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A B S T R A C T

Heparin has served as a mainstream anticoagulant for over eight decades. Clinically heparin-derived com-
pounds significantly contribute to prevention and treatment of thrombotic events complicated in numerous
medical conditions such as venous thromboembolism, coronary artery disease and extracorporeal circulation
processes. Moreover in recent years, various off-labeled efficacious potentials of heparin beyond anti-coagu-
lation are dramatically emerging, and increasingly investigated in clinical studies. Herein this article presents
a comprehensive update on the expanded applications of heparin agents, covering the pregnant clinic, respi-
ratory inflammation, renal disease, sepsis, pancreatitis, among others. It aims to maximize the beneficial pro-
file of a pharmaceutical product through medical re-purposing development, exemplified by heparin, to
address the unmet clinical needs of severe illness including coronavirus disease 2019 (COVID-19).
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Introduction

Representing an outstanding group of naturally generated poly-
saccharide, heparin was termed due to its original isolation from liver
tissue one century ago. To date, heparin has been serving as a main-
stream anticoagulant medicine in the clinical practice for eight deca-
des since the first human application against thrombotic disorders [1,
2]. Biochemically, the fundamental structure of heparin consists of
repeating disaccharide units of uronic acids (L-iduronic or D-glucur-
onic acid) and N-acetyl-D-glucosamine [3]. Depending on a contained
unique pentasaccharide sequence, heparin exerts anticoagulant
activity upon binding with antithrombin, in turn to suppress activa-
tion of factor Xa and IIa in the coagulation cascade [1, 3].

The discovery and clinical application of heparin have signifi-
cantly improved the outcomes in numerous aspects of serious medi-
cal conditions. In this light, several heparin-based agents, such as
unfractionated heparin (UFH) and low molecular weight heparin
(LMWH), are included in World Health Organization’s (WHO) List of
Essential Medicines [4]. UFH is the preliminary product usually proc-
essed from porcine or bovine intestine tissues in pharmaceutic indus-
try, and has various molecular lengths ranging from 2000 up to
40,000 Dalton (Da). On the other hand, with molecular weights below
7000 Da LMWH compounds are derived from UFH through depo-
lymerization reactions facilitated by certain chemical and enzymatic
reagents [1, 4]. Pharmacologically, LMWH medications have better
bio-availability, higher anti-factor Xa/IIa activity ratios, and mini-
mized risks of hemorrhage and heparin-induced thrombocytopenia
(HIT), compared to those of UFH [4−6].
As a classic anticoagulant, heparin family drugs are typically uti-
lized to prevent or to treat thrombotic pathogenesis-linked medical
conditions such as pulmonary embolism, coronary artery disease,
and potential clotting events in hemodialysis for renal failure [1, 7].
Additionally, heparin represents a widely used surface coating agent
to improve blood compatibility of numerous medical devices includ-
ing cardiopulmonary bypass, extracorporeal circulation, vascular
stent, among others [8]. Interestingly in recent years, heparin treat-
ment is going beyond these traditional indications and entering into
a broad spectrum of expanded clinical fields, inspired by the insights
from advanced polysaccharide science and contemporary disease
biology [1, 4, 9]. Herein, this article thus highlights an emerging pro-
file of novel medical applications for heparin-based medications
(Table 1).

The pregnant clinic

It has been recently noted that, in addition to the well-known
anticoagulant efficacy, heparin can also orchestrate an extra-array of
biological effects including anti-inflammation/anti-complement, vas-
cular endothelial protection, trophoblast promotion and apoptotic
inhibition [9, 10]. As such, this functional profile appears helpful for
certain obstetric patients to improve the clinical outcomes through
alleviating the hyper-coagulant state, modulating micro-vascular/
placental biology, among other modes [10]. To date while the
expanded indications in this perspective are yet to be corroborated
by relevant large-scale clinical trials for regulatory approval in terms
of the drug labeling update, there has been a professional consensus
that heparin agents can be used as an empirical approach to treat or
prevent early pregnancy complications such as spontaneous abortion
[10, 11]. In this regard, prophylactic management with LMWH of
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Table 1
Updated application profile of heparin products.

