source iJN746 KT2442 (mmol gDWI/h) (mmol gDW/h)
iIN746/KT2442 Glucose 0.751 0.56a 6.3a 15.34d
iIN746/KT2442 Toluene 0.421 0.72b 11.9b 18.5¢
iIN746/KT2442 Toluene 0.476 0.72 1.9 20.93d
iIN746/KT2442 Toluene 0.7255 0.72 1.9 33
iIN746/KT2442 Toluene 1.262 0.72 1.9 0

Comparison of growth performance of the in silico strain ijN746 and KT2442. The in silico growth rate was calculated in iM9 minimal medium plus
glucose or toluene. Due to candidate oxygen limited growth in toluene, the in silico growth rate was calculated under different oxygen uptake rates
In addition IN746 growth in toluene as only carbon source was simulated at different oxygen uptake rates. 2 from [25]; ® from[26]; < from [78], and

d experimentally determined in this study.

through a chosen reaction was increased by a single unit
[77]. Analyses of the reduced costs associated with uptake
rates in the oxygen-limited toluene simulations identified
the OUR as the only non-zero reduced cost value, 0.021 g
biomass/gDW/h. This value corresponds to an increase of
the OUR to 33 mmol oxygen/gDW/h to achieve the exper-
imentally determined growth rate [26]. At an OUR higher
than 62 mmol oxygen/gDW/h oxygen is no longer a
growth-limiting factor but toluene is. Note that the upper
limit of 18.5 mmol oxygen/gDW/h for the OUR was taken
from measurements for E. coli corresponding to the nor-
mal oxygen diffusion rate under atmospheric oxygen con-
ditions [78]. Mathematically, the reduced cost analysis
supports the hypothesis that oxygen is the limiting factor
for toluene catabolism and hence causes the reduced in sil-
ico growth rate.

Phase Plane Analysis of toluene catabolism and oxygen uptake

We performed a phase plane analysis to further elucidate
the correlation between toluene uptake, OUR, and bio-
mass production rate (Figure 4). We analyzed all four
cases listed in Table 3 and found a direct effect of
increased OUR on the toluene uptake capability and bio-
mass production rate (Figure 4A). The experimentally
observed growth rate of 0.72 umax(h-!) [26] was achieved
by TUR ranging from 6 to 11.9 mmol toluene/gDW/h and
OUR higher than 33 mmol oxygen/gDW/h. Note that a
higher toluene uptake rate (TUR) requires a higher OUR
(Figure 4A), which indicates that the removal of intracel-
lular oxygen was dependent on toluene availability. In
fact, the three oxidative reactions involved in the conver-
sion of toluene to 2-hydroxymuconate semialdehyde (tol-
uene monooxygenase, benzoate 1,2-dioxygenase and
catechol 2,3-dioxygenase) were found to have the higher
flux rates besides the flux through the cytochrome C oxi-
dase, an enzyme of the oxidative phosphorylation (Figure
4B).

In order to better understand this situation and since no
detailed information about OUR was found for P. putida
KT2440 under toluene-dependent growth conditions, we

carried out in vivo experiments to determine the OUR of P.
putida KT2440 harboring the TOL plasmid (see Methods).
As expected, the OUR in toluene growing cells was higher
than glucose or octanoate growing cells; 20.93 compared
to 15.34 and 14.88 mmol oxygen/gDW/h, respectively
(Table 3). The measured OUR uptake rate for growth in
toluene did not explain the high oxygen requirement of
the model, but clearly indicates the importance of oxygen
uptake in toluene metabolism. Also, the measured OUR
was slightly higher than the E. coli value that was used for
the standard in silico simulations (20.93 vs. 18.5 mmol
oxygen/gDW/h). In fact, oxygen dependent growth of tol-
uene grown cells has been described for other P. putida
strains. For example, Alagappan and Cowan reported a
10x higher oxygen-half saturation of P. putida F1 grown
on toluene than other aerobic organisms [79]. Further-
more, the oxidative stress caused by toluene and other
aromatic acids in the degradative process is well known
[23,80]; however, this phenomenon was found to be
mainly caused by reactive oxygen species due to incom-
plete oxygen reduction [81], indicating an active oxygen
metabolism under this growth condition. Oxygen-limit-
ing growth conditions were also reported for P. putida
when grown on octanoate [63].

