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Abstract: As an extension of our research against COVID-19, a multiphase in silico approach was
applied in the selection of the three most common inhibitors (Glycyrrhizoflavone (76), Arctigenin (94),
and Thiangazole (298)) against papain-like protease, PLpro (PDB ID: 4OW0), among 310 metabolites
of natural origin. All compounds of the exam set were reported as antivirals. The structural similarity
between the examined compound set and S88, the co-crystallized ligand of PLpro, was examined
through structural similarity and fingerprint studies. The two experiments pointed to Brevicollin (28),
Cryptopleurine (41), Columbamine (46), Palmatine (47), Glycyrrhizoflavone (76), Licochalcone A (87),
Arctigenin (94), Termilignan (98), Anolignan B (99), 4,5-dihydroxy-6”-deoxybromotopsentin (192),
Dercitin (193), Tryptanthrin (200), 6-Cyano-5-methoxy-12-methylindolo [2, 3A] carbazole (211), Thi-
angazole (298), and Phenoxan (300). The binding ability against PLpro was screened through
molecular docking, disclosing the favorable binding modes of six metabolites. ADMET studies
expected molecules 28, 76, 94, 200, and 298 as the most favorable metabolites. Then, molecules 76,
94, and 298 were chosen through in silico toxicity studies. Finally, DFT studies were carried out on
glycyrrhizoflavone (76) and indicated a high level of similarity in the molecular orbital analysis. The
obtained data can be used in further in vitro and in vivo studies to examine and confirm the inhibitory
effect of the filtered metabolites against PLpro and SARS-CoV-2.

Keywords: papain-like protease; SARS-CoV-2; natural products; structural similarity; molecular
docking; ADMET; DFT

1. Introduction

As of 26 July 2022, the WHO stated the confirmation of the incidence of 57,223,945
COVID-19 infections and 6,390,401 deaths [1]. Accordingly, a constant search in the field of
drug discovery should be sustained to discover a cure.

Cheminformatics (computational- in silico) labels the connection between informatics
and chemistry [2]. This approach applies the software in the field of chemistry [3] and
has been used effectively to predict a cure against COVID-19 [4–6]. The chemoinformatic
approach was also employed efficiently in drug discovery [7], drug molecular design [8,9],
computational chemistry [10,11], toxicity prediction [12], ADMET assessment [13], and
DFT calculation [14].
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Human interest in the use of natural products has been back-traced for thousands of
years [15,16]. The power of natural products as antiviral medicines has been confirmed in
several scientific reports [17–20].

PLpro is a crucial protein in the coronavirus that has an essential role in the processing
mechanism of viral polyproteins. This step results in the generation of an efficient replicase
complex [21]. PLpro has another essential role against human immunity through post-
translational modifications on human proteins [22].

Against COVID-19, we employed in silico methods to disclose the potential inhibition
of several types of natural compounds. For example, four isoflavonoids [23] and three
alkaloids [24] were proposed to exert promising anti-SARS-CoV-2 activities. We designed
and applied in silico experiments to recommend the most fitting inhibitor against certain
essential enzymes of SARS-CoV-2 such as SARS-CoV-2 nsp10 [25], SARS-CoV-2 PLpro [26],
SARS-CoV-2 nsp16-nsp10 2′-o-Methyltransferase Complex [27], SARS-CoV-2 MPro [28,29],
and SARS-CoV-2 RdRp [30].

In the current study, we report the use of several computational filtration methods on
310 metabolites of natural origin that belong to diverse chemical classes and are reported as
antivirals (Figure S1 and Table S1). Our experiments revealed the most expected inhibitors
of human coronavirus PLpro among them. We depended on the reported similarities
between the PLpro of SARS-CoV-1 and SARS-CoV-2 (Figure 1).
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Figure 1. In silico protocol to select the most promising candidate against PLpro.

2. Results and Discussion
2.1. Molecular Similarity

It is worth mentioning that S88 was used as a positive control (lead molecule) in this
work as S88 is the co-crystallized ligand of our target protein and has a reported binding
mode. Additionally, currently, there are no FDA-approved drugs for the treatment of
coronavirus targeting PLpro. Accordingly, it was found that S88 may serve as a good
candidate to check the similarity of our compounds against it.