Mode Medical usage References

Deep vein thromboembolism [1, 3]
Unstable coronary artery disease [1, 3]

Anticoagulant Extracorporeal circulation processes [4, 7]
Thromboprophylaxis in perioperative period [1, 4]
Medical device intervention [4, 8]
Coating of bio-materials contacting blood [8]
Spontaneous abortion [10, 11]
Chronic obstructive pulmonary disease [16, 17]

Comprehensive Diabetic nephropathy/nephrotic syndrome [20, 21]
Sepsis/severe COVID19 [26, 30]
Pancreatitis [31, 32]
Burning wound (topic use) [48]
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standardized dosage until abortion or delivery has been demon-
strated to significantly raise the live-birth rates (by 20%~30%) in
patients suffering from recurrent miscarriage, and particularly in the
cases with antiphospholipid antibody or methylenetetrahydrofolate
reductase gene polymorphisms [11, 12]. Moreover, LMWH was also
revealed to dramatically improve pregnancy events and live-birth
rates upon in vitro fertilization (IVF) in women with recurrent
implantation failure and thrombophilic disorders [13]. In these sce-
narios, the underlying comprehensive mechanisms included prevent-
ing microthromboses, facilitating trophoblast differentiation/
migration, and up-regulating the level of free insulin-like growth fac-
tor [14].

Chronic respiratory inflammation

Heparin medicine can confer certain anti-inflammatory effects
through several mechanisms of actions such as regulating cytokine/
chemokine expression, suppressing immune cell infiltration and par-
ticularly minimizing obstructive mucous secretion [3, 15]. These
inflammatory-modulating roles of heparin in synergy with its anti-
coagulant activity thus come up with an exceptional set of therapeu-
tic potentials for managing chronic obstructive pulmonary disease
(COPD). In this light, adding LMWH to the existing treatment was
revealed to improve blood coagulation parameters of patients with
COPD, including elongated prothrombin time (PT)/activated partial
thromboplastin time (APTT) and reduced blood viscosity/D-dimer/
fibrinogen levels, compared to those of the subjects on conventional
therapy only. Meanwhile, these combined medications were able to
result in higher forced expiratory volume in 1 s/forced vital capacity
(FEV1/FVC), oxygen saturation of blood (SaO2), and lower partial
pressure of carbon dioxide (PaCO2) [16, 17]. On the other hand, it has
been noted that inhaled heparin or its derivatives confer the thera-
peutic efficacy of relieving respiratory hyper-reactivity disorders
such as asthma, through diminishing histamine and leukotriene-
induced bronchial constriction [9, 15]. Moreover, LMWH was discov-
ered to be capable of down-regulating the release of interlukine (IL)-
4, IL-5, IL-13 and tumor necrosis factor (TNF)-a from the peripheral
blood mononuclear cells (PBMCs) of asthmatic patients [18]. Thus, it
is conceivable that pulmonary medicine can evolve with including
heparin agents to circumvent hyper-coagulation and inflammation.

Renal disease

Physiologically, the glomerular capillary filtration membrane con-
trols the macro-molecule filtration based upon molecular weight,
charge, and shape; in consistent, the ionic charge of the glomerular
basement membrane (GBM) is characterized by containing highly
sulfated glycosaminoglycan heparan (SGH) [19]. Diminished SGH in
GBM due to up-regulated heparanase in certain renal pathology is
prone to increase permeability to negatively charged
2

macromolecules such as albumin, consequently resulting in protein-
uria [9, 19]. Interestingly it has been proposed that LMWH may serve
as an in vivo heparanase inhibitor to restore CSH dominance in GBM,
thus alleviating the leaking of plasma protein into urine. In this
regard without affecting hemodynamic physiology, enoxaparin and
an oral LMWH (sulodexide) were revealed to significantly minimize
the severity of proteinuria in the patients with diabetic nephropathy,
but not in glomerulonephritis [19, 20]. Likewise, LMWH was noted
capable of facilitating clinical remission of patients with steroid-sen-
sitive nephrotic syndrome through significant reducing proteinuria,
urinary glycosaminoglycans and nephrotic periods [21, 22]. Regard-
ing the therapeutic mechanisms in this case, besides the above hep-
aranase inhibitory mode, another possibility is suppressing the
hyper-active elastase which can degrade subendothelial matrix thus
causing glomerular damage and proteinuria [21]. Of note, whereas
with an improved profile of adverse reaction LMWH has been more
popularly utilized in managing relevant medical conditions recently,
UFH is still preferred in patients with renal failure due to its shorter
half life time and better reversibility by protamine for minimizing
potential drug-accumulated toxicities [3, 23].