Taken together, our analysis suggests that the current P.
putida metabolic network is incomplete. In fact, the cur-
rent information and results suggest that the network is
missing one or more reactions enabling a more oxygen-
efficient catabolism of toluene and other highly reduced
carbon sources (e.g. other aromatic compounds or fatty
acids). This analysis represents a nice example of the
broad range of applications for which iJN746 can be used
to evaluate the consistency of experimental data and in sil-
ico prediction. iJN746 can serve as a platform to derive
hypotheses about metabolic capabilities or missing func-
tions in the network which can be ultimately tested in the
laboratory. Hence, the metabolic reconstruction can help
to increase our understanding and knowledge about this
biotechnologically important organism.
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(A) The phenotypic phase plane analysis showed growth rate as a function of OUR and TUR in iJN746. The
growth rate is given in I/h (color legend). The red and yellow lines represent OUR constrained to 20.93 and 33 mmol/gDW/h,
respectively. (B) Diagram of oxygen producing and reducing reactions in ijN746. The flux rates are given in mmol/gDW/h and
represent one possible flux state of the network in toluene minimal medium at an OUR of 40 mmol oxygen/gDW/h. The reac-
tion abbreviations are as follows: CAT, catalase; O2tpp, oxygen periplasmic transport (oxygen uptake); ASPO6, L-aspartate
oxidase; BZ12DOX, benzoate |,2-dioxygenase; CAT23DOX, catechol 2,3-dioxygenase; CYTBO3_4pp, cytochrome oxidase
bo3; DHORD, dihydoorotic acid dehydrogenase; GLYCTOI, Glycolate oxidase and XMO, toluene monooxygenase.

Page 10 of 20

(page number not for citation purposes)



BMC Systems Biology 2008, 2:79

Gene essentiality analysis in ij[N746

iJN746 was used as a framework to analyze candidate
essential genes in P. putida KI2440 in LB rich medium.
Therefore, the network reaction(s) associated with each
gene was individually "deleted" by setting the flux to 0
and optimizing for the biomass function [32]. We wished
to compare the in silico essentiality predictions with exper-
imental data to assess the predictive potential of the
model. However, no large-scale, experimental gene essen-
tiality data are available for P. putida; the information can
only be found for its phylogenetic relative P. aeruginosa
PAO1 and P. aeruginosa PA14 [82,83]. A recently pub-
lished comparison between the P. putida and P. aeruginosa
PAO1 genomes identified 3,143 potential orthologous
pairs corresponding to 60% of P. putida's total ORFs, as
well as large sections of conserved gene order (synteny)
[28]. Therefore, we decided to compare our in silico single
gene deletion results with the 335 essential metabolic and
non-metabolic genes of P. aeruginosa [82,83]. About 12%
(92) of the 746 metabolic genes present in iJN746 were
predicted to be essential in iLB medium [see Additional
file 2]. A total of 53% (48) of these predicted essential
genes in iJN746 agreed with essential genes of P. aerugi-
nosa [see Additional file 3]. More importantly, the 44
genes wrongly predicted as essential genes represent excel-
lent targets for further refinement and expansion of the
metabolism of iJN746 [see Additional file 4] as has been
done for E. coli [45].

False-positive predictions

The disagreement between the experimental and compu-
tational results can reveal possible errors in the experi-
mental data as well as in the reconstructed network. The
disagreements might be caused by low experimental or
sequence evidences, each of which would have hindered
the inclusion of the information into the reconstruction.
For example, the fabB gene was predicted to be only essen-
tial in iIN746; however, after carrying out a detailed search
on Pseudomona's genomes using "The Pseudomonas
Genome Database V2" http://www.Pseudomonas.com/
we found putative ORFs in the KT2440 and PAO1 genome.
These ORFs were annotated as alternative loci that could
substitute a fabB deletion. Both, P. putida and P. aeruginosa
have one copy of the fabB gene encoding for the 3-oxoa-
cyl-(acyl-carrier-protein)synthase I (PP_4175 and
PA1609, respectively). In addition, both strains have a
copy of the fabF gene encoding for the 3-oxoacyl-(acyl-car-
rier-protein) synthase II (PP_1916 (40.92% identity with
fabB-ir gene) and PA2965 (42.34% identity with fabB-
pao1 gene). Moreover, in the P. putida and P. aeruginosa
genome, some ORFs were annotated putatively to encode
for a 3-oxoacyl-(acyl-carrier-protein)  synthase 1I
(PP_3303 (35.94% identity) and PP_2780 (27.32% iden-
tity) in KI2440, and PA_1373 (36.17% identity) in PAO1
strain. These putative ORFs were not included in iJN746