The following descriptors (H-bond donor (HBA) [31], H-bond acceptor (HBD) [32],
partition coefficient (ALog p) [33], molecular weight (M. Wt) [34], rotatable bonds [35],
rings, and aromatic rings [36] besides molecular fractional polar surface area (MFPSA) [37])
were examined between the 310 metabolites (Figure S1, Supplementary data) and S88
using Discovery Studio software (Vélizy-Villacoublay, France). The degree of likeness
was calculated through the computation of minimum distances. The minimum distances
were computed based on the variations in the aforementioned parameters and represent
the computed quantitative difference in the structure between S88 and the examined
compounds and are inversely proportional to the similarity degree.
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The 310 molecules were spit into five equal groups of 50 molecules each, and one (last
group) that contained 60 molecules. The study determined the 30 most suitable metabolites
(Figures 2 and 3, and Table 1).
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Table 1. Structural properties of the most similar molecules to S88.

Comp. Molecular
Formula ALog p M. Wt HBA HBD Rotatable

Bonds Rings Aromatic
Rings MFPSA Minimum

Distance

4 C24H27NO4 2.658 394.483 4 1 4 5 3 0.102 0.654

28 C17H19N3 1.457 266.361 1 2 1 4 3 0.119 0.693

41 C24H27NO3 3.131 378.484 3 1 3 5 3 0.083 0.546

46 C20H20NO4 3.936 338.377 4 1 3 4 3 0.149 0.709

47 C21H22NO4 4.161 352.404 4 0 4 4 3 0.11 0.714

76 C21H20O6 3.98 368.38 6 3 4 3 2 0.257 1.101

87 C21H22O4 4.667 338.397 4 2 6 2 2 0.178 1.102

94 C21H24O6 3.743 372.412 6 1 7 3 2 0.192 1.057

98 C19H20O3 4.784 296.36 3 2 6 2 2 0.153 1.100

99 C18H18O2 4.8 266.334 2 2 5 2 2 0.14 1.108

101 C22H18O7 3.584 394.374 7 0 4 5 3 0.192 0.356

111 C23H30O5 4.65 386.481 5 2 4 5 1 0.209 0.486

127 C14H12O4 2.466 244.243 4 1 1 3 2 0.235 0.539

146 C21H30O2 6.109 314.462 2 1 4 3 1 0.084 0.493

147 C27H34O5 3.325 437.548 5 0 4 5 1 0.182 0.412

188 C14H16BrN3OS 1.287 355.273 3 2 0 4 2 0.282 0.789

189 C14H16BrN3OS 1.287 355.273 3 2 0 4 2 0.282 0.789

192 C21H18BrN3O 3.919 408.291 3 2 3 5 3 0.168 0.418

193 C21H20N4S 2.122 361.483 3 1 3 5 4 0.167 0.509

200 C15H8N2O2 2.331 248.236 3 0 0 4 2 0.222 0.670

211 C21H17N3O 4.078 327.379 2 1 1 5 3 0.176 0.529

215 C12H9ClN2 3.043 216.666 1 0 0 3 3 0.084 0.582

216 C12H8Cl2N2 3.707 251.111 1 0 0 3 3 0.076 0.558

217 C12H8Cl2N2O 2.846 267.111 1 1 0 3 2 0.142 0.578

227 C22H32O3 5.507 344.488 3 1 1 4 1 0.101 0.798

287 C29H37NO5 4.1 479.608 5 3 2 4 1 0.196 0.679

291 C15H19NO2 2.932 245.317 2 2 5 2 2 0.198 0.524

298 C18H21N3O2S 2.716 343.443 4 1 5 3 2 0.252 0.600

300 C23H25NO4 5.22 379.449 4 0 7 3 2 0.149 0.473

303 C19H26ClNO3 3.006 350.86 4 1 6 2 1 0.158 0.650

S88 C25H27FN2O 3.098 391.501 1 2 5 4 3 0.083

2.2. Filter Using Fingerprints

Various computational methods that describe the similarities between different molecules
have gained more interest in drug discovery [38]. One of the most helpful techniques in this
approach is fingerprints [39]. The fingerprint study includes binary strings that compute the
existence or absence of vital sub-structural fragments to calculate the structural similarity
between molecules. This technique is currently utilized in virtual screening and detection
of similarities between hit compounds and the lead one. The main difference between the
fingerprints and molecular similarity studies is that the first individually calculates the
presence and or absence of certain descriptors in S88 and the examined compounds, while
molecular similarity calculates the degree of similarity between them as a whole structure.