Sepsis

With the high mortality, sepsis remains a critical medical condi-
tion that needs intensive care. Although antibiotic agents serve as an
efficacious means for controlling the etiological microorganisms, an
official strategy of managing the induced patho-physiology during
sepsis, septic shock in particular, is yet to be established [24, 25].
Anyhow in regard to the core pathogenesis, it has been recognized
that the interactions between inflammatory factors and endothelial
injury activate the coagulating cascade to form micro-thrombosis,
consequently resulting in organ damages [24]. As such to cope with
this comprehensive challenge, heparin is emerging as an attractive
medicine owing to the functional profile of pleiotropic effects about
clotting inhibition, endothelial protection and immune modulation
[3, 9]. In corollary through a multi-center retrospective clinical inves-
tigation, heparin was utilized to be an effective adjuvant therapy for
sepsis and significantly diminished the mortality in a subset of
patients with disseminated intravascular coagulation (DIC) dynami-
cally over 3 months following the treatment [25]. Consistently in par-
allel, controlled clinical trials of anticoagulant versus placebo
demonstrated that prophylactic treatment with UFH or LMWH (up to
15,000 units/day, intravenously) significantly reduced 28-day mor-
tality (from 38% to 30%) in the patients with sepsis or severe sepsis
[26]. Moreover, while conferring a better survival benefit and
improving coagulant parameters for the patients with sepsis, heparin
was also noted to restore the protective proteoglycans on endothelial
surface, and to down-regulate the levels of serum inflammatory cyto-
kines such as IL-6 as well as TNF-a [24,27,28] Additionally, sepsis
was observed to be the most frequent complication in patients with
coronavirus disease 2019 (COVID-19), of which aberrant coagulating
function such as elevated D-dimer was noted as one of the risk factors
for poor prognosis [29]. Impressively, treatment with LMWH
appeared to improve the clinical outcomes of COVID-19 patients,
upon down-regulation of D-dimer level and improvement of the
immune profile [30].

Pancreatitis

As a complicated inflammatory condition, acute pancreatitis (AP)
presents various degrees of clinical severity, and severe AP is associ-
ated high mortality due to systemic pathology without specific treat-
ments. While AP pathogenesis is yet to be well delineated, the
comprehensive interactions has been noted between inflammatory
factors, pro-coagulant pathways and vascular endothelial injury [31,
32]. To cope with these multidimensional challenges, the functional
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profile of heparin can in this case confer an exceptional set of thera-
peutic efficacy covering anti-inflammation, anti-coagulation and
endothelial protection [4, 9, 31]. In particular, heparin also contrib-
utes to suppressing activity of digestive enzymes (trypsin and chy-
motrypsin), an additional key mediator in early AP pathogenesis [31].
Clinically in corollary, LMWH has been demonstrated to significantly
improve the prognosis of severe AP without increasing bleeding
events, including reducing hospital stay, mortality and systemic com-
plications [32, 33]. Of note, LMWH strikingly diminished pancreatic
necrosis development to 3.1% from 22.6% of the patients, which rep-
resents a phenotype of organ damages resulting from TNF-a. Besides,
heparin in synergy with insulin is particularly efficacious on manag-
ing hypertriglyceridemia-induced AP, since heparin binds with lipo-
protein lipase (LPL) and releases LPL from tissues into the blood to
catabolize circulating triglycerides [34, 35].

Cancer

Neoplastic disorders are known to be epidemiologically associ-
ated with a higher co-morbidity of venous thromboembolism (VTE).
The incidence of VTE is elevated by up to 6 fold in patients with can-
cer compared to those without tumor, and vice versa oncologic
patients represent approximately 20% VTE cases newly diagnosed
[36]. In terms of pathogenesis, cancer-linked hyper-coagulating state
appears directly resulting from up-regulated tissue factor expression
which thus leads to constitutive activation of the extrinsic coagulant
pathway. Meanwhile, development of cancer-associated VTE can also
be indirectly facilitated by several systemic factors including platelet/
endothelial activation and pro-inflammatory cytokines [36−38].
Interestingly, while serving as an well-established anti-coagulant
medication for preventing and managing cancer-associated VTE, hep-
arin has been proposed to potentially go beyond this aspect and to
exert certain anti-neoplasm effects through inhibiting angiogenesis,
metastasis and P-glycoprotein-mediated drug resistance [3, 4]. Nev-
ertheless, the results of clinical studies with heparin regarding thera-
peutic efficacy against malignancies have so far been controversial.
Although LMWH was revealed to significantly improve overall sur-
vival (OS) of 1 and 2 years in neoplastic patients with chemotherapy
[39], a prophylactic investigation showed that adding dalteparin to
the standard therapy did not confer a survival benefit to lung cancer
patients [3]. Anyhow, there is a medical consensus of using anti-coag-
ulant medications to minimize the morbidity of cancer-associated
VTE [4, 39].