http://www.biomedcentral.com/1752-0509/2/79

due to the lack of supporting evidence for their metabolic
function, but this analysis showed that i) PAO1 has an
isozyme present in its genome, and ii) KT2440 is very
likely to have at least one other ORF encoding this or a
similar function. In a similar way, the discrepancy
between in silico essentiality prediction and in vitro obser-
vation for msbA gene could be explained. The gene prod-
uct of msbA encodes for a transporter of
phosphatidylethanolamine, which is known to have a
genetic redundancy in Pseudomonas sp. taking into account
the Pseudomonas annotation present in "The Pseudomonas
Genome Database V2". However, the supporting evidence
for alternative ORFs was not strong enough to be included
into iJN746.

Finally, 37 genes were not predicted to be essential in
iJN746 but they were reported as essential genes in P. aer-
uginosa [83] [see Additional files 4 and 3]. Of these false
negatives, 13 genes encode for tRNAs synthetases which
are typically included into metabolic networks [36] but
are not functionally connected to the rest of the network.
Hence, this disagreement was expected. Four additional
false negative predictions, namely glyA (PP_0322 or
PP_0671), fold (PP_1945 or PP_2265), fabZ (PP_4174 or
PP_1602), and pyrH (PP_1771 or 1593), have at least one
isozyme in KT2440 which were also accounted for in
iJN746. For many remaining incorrectly predicted non-
essential genes, the in silico deletion had a significant
effect on the growth rate, reflecting their important roles
in iJN746 metabolism [see Additional file 5].

In general, many of these discrepancies suggest that
metabolites enabling growth in the knock-outs might be
imported from the external rich media since the exact
composition of LB medium is not known [37,38]. This
observation indicates the importance of using well
defined minimal media in the experimental in vivo or in
vitro procedure to enable the usage of the generated data
for in silico predictions and comparison.

Gene essentiality and amino acid auxotrophy

Jacobs et al. reported a detailed amino acid auxotroph
study in P. aeruginosa PAO1 using a minimal medium [82].
We carried out another single gene deletion study in glu-
cose iM9 medium and compared the results with this
PAO1 study. Here, we found an absolute agreement
between in vivo and in silico gene essentiality for six amino
acids, namely arginine, histidine, isoleucine, valine, leu-
cine, and tryptophan (Table 4). The presence of alterna-
tive loci in iJN746 explains partial disagreement for argA,
argE, ilvA, and argJ. In fact, genetic redundancy for these
genes was reported in Pseudomonas species [82]. This high
correlation between in silico and in vivo data shows the
utility of this approach when you take into account meta-
bolic or anabolic reactions in a well defined minimal
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Table 4: The comparison of the in silico gene essentiality and experimental P. aeruginosa data are shown under various amino acid

auxotrophic conditions.

Amino acid PP gene gene Reaction iJN746/PA0I€ (growth)
Arginine PP_5185(PP_1346) argAt,(argl) ACGS,(ORNTAC, ACGS) (+/1-)*
PP_5289 argB ACGK (--)
PP_3633 argC AGPR (-/-)
PP_5186,(PP_1346) argEt,(arg)) ACODA(ORNTAC, ACGS) (+1-)*
PP_1088 argG ARGSS (-/-)
PP_0184 argH ARGSL (-/-)
PP_1346 arglt ORNTAC, ACGS (+/1-)*
Histidine
PP_0292 hisA PRMICIi (-/-)
PP_0289 hisB IGPDH -/-
PP_0967 hisC HSTPTr -/-)
PP_0966 hisD HISTD (-/-)
PP_5015 hisE PRATPP (-/-)
PP_0293 hisF IG3PS -/-
PP_0965 hisG ATPPRTr (-/-)
PP_0290 hisH IG3PS (-/-)
PP_5014 hisl PRAMPC (-/-)
Isoleucine-valine
PP_3446, PP5149 ilvA-1, ilvA-2 SER_AL, THRD_L (+/-)*
PP_4680 ilvB (ilvl)£ ACHBS, ACLS (-/-)
PP_4678 ilvC KARAI, KARA2 -/-)
PP_5128 ilvD DHADI, DHAD2 -/-)
PP_3511 ilvE VALTA, LEUTA, ILETA (-/-)
PP_4679 ivN(ilvVH)£ ACHBS, ACLS (-/-)
Leucine
PP_1025 leuA IPPS (-/-)
PP_1988 leuB IPMDr (-/-)
PP_1985 leuC IPPMla, IPPMIb (-/-)
PP_1986 leuD IPPMla, IPPMIb (-/-)
Tryptophan
PP_0082 trpA TRPSIr, TRPS3r (-/-)
PP_0083 trpB TRPS2, TRPSIr (-/-)
PP_0422 trpC IGPS (-/-)
PP_0421 trpD ANPRT (-/-)
PP_0417 trpE ANS -/-
PP_1995 trpF PRAI (-/-)
PP_0420 trpG ANS