The fingerprints technique was carried out using Discovery Studio software and ex-
amined the following parameters: HBA, HBD [40], charge [41], hybridization [42], positive
and negative ionizable [43], halogen, aromatic, or none of them besides the ALogP category
of atoms. All the mentioned parameters were converted to pits by the computer. Then,
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the computer calculated the bits in both S88 and the target compounds (SA), in the target
compounds only (SB), or S88 only (SA). The identification of the most similar (that have the
most identical molecular fingerprints) compounds to S88 is important to pick compounds
with a higher degree of similarities. The most similar compounds are expected to exert
greater protein binding and activity.

The study (Table 2) favored 28, 41, 46, 47, 76, 87, 94, 98, 99, 192, 193, 200, 211, 298, and
300 due to their similarity with S88.

Table 2. Fingerprint similarity between the tested molecules and S88.

Comp. Similarity SA SB SC

S88 1.000 565 0 0

Brevicollin (28) 0.614 304 −70 261

Cryptopleurine (41) 0.642 401 60 164

Columbamine (46) 0.605 353 18 212

Palmatine (47) 0.584 363 57 202

Glycyrrhizoflavone (76) 0.561 329 21 236

Licochalcone A (87) 0.645 354 −16 211

Arctigenin (94) 0.591 355 36 210

Termilignan (98) 0.635 343 −25 222

Anolignan B (99) 0.615 346 −2 219

4,5-dihydroxy-6”-deoxybromotopsentin (192) 0.720 394 −18 171

Dercitin (193) 0.621 357 10 208

Tryptanthrin (200) 0.633 337 −33 228

6-Cyano-5-methoxy-12-methylindolo [2, 3A] carbazole (211) 0.594 329 −11 236

Thiangazole (298) 0.580 307 −36 258

Phenoxan (300) 0.574 354 52 211

SA: The number of bits in S88 and target compound, SB: The number of bits in target compound but not S88,
SC: The number bits in S88 but not the target.

2.3. Docking Studies

The docking analysis of 28, 41, 46, 47, 76, 87, 94, 98, 99, 192, 193, 200, 211, 298, and 300
was carried out against the coronavirus PLpro enzyme’s binding site (PDB ID: 4OW0). The
crystallized ligand (S88) was used as a reference compound. For each compound, 30 run
poses were carried out. The applied procedure of molecular docking was verified through
the there-docking of S88 against the PLpro active site for another time. The small value
of the RMSD (0.98 Å) between the two poses indicated the applicability of the applied
protocol (Figure 4).

Differentiation between the tested compounds for their binding affinity was dependent
on certain factors. (i) The first factor is the correct binding mode of a tested compound. The
compound that exerted a binding mode very close to S88 was expected to have a good
affinity against PLpro. The correct binding modes were determined according to the nature
of the interactions (hydrogen or hydrophobic bonds) with the specific amino acid residues
in the active pocket of PLpro. This factor is critical as a compound with the correct binding
mode is expected to have a higher affinity than a compound with high binding energy
having an incorrect binding mode. Therefore, the incorrect binding mode, resulting in
incorrect affinity predictions, decreases the compound’s rate of virtual screening [44,45].
(ii) Gibbs free energy (∆G binding) indicates the stability of the obtained conformation
between the tested compound and PLpro (Table 3). According to the thermodynamic
balance law, the value of ∆G is inversely proportional to the stability of the examined
molecule and indicates that binding with PLpro will occur spontaneously. In other words,
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the increase in the negative free energy of a compound (reactant) will increase the reaction
spontaneously and result in more stable conformations [46,47].
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of the same ligand (S88) in the active site of the PLpro enzyme.

Table 3. Binding free energies (calculated ∆G in Kcal/mol) of the examined compounds and S88 as a
reference compound against PLpro.