Thrombotic disorders during cancer progressing result from not
only neoplastic pathogenesis-associated coagulating pathways, but
also the oncologic medications including chemotherapy, hormonal
treatment, and targeted drugs implicating both small chemical com-
pounds and monoclonal antibodies [37, 40, 41]. Recently with the
clinical advantages of non-painful administration and improved ther-
apeutic window novel oral anticoagulants (NOACs) such as apixaban
and dabigatran are emerging as an attractive wave of pharmaceutical
options for managing hyper-coagulant pathology [41, 42]. Whereas
emerging oral anticoagulants are increasingly utilized to prevent and
to treat thrombotic disorders including cancer-associated VTE in
numerous clinical settings, elevated bleeding events of NOACs
(1.904-fold higher hazard ratio) have been noted versus those of
LMWH particularly in patients with digestive tract tumors [42]. It
thus appears that heparin agents should still be chosen over NOACs
for anticoagulant intervention in cases of gastrointestinal neoplasm
[42, 43]. Besides, NOACs are known to be the substrates of cyto-
chrome P450 C3A4 and P- glycoprotein (P- gp) which significantly
contribute to the processing trajectory of pharmacokinetics [43, 44].
Of note, numerous oncologic medications including cytotoxic and
targeted compounds have been revealed to either induce or inhibit
C3A4 and P-gp [43, 45], raising a challenging issue of drug-drug inter-
actions (DDI) to consequently affect efficacy and safety of NOACs in
3

the clinic. It is thus plausible that heparin agents represent better
options than NOACs for anticoagulant intervention in cancer patients
with anti-neoplastic medications, in regard of the minimized DDI. As
such, the relevant professional organizations including the American
Society of Clinical Oncology and the European Society of Medical
Oncology have recommended parenteral anticoagulants to be the
first-line medications for the treatment and prevention of VTE in
patients with active cancer, whereas NOACs can be considered for
early maintenance and long-term therapy in patients with VTE and
stable neoplasms being not on anticancer drugs [46].

Perspective

Since being discovered as a naturally-derived polysaccharide
compound, heparin has gone through a long journey of life-saving for
eight decades, principally serving the anticoagulant purpose in most
medical fields [1, 3]. Beyond anti-coagulation in recent years, medica-
tions of heparin family are noted to confer a broad variety of thera-
peutic effects systemically on abortion, sepsis, certain types of
inflammation in several organs, among others [4, 15]. Meanwhile,
heparin agents can also substantially contribute to local lesion treat-
ment of the patients, including intra-cameral infusion to minimize
the inflammatory response upon cataract surgery [47], and tissue irri-
gation of superficial skin burns to improve the wound healing param-
eters [48]. Additionally in interest of medical device practice, a
heparin-coated extracorporeal circulating system was noted to
down-regulate the inflammatory signs and bio-markers following
cardiopulmonary bypass surgery [49]. In relevance, the heparin-
coated ventricular implanting materials were revealed to diminish
the risk of HIT comparing to those with systemic heparin application
[50]. Impressively, an ex vivo blood cleaning device containing hepa-
rin- attached polyethylene beads has just been approved to remove
the pathogen and inflammatory cytokines from the blood circulation
of patients with COVID-19 [51].

While contemporary clinical studies have revealed a greater pic-
ture regarding the therapeutic potentials of existing heparin medica-
tions beyond anti-coagulation, the fundamental innovation of
structure-activity relationship is raising a wave of various heparin-
like compounds with diminished anticoagulant function to exert
novel biologic effects. Of note, these non-anticoagulant heparin ana-
logues can confer an optimized therapeutic window, particularly in
the medical situations for which anti-coagulation is not needed [4, 9].
Interestingly in this regard, certain naturally derived heparin ana-
logues were identified to be capable of inhibiting crucial pathogene-
sis pathways of major neuro-degenerative disorders such as
Alzheimer’s and Parkinson’s diseases [4, 52]. Furthermore, several
non-anticoagulant heparin derivatives resulting from the structural
modifications have come up with the encouraging performance in
clinical