The comparison of the in silico gene essentiality and experimental P. aeruginosa data are shown under various amino acid auxotrophic conditions.
The in silico mutants were grown on Glucose-iM9 medium. * No auxotrophy was detected in iJN746, genetic redundancy for these genes was
reported in Pseudomonas species. In P. aeruginosa mutants for orthologous genes, a significant residual growth on minimal medium was shown [82].

£ Alternative name in P. aeruginosa. € From [82].

media. The complete lists of potential essential genes pre-
dicted in glucose iM9 medium are listed in the Additional
file 6.

i/N746 as a cell factory

In the previous section, we used the metabolic reconstruc-
tion to assess the current knowledge of P. putida's metab-
olism by comparing and testing in silico predictions with

physiological data. However, metabolic network recon-
structions can also serve as engineering and design tools
[49] in addition to their use for discovery purposes [45].
Here, we investigate the poly-3-hydroxyalkanoate (PHA)
production capability by the metabolic network. PHAs are
a class of microbially produced polyesters that have the
potential to replace conventional, petrochemically
derived plastics in packaging and coating applications
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[63]. The biotechnological interest originates from their
biodegradability and the broad range of physical proper-
ties depending on the number of carbons and side chains
present in the PHA polymers [63]. These polymers are
stored by many microorganisms under inorganic nutrient
limited and carbon-excess growth conditions and are used
as carbon- and energy sources under starvation conditions
[63]. The medium-side-chain PHAs (msc-PHAs) are com-
posed of C, to C,4 3-hydroxy fatty acids and are com-
monly produced by fluorescent Pseudomonas. In this way,
P. putida KT2440 is an excellent candidate for msc-PHA
production studies, since i) the basic msc-PHA production
processes in KI2440 are well known [17,61], ii) its
genome is completely sequenced, iii) KT2440 has a well
known metabolic versatility (can use a large list of carbon
source as PHA precursors), iv) it is a very good host-vector
biosafety system for gene cloning and expression of heter-
ologous genes and v) this strain has been used in numer-
ous biotechnology processes including msc-PHA
production.

iJN746 accounts for msc-PHAs ranging from Cg to C,,,
including two unsaturated msc-PHAs and a mixed msc-
PHA polymer consisting of Cg to C,, chains. We tested the
msc-PHA production capability of iIN746 from the differ-
ent carbon- and energy sources listed in Table 2. All car-
bon sources were found to result in msc-PHA production
under the chosen simulation condition (dilution rate of
0.2 hr!). Many of these metabolites have been reported to
yield in PHA production in Pseudomonas [see Additional
file 7] although many studies focused on fatty acid or car-
bohydrate derived msc-PHAs. In general, it is assumed
that carbon sources generating high levels of acetyl-CoA
are good candidates for PHA production [63]. Therefore,
it was not surprising to find fatty acids and carbohydrates
as the best PHA precursors in iJN746 as well (Figure 5).
The list of candidate (in silico) precursors includes i) L-
branched-chain amino acids (L-leucine, L-isoleucine, L-
Valine etc), ii) some aromatic compounds metabolized
via B-ketoadipate pathway (catechol, p-coumarate, etc),
and iii) other (phenylacetic acid or glycerol) (Figure 5).
Interestingly, phenylacetic acid and glycerol have been
reported as excellent precursors for PHA [Additional file
7]. In fact, a recent study showed that P. putida CA3 can
accumulate 0.17 g of PHA per g of phenylacetate [84].