Comp. ∆G
[Kcal/mol] Comp. ∆G

[Kcal/mol]

28 −40.44 99 −39.43

41 −47.34 192 −30.85

46 −44.13 193 −44.02

47 −46.06 200 −41.31

76 −51.63 211 −37.33

87 −35.48 298 −48.46

94 −50.82 300 −33.61

98 −52.21 S88 −59.13

The molecular docking energy for compounds 76, 94, and 98 exhibited final values
of −51.63, −50.82, and 52.21 kcal/mol, respectively. These values of free energies are the
highest score indicating the spontaneity of the interactions and the stability of these com-
pounds in the active site. Moreover, compounds 76, 94, and 98 have correct binding modes
as these compounds formed many HBs with the crucial amino acid residues in the active
sites. On the other hand, compounds 193 (∆G = −44.02), 200 (∆G = −41.31), and 298 (∆G =
−48.46) showed less free energies than some of the other tested compounds but had correct
binding modes. For this reason, such compounds were selected for further investigation.

The proposed binding mode of S88 expressed a ∆G of −59.13 kcal/mol. S88 made
one HB between its amide moiety and Tyr269. Additionally, the naphthyl moiety made
eight hydrophobic interactions (HI) withAsp165, Met209, Arg167, Ala247, Thr302, Pro248,
and Pro249. The ethyl bridge was included in two hydrophobic interactions with Pro249
and Tyr265. The piperidine moiety formed two hydrophobic bonds with Tyr265 and Tyr269.
(Figure 5).
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Compound 94 showed good binding energy (∆G = −50.82) against the PLpro active
site. It formed four HBs with Lys158, Tyr274, and Arg167. Additionally, the phenyl rings
were involved in five HIs with Leu163, Tyr269, Tyr265, and Asp165 (Figure 7).



Life 2022, 12, 1407 11 of 27
Life 2022, 12, x FOR PEER REVIEW 11 of 27 
 

 

 

 

Figure 7. Cont.



Life 2022, 12, 1407 12 of 27Life 2022, 12, x FOR PEER REVIEW 12 of 27 
 

 

 
Figure 7. (A) Three-dimensional and (B) two-dimensional binding modes of compound 94 in the 
PLpro active site. 

Compound 98 revealed good fitting with a docking score of −52.21 kcal/mol. The OH 
group formed one HB with Asp303, and the methoxy group formed another HB with 
Lys158. Many HIs were observed between the tested compound and Asp165, Arg167, 
Pro249, Tyr269, Tyr265, Leu163, and Tyr274 (Figure 8). 

 

Figure 7. (A) Three-dimensional and (B) two-dimensional binding modes of compound 94 in the
PLpro active site.

Compound 98 revealed good fitting with a docking score of −52.21 kcal/mol. The
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Lys158. Many HIs were observed between the tested compound and Asp165, Arg167,
Pro249, Tyr269, Tyr265, Leu163, and Tyr274 (Figure 8).
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The top docking poses of compounds 193 and 200 (affinity values of −44.02 and
−41.31 kcal/mol), respectively, were investigated. Compound 193 demonstrated eight HIs
with Leu163, Tyr269, and Asp165 (Figure 9). The compound demonstrated two HBs with
Tyr274. In addition, it formed 12 HIs, as shown in Figure 10.
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Figure 10. (A) Three-dimensional and (B) two-dimensional binding modes of compound 200 in the
PLpro active site.

Compound 298 showed a binding mode against the PLpro active site with a binding
affinity of −48.46 kcal/mol. It was incorporated in eight HIs with Pro248, Tyr265, Leu163,
Tyr269, and Pro249 (Figure 11).



Life 2022, 12, 1407 17 of 27
Life 2022, 12, x FOR PEER REVIEW 17 of 27 
 

 

 

 

Figure 11. Cont.



Life 2022, 12, 1407 18 of 27Life 2022, 12, x FOR PEER REVIEW 18 of 27 
 

 

 
Figure 11. (A) Three-dimensional and (B) two-dimensional binding modes of compound 298 in the 
PLpro active site. 

2.4. ADMET 
ADMET studies were achieved using Discovery Studio 4.0, with remdesivir as a ref-

erence. The following descriptors were examined. (i) The ability to penetrate the blood–
brain barrier [48] (BBB), intestinal absorption [49] (HIA), aqueous solubility [50] (S), 
CYP2D6 binding [51], hepatotoxicity, and plasma protein binding [52] (PPB). The calcu-
lated properties are listed in (Table 4). All compounds showed high levels of BBB pene-
tration except molecules 28, 76, 94, 200, and 298, which displayed medium to very low 
BBB levels. All the tested molecules showed good absorption characteristics comparable 
to remdesivir, which exhibited a very low level of absorption. Moreover, the solubility of 
the tested molecules was projected to be between low and good levels except for molecule 
211, which showed a very low level. All molecules in addition to remdesivir were calcu-
lated to be inhibitors against CYP2D6 except molecules 28, 87, 94, 98, 99, 192, 200, 298 and 
300. All the tested molecules were expected to have unfavorable hepatotoxic effects except 
molecules 28, 41, and 192, which were predicted to be non-toxic. All tested molecules and 
remdesivir were expected to bind to the plasma protein with a percentage of >90%, except 
molecule 46, which demonstrated plasma protein binding <90%. (Figure 12). 

  

Figure 11. (A) Three-dimensional and (B) two-dimensional binding modes of compound 298 in the
PLpro active site.

2.4. ADMET

ADMET studies were achieved using Discovery Studio 4.0, with remdesivir as a
reference. The following descriptors were examined. (i) The ability to penetrate the
blood–brain barrier [48] (BBB), intestinal absorption [49] (HIA), aqueous solubility [50] (S),
CYP2D6 binding [51], hepatotoxicity, and plasma protein binding [52] (PPB). The calculated
properties are listed in (Table 4). All compounds showed high levels of BBB penetration
except molecules 28, 76, 94, 200, and 298, which displayed medium to very low BBB levels.
All the tested molecules showed good absorption characteristics comparable to remdesivir,
which exhibited a very low level of absorption. Moreover, the solubility of the tested
molecules was projected to be between low and good levels except for molecule 211, which
showed a very low level. All molecules in addition to remdesivir were calculated to be
inhibitors against CYP2D6 except molecules 28, 87, 94, 98, 99, 192, 200, 298 and 300. All the
tested molecules were expected to have unfavorable hepatotoxic effects except molecules
28, 41, and 192, which were predicted to be non-toxic. All tested molecules and remdesivir
were expected to bind to the plasma protein with a percentage of >90%, except molecule 46,
which demonstrated plasma protein binding <90%. (Figure 12).

Table 4. Predicted ADMET descriptors for the examined molecules and remdesivir.

Comp. BBB a HIA b Aq c CYP2D6 d Hepatotoxicity Probability e PPB f

28 c a d n 0.298 c

41 b a c i 0.39 b

46 b a c i 0.907 a

47 b a c i 0.966 c

76 e a c i 0.894 b

87 b a c n 0.735 b

94 c a c n 0.774 c
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Table 4. Cont.

Comp. BBB a HIA b Aq c CYP2D6 d Hepatotoxicity Probability e PPB f

98 b a c n 0.834 c

99 b a c n 0.847 c

192 b a c n 0.152 c

193 b a c i 0.814 c

200 c a c n 0.98 c

211 b a b i 0.874 c

298 c a c n 0.549 c

300 b a c n 0.622 c

Remdesivir e d d n 1.777 b
a BBB level, b is high, c is medium, d is low, e is very low. b HIA, a is good, b is moderate, c is poor, d is very
poor. c Aq. solubility level, a is extremely low, b is very low, c is low, d is good, e is optimal. d CYP2D6, n is a
non-inhibitor, i is an inhibitor. e Hepatotoxicity, if >0.5 is toxic, if <0.5 is non-toxic. f PPBb is >90%, c is >95%.
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2.5. Toxicity Studies

Toxicity predictions were made using Discovery Studio 4.0 software, which was
based on validated and assembled models for the following parameters: the FDA rat
carcinogenicity test [53,54], carcinogenic potentiality TD50 [55], maximum tolerated dose
(MTD) in rats [56,57], oral LD50 in rats [58], chronic LOAEL in rats [59,60], ocular [61], and
skin irritancies [61,62].

In silico testing revealed that the majority of molecules had expected low levels of
toxicity (Table 5).
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Table 5. Toxicity properties of tested molecules and remdesivir.