Fatty acids resulted in the highest PHA production rate
overall and when scaled per carbons (see Figure 5, and
Additional file 7). In fact, fatty acids are converted into
msc-PHAs quickly via B-oxidation [63]. Experimental
studies showed that the resulting msc-PHA-monomers
have the same or a smaller number of carbons as the fatty
acids from which they are derived [61,85]. In contrast, in
the model, higher carbon msc-PHAs could be formed
since the current model formulation does not exclude

http://www.biomedcentral.com/1752-0509/2/79

simultaneous fatty acid synthesis and B-oxidation. This
situation has been experimentally demonstrated using
hexanoate as a msc-PHA precursor. Huijberts et al. used
inhibitors of fatty acid metabolism and demonstrated
that, depending on the nature of the substrate, precursors
for PHA synthesis could be derived from either beta-oxi-
dation or fatty acid biosynthesis, and interestingly, when
hexanoate was used as carbon source for msc-PHA accu-
mulation, both routes can operate simultaneously [61].
On the other hand, the carbohydrates are converted into
msc-PHA from intermediates of the fatty acid synthesis
and have been shown to result primarily in Cgand C,,
monomers. The model, in contrast, is able to produce the
full range of msc-PHAs from carbohydrates (Figure 5).
These discrepancies suggest that despite broad specificity
of the Poly-(3-hydroxyalkanoate) polymerase, ranging
from Cg to C, 3-hydroxy fatty acids [17], the PHA polym-
erizing enzyme system might have preferences for mono-
mers with 8 or 10 carbon atoms, while larger and smaller
monomers are incorporated less efficiently. This fact can
also explain why, during growth on hexanoate, msc-PHA
precursors are synthesized by elongation and de novo fatty
acid synthesis pathway, resulting more preferably in the
generation of C8 and C10 monomers [61]. Such differ-
ences in specific activity could be applied as additional
constraints to the model to obtain similar results as those
observed experimentally.

Taken together, this example illustrates how iJN746 could
be employed as a tool to identify new substrates (catechol,
p-coumarate, isoleucine etc) for production of the differ-
ent msc-PHA monomers or msc-PHA mixtures. Further-
more, computational tools such as OptKnock[86] or
OptStrain[87] could help to design i) higher production
strains, and/or ii) couple PHA production to growth rate.
Such approaches have proven successful for other meta-
bolic engineering designs such as lactate production in E.
coli [88] or succinate production in M. succiniciproducens
[89].

Conclusion

Here, we presented the first genome-scale reconstruction
of P. putida, a biotechnologically interesting all-sur-
rounder. iJN746 is a highly detailed reconstruction of the
P. putida KT2440 metabolic network that captures the
important biotechnological capabilities, such as biodegra-
dation of aromatic compounds, of this paradigmatic bac-
terium. Moreover, iJN746 represents a comprehensive
knowledge base summarizing and categorizing the infor-
mation currently available for P. putida KT2440. This
study evaluated the metabolic network content and
showed some examples of how iJN746 could be used for
biotechnological purposes. Taken together, our results
underlined the value of iJN746 as a suitable tool to study
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Maximal possible msc-PHA production rate from various carbon sources. The msc-PHA production rate is scaled
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production of C8:0, C6:0, C10:0, and C12:0 msc-PHA (1:1:1:1).

of P. putida's metabolism and its biotechnical applications
by the P. putida community.

Methods

In vivo determination of oxygen consumption and cell
culture condition

P. putida KT2440 harboring the TOL plasmid was used for
in vivo determination of oxygen consumption experi-
ments. The bacterium was grown at 30°C in M9 minimal
medium [90] with octanoate (15 mM), glucose (0.3%
[wt/vol]), or toluene (6 mM) as a carbon source. Liquid
cultures were agitated on a gyratory shaker operated at
250 rpm. For the OUR experiment, an overnight culture of
P. putida KT2440 strain grown in each carbon source was