Comp. FDA * Rat
Carcinogenicity

TD50
(Rat) mg/kg Body

Weight/Day
MTD * LD50 * LOAEL * Ocular

Irritancy *** Skin Irritancy ***

28 s 9.571 0.050 0.939 0.077 m m

41 n 0.219 0.042 0.202 0.018 m n

46 n 0.730 0.081 1.248 0.009 m n

47 n 0.169 0.035 1.446 0.008 m n

76 n 19.216 0.153 0.362 0.150 m n

87 n 48.173 0.113 0.364 0.030 n n

94 n 8.907 0.091 9.209 0.107 m m

98 n 35.370 0.103 1.133 0.398 n n

99 m 69.077 0.240 2.040 0.301 m n

192 n 0.857 1.099 0.348 0.016 m n

193 s 1.587 0.012 0.352 0.048 m m

200 s 7.568 0.055 0.689 0.277 m n

211 s 0.604 0.013 0.245 0.001 m m

298 n 65.542 0.018 0.118 0.019 m n

300 s 13.502 0.029 0.405 0.029 n m

Remdesivir n 1.012 0.235 0.309 0.003 m m

* s is single-carcinogen, m is multi-carcinogen n is non-carcinogen. *** n is nonirritant, m is mild irritant.

All compounds were expected to be non-carcinogens except molecules 28, 99, 193, 200,
211, and 300, which were predicted to be carcinogens in the FDA rat carcinogenicity model.

Molecules 41, 46, 47, 192, and 211 showed TD50 values within range of (0.16 to
0.730 mg·kg−1/day), which were less than remdesivir (1.012 mg·kg−1/day), while molecules
28, 76, 87, 94, 98, 99, 193, 200, 298, and 300 showed TD50 values within the range of (1.58 to
69.07 mg·kg−1/day), which were higher than remdesivir.

All molecules revealed an MTD within the range of 0.012 to 0.113 g·kg−1, less than
remdesivir (0.235 g·kg−1), except molecules 99 and 192, which demonstrated MTD of 0.240
and 1.099 g·kg−1, respectively, which are higher than remdesivir.

All molecules showed oral LD50 values higher than remdesivir (0.309 mg·kg−1/day)
except compounds 41, 211, and 298, which exhibited oral LD50 values less than remdesivir
ranging from 0.118 to 0.245 mg·kg−1/day.

Excluding compound 211, all the tested molecules showed LOAEL higher than that of
remdesivir (0.003 g·kg−1), ranging from 0.008 to 0.398 g·kg−1.

Additionally, all molecules and remdesivir were expected to be mild ocular irritants,
except molecules 87, 98, and 300, which were non-irritant. On the other hand, the examined
molecules were expected to be skin non-irritant except for molecules 28, 94, 193, 211, 300,
and remdesivir, which were mild irritants.

2.6. DFT Studies

DFT parameters including binding energy [63], HOMO [64], LUMO [64], gap en-
ergy [65], and dipole moment [66,67] were studied for the most promising molecules, 76,
94, and 298, using Discovery Studio software. S88 was used as a reference. The results of
the DFT studies are summarized in Table 6 and Figures 13 and 14.

Molecules 76 and 94 showed higher values of dipole moment (1.700 and 3.582, respec-
tively) than molecule 298 (1.094).
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Table 6. Frontier molecular orbital of 76, 94, 298, and S88.

Comp. Total Energy
(Ha)

Binding Energy
(Ha)

HOMO Energy
(Ha)

LUMO Energy
(Ha) Dipole Mag Band Gap Energy

(Ha)

76 −1252.956 −9.601 −0.166 −0.070 1.700 0.096
94 −1255.298 −10.037 −0.177 −0.036 3.582 0.141
298 −1401.286 −8.702 −0.195 −0.064 1.094 0.131
S88 −1242.952 −11.181 −0.292 −0.192 3.621 0.101

2.6.1. Frontier Molecular Orbitals Analysis

Frontier molecular orbitals analysis can efficiently demonstrate active sites in addition
to determining the kinetic stability and the chemical reactivity of a molecule [68]. The
EHOMO and ELUMO of the tested molecules were computed using DMol3 implemented
in Discovery Studio software [69]. The LUMO may be engaged in a nucleophilic attack,
while the HOMO refers to the most probable site of an electrophilic attack. The HOMO
energy represents the ionization potential of a drug, while that of the LUMO describes the
electron affinity.

For gap energy, it was reported that a molecule is thought to be softer and more
chemically reactive when its energy gap is small. In addition, a molecule was assumed to
have greater chemical hardness and to be more stable when it had a large energy gap [70].
In this study, molecule 76 was found to have a low level of gap energy of 0.096 Ha, while
molecules 94 and 298 were found to have high gap energy of 0.141 and 0.131, respectively.
These findings indicate that compound 76 has higher reactivity than compounds 94 and 298.
On the contrary, compounds 94 and 298 may possess higher stability than compound 76.