diluted until the turbidity at 600 nm (ODg,) was 0.05 in
fresh M9 minimal medium with the appropriate carbon
source, samples were then incubated until the culture
reached a turbidity at 600 nm of 0.6 for glucose or
octanoate growing cells and 0.45 in toluene growing cells.
Aliquots of 2 ml were taken for OUR determination; the
cells were harvested by centrifugation, washed twice and
re-suspended in 1 ml of fresh medium containing the
appropriate carbon source using the above concentra-
tions. The OUR was measured by monitoring the sub-
strate-dependent oxygen consumption rate at 30°C using
an oxygen electrode (DW1 Hansa-Tech Oxygen Electrode,
Hansa-Tech Oxygen Instrument Limited) in 1-ml assay
mixture. Cellular dry weight (CDW) was determined
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using previously published methods [91], using at least 3
parallel 10-ml cell suspensions that were harvested by
centrifugation at 15,800 x g. The pellets were washed with
0.9% NaCl and then dried at 105°C for 24 h to a constant
weight using pre-dried and weighed 2-ml Eppendorf cups.

Network reconstruction

The reconstruction process was done as described previ-
ously [30]. Briefly, the genome annotation of P. putida
KT2440 was obtained from TIGR (http://cmr.tigr.org/tigr-
scripts/ CMR/GenomePage.cgi?org=gpp, 06/27/2007) and
was used as the framework of the network reconstruction.
P. putida-specific primary and review literature and books
were used to retrieve information about every network
reaction: i) substrate specificity, ii) coenzyme specificity,
iii) reaction directionality, iv) enzyme and reaction local-
ization, and v) gene-protein-reaction (GPR) association.
Relevant references were associated with every network
reaction [see Additional files 7 and 8]. Public databases
such as KEGG [57], PSEUDOCYC [58], and SYSTO-
MONAS [59] were used when no literature evidence could
be found for the previous reaction characteristics. Sponta-
neous reactions were included into the reconstruction if i)
physiological evidence suggested their presence (e.g., the
presence of at least the substrate or product in the recon-
struction); and ii) textbooks or KEGG [57] suggested the
existence of such reactions. Every network reaction was
mass- and charge balanced assuming an intracellular pH
of 7.2 [38,55]. Note that this mass- and charge balancing
also included balancing the network reactions for protons
(H+), water (H,0), and various co-factors (e.g., adenosine
triphosphate (ATP)). No gene-associated reactions were
included when no corresponding gene was annotated in
P. putida's genome but physiological or experimental data
supported the presence of the biochemical transformation
being part of P. putida's metabolism. Finally the reversibil-
ity was determined from primary literature data for each
particular enzyme/reaction, if available. This literature
search resulted in a first manually-curated reconstruction
specific to P. putida's metabolism based on genome anno-
tation and available biochemical evidence. However, this
list is normally incomplete and will contain network gaps
that may need to be filled depending on supporting evi-
dence. This step requires manual effort again by searching
the scientific literature for supporting information. If no
P. putida-specific experimental evidence could be found
for a transport reaction or biochemical transformation of
a metabolite, no reaction or transporter was added to the
network. Finally, the network capabilities were evaluated
and compared with experimental data as described in
Reed et al. [30]. Detailed lists of the genes, proteins, and
reactions are contained in the Additional file 8, and the
definitions of all metabolites and their abbreviations are
found in the Additional file 9.

http://www.biomedcentral.com/1752-0509/2/79

SimPheny (Genomatica Inc., San Diego, CA) software was
used for the reconstruction and gap evaluation process.

Conversion of the network reconstruction to a condition-
specific model

The reconstructed metabolic network is often represented
in a tabular format, listing all network reactions and
metabolites in a human-readable manner along with con-
fidence scores and comments (see Reed et al [30] for
details). The conversion into a mathematical, or compu-
ter-readable format, can be done automatically by parsing
the stoichiometric coefficients from the network reaction
list (e.g. using the COBRA toolbox [92]). The mathemati-
cal format is called a stoichiometric matrix, or S-matrix,
where the rows correspond to the network metabolites
and the columns represent the network reactions. For each
reaction, the stoichiometric coefficients of the substrates
are listed with a minus sign in the corresponding cell of
the matrix, while the product coefficients are positive
numbers, by definition. The resulting size of the S-matrix
is m x n, where m is the number of metabolites and n the
number of network reactions. Mathematically, the S-
matrix is a linear transformation of the flux vector v = (v,

v,,.., V,) to a vector of time derivatives of the concentration

vector x = (x;, X,,.., X,,) as 4 = S.v . At steady-state, the

&=
change in concentration as a function of time is zero;
hence, it follows: % =S-v = 0. The set of possible flux

vectors v that satisfy this equality constraint might be sub-
ject to further constraints by defining v; ;< v;< v, ., for
reaction i. In fact, for every irreversible network reaction i,

the lower bound was defined as v;

i,min
bound was defined as v; ;,,,, > 0.