For the dipole moment values, compound 94 had a dipole moment value of 3.582.
This value is nearly equal to that of S88 (3.621). The elevated dipole moment was expected
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to increase HBing, and non-bonded interactions in the compound–protein complexes were
predicted to increase the binding affinity during SARS-CoV-2 inhibition. Compounds 76
and 298 had fewer values of the dipole moment of 1.700 and 1.094, respectively. From these
findings, it can be concluded that compounds 76 and 94 have a higher chance of interacting
with the target protein than compound 298 (Table 6 and Figure 13).

As shown in Figure 13B, the HOMO spatial distributions of molecule 76 were mainly
distributed on the 3-(3,4-dihydroxyphenyl) -7-hydroxy-5-methoxy-4H-chromen-4-one moi-
ety, while those of LUMO were located on the 7-hydroxy-5-methoxy-4H-chromen-4-one
moiety (the electron acceptor zones).

The specific role of the HOMO center (3-(3,4-dihydroxyphenyl) -7-hydroxy-5-methoxy-
4H-chromen-4-one moiety) in the binding of the receptor was previously confirmed by
our docking experiments. As we noticed in Figure 13, the carbonyl group at position-4
of 4H-chromen-4-one (HOMO center) formed an H-bond acceptor with the phenolic OH
group (LUMO center) of Tyr229. Furthermore, the LUMO of the accepting species (the two
phenolic OH groups of catechol moiety) formed two H-bond donors with the HOMO of
the donating species (OH group of Thr302 and OH group of Tyr274).

2.6.2. Molecular Electrostatic Potential Maps (MEP)

MEP is a very helpful technique for understanding the 3D charge distributions over
a molecule.

In MEP, the electronegative atoms are highlighted with red and can be acceptors in
H-bonding interactions. On the other hand, the electron-poor atoms are highlighted in blue
and are incorporated into H-bonds as donors. Finally, the neutral atoms are highlighted
from green to yellow and incorporated in HIs [71].

The MEP map of molecule 76 shows that the negative potential sites are on oxygen
atoms (seven red patches) and the positive potential sites are around the hydrogen atoms
(six blue patches). This indicates that molecule 76 has seven positions available for H-
bonding acceptors and six positions suitable for H-bond donors. This map defines the
region in which the molecule can have non-covalent interactions (Figure 14).

The presented study preferred glycyrrhizoflavone (76) as the most relevant inhibitor
of human coronavirus PLpro. Glycyrrhizoflavone is a flavonoid that has been isolated
from licorice and Glycyrrhiza glabra roots [72]. Glycyrrhisoflavone exhibited potent antiviral
activity against the human immunodeficiency virus by inhibiting giant cell formation in
the infected cells and inhibiting viral transcription [73,74].

3. Conclusions

Several computational filtration methods (similarity assessment, fingerprints check,
docking, ADMET, toxicity, and DFT) were carried out on 310 metabolites of natural origin
that were reported as antivirals against PLpro, (PDB ID: 4OW0) and its co-crystallized lig-
and S88. The experiments predicted a high degree of binding between glycyrrhizoflavone
(76) and PLpro. Accordingly, the potential of glycyrrhizoflavone to be an inhibitor against
human coronavirus PLpro inhibitor is highly expected. More studies must be carried out
on such a promising drug to affirm its inhibitory potential against PLpro.

4. Method
4.1. Molecular Similarity Detection

Was applied using Discovery Studio 4.0 software. Details have been discussed in
detail in the Supplementary data.

4.2. Fingerprint Studies

Were applied using Discovery Studio 4.0 software. Details have been discussed in
detail in the Supplementary data.
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4.3. Docking Studies

Were applied using Discovery Studio 4.0 software. Details have been discussed in
detail in the Supplementary data.

4.4. ADMET Analysis

Was applied using Discovery Studio 4.0 software. Details have been discussed in
detail in the Supplementary data.

4.5. Toxicity Studies

Were applied using Discovery Studio 4.0 software. Details have been discussed in
detail in the Supplementary data.

4.6. DFT Studies

Were applied using Discovery Studio 4.0 software. Details have been discussed in
detail the Supplementary data.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/life12091407/s1. Chemical structures, names, molecular formulas
of the examined compounds, detailed methodology and toxicity reports.
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