> 0 and the upper

Exchange reactions, which supply the network with nutri-
ents or remove secretion products from the medium, were
defined for all known medium components (see Addi-
tional file 9 for details). The uptake of a substrate by the
network was defined by a flux rate v; < 0 and secretion of
a by-product was defined to be v;> 0 for every exchange
reaction i. An exchange reaction is represented in the reac-
tion is as follows: e.g. D-glucose exchange: Ex_glc-D: 1 glc-
D —. Note that this exchange reaction is unbalanced.
Exchange (uptake) reactions define the presence of media
components as if one would add metabolites into an in
silico flask.

Finally, the application of constraints corresponding to
different environmental conditions (e.g. minimal growth
medium) or different genetic background (e.g. enzyme-
deficient mutant) allow the transition from metabolic
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network reconstruction to condition-specific model. Note
that the metabolic network reconstruction is unique to
the target organism (and defined by its genome) while it
can give rise to many different models by applying condi-
tion-specific constraints. All flux rates, v, except biomass
formation, are given in mmol/gDW/h.

Biomass function

It is generally assumed that the objective of living organ-
isms is to divide and proliferate. Subsequently, many met-
abolic network reconstructions have a so-called biomass
function, in which all known metabolic precursors of cel-
lular biomass are gathered (e.g. amino acids, nucleotides,
phospholipids, vitamins, cofactors, energetic require-
ments etc.) [36-39]. Since no detailed studies about P. put-
ida's biomass composition are available, the biomass
composition from E. coli [55,93] was used as a template
for iIN746's biomass function. However, data from P. put-
ida were added, (e.g. membrane phospholipid composi-
tion [94]), when available. The detailed calculation of the
biomass composition is provided in the Additional file
10.

in silico medium composition

Aerobic growth was modeled in two different culture
media: in silico M9 minimal medium (iM9) and in silico
Luria-Bertani medium (iLB) [37]. For iM9 simulation, and
according to the well described M9 minimal medium
[90], the following external metabolites, CO,, Co, *, Fe, *,
H+, H,O, Na, *, Ni, *, NH,, P, and SO, were allowed to
enter and leave the network by setting the constraints on
the corresponding exchange reactions (i) to v; ;,> -10°
mmol/gDW/h and to v;,,,< 10° mmol/gDW/h. The
uptake rate for each carbon source was constrained to
V; min> -10 mmol/gDW/h and v; .., .< 0 mmol/gDW/h. The
oxygen uptake rate (OUR) was limited to v;;,> -18.5
mmol/gDW/h (based on E. coli data [95]), if not noted
differently. In each individual simulation, all other exter-
nal metabolites were only allowed to leave the system by
constraining their exchange fluxes i between v; ;> 0 and
V; max> 10 mmol/gDW/h. The iLB medium was based on
the published analysis of yeast extract and tryptone pro-
vided by the corresponding manufactures, and the iLB
simulations were performed according previously pub-
lished methods [37].

Phenotypic phase-plane analysis

Phenotypic phase-plane analysis (PhPP) was carried out
using SimPheny (Genomatica Inc., San Diego, CA). The
underlying algorithm was described elsewhere [96,97].
The simulation was carried out using iM9 minimal
medium (as described above) and setting the bounds of
toluene uptake between v, ..> -11.9 mmol/gDW/h
(based on measurement by [26] and v; < 0 mmol/

gDW/h; and of oxygen between v; ;> -160 mmol/gDW/

http://www.biomedcentral.com/1752-0509/2/79

h and v; ,.< 0 mmol/gDW/h. The step size was chosen to

1,nax—

be 35.

Reduced Cost

Reduced cost is a parameter of linear programming (LP)
problems which is associated with each network reaction
(v;) and represents the amount by which the objective
function (e.g. growth rate) could be increased when the
flux rate through this reaction was increased by a single
unit [77]. Reduced cost is often used to analyze the
obtained optimal solution and evaluate alternate solu-
tions from the original solution [77]. In this study, we
analyzed the reduced costs associated with uptake reac-
tions to identify candidate reactions through which an
increased flux would result in a higher growth rate (under
the chosen simulation condition). The growth condition
was iM9 medium with toluene as carbon source. The con-
straints were set as described above and linear program-
ming was employed to solve the optimization problem
(maximizing growth).

Gene essentiality and auxotrophy

In order to determine the effect of a single gene deletion,
all the reactions associated with each gene in iJN746 were
individually "deleted" by setting the flux to 0 and opti-
mizing for the biomass function [32]. A lethal deletion
was defined if no positive flux value for the biomass func-
tion could be obtained for the given mutant in silico strain
and medium. The simulations were performed using i)
iLB rich medium for general gene essentially experiment
and ii) glucose-iM9 minimal medium for auxotrophy
experiments (See above). The glucose uptake rate was

fixed t0 V; in = Vjmax = -6.3 mmol/gDW/h in the latter
study. OUR was set to be v; ;,> -18.5 mmol/gDW/h in
both cases.

msc-PHA production

The msc-PHA production from each possible carbon
source (Table 2) in iM9 medium was determined by set-
ting the growth rate to Vg min = Vgrowmax 0-2 8DW/
gDW/h. The lower bound of each carbon uptake reaction
was set to v; ..> -10 mmol/gDW/h and the upper bound
was set to be v; . .< 0 mmol/gDW/h. The lower bound of
the oxygen uptake rate was set to v; ;,> -20 mmol/gDW/
h for all simulations. In iJN746, six types of msc-PHAs are
defined as well as msc-PHA compounds consisting of four
different carbon chains [see Figure 5 and Additional file
7]. The corresponding demand functions were used as
objective functions independently for the optimization
problem. The resulting msc-PHA production rates were
scaled by the number of carbons of the corresponding car-

bon sources to facilitate a yield comparison.
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Software

All computational simulations were performed using
Matlab (The MathWorks Inc., Natick, MA) if not stated
otherwise. TomLab (Tomlab Optimization Inc., San
Diego, CA) was used as linear programming solver. Opti-
mization formulations and the gene deletion studies
employed the Matlab-based COBRA toolbox [92].
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Additional file 1

Table S1. Carbon, nitrogen, and sulfur sources, which enabled growth of
iIN746.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1752-
0509-2-79-S1.doc]

Additional file 2

Table S2. Essentials genes predicted correctly in iJN746 compared with
experimental data of P. aeruginosa.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1752-
0509-2-79-S2.doc]

Additional file 3

Figure S1. Schematic representation of in silico gene essentiality in
iIN746 (iLB medium) compared experimental data of gene essentiality in
P. aeruginosa [83].

Click here for file
|http://www.biomedcentral.com/content/supplementary/1752-
0509-2-79-S3.doc]

Additional file 4

Table S3. False-positive essential genes in iJN746 when compared with
P. aeruginosa's experimental data [83].

Click here for file
|http://www.biomedcentral.com/content/supplementary/1752-
0509-2-79-S4.doc]

Additional file 5

Table S4. False-negative essential genes in iJN746. Genes that were not
predicted to be essential in iJN746 but were reported as essential genes in
P. aeruginosa [83].

Click here for file
|http://www.biomedcentral.com/content/supplementary/1752-
0509-2-79-S5.doc]
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Additional file 6

Table S5. Predicted essential genes in Glucose-iM9 minimal medium.
Not shown are genes that were also predicted to be essential in iLB rich
medium.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1752-
0509-2-79-S6.doc]

Additional file 7

Table S6. PHA polymer composition found in different Pseudomonas
strains sorted by carbon sources.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1752-
0509-2-79-S7.doc]

Additional file 8

Table S7. List of metabolites in iJN746. The file contains a detail list of
metabolites present in the metabolic reconstruction. The molecular formu-
lae, the charge as well as the KeggID are shown.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1752-
0509-2-79-S8.xls]

Additional file 9

Table S8. List of the reactions contain in iIN746. The file details the reac-
tions account in the metabolic reconstruction. The official name, the equa-
tion of the reaction, the subsystem, the EC number and de GPR
association is shown.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-2-79-S9 xls]

Additional file 10

Table S9. List of biomass components in iJN746. This file contains the
complete list of compounds which are part of Pseudomonas putida bio-
mass.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1752-
0509-2-79-S10.doc]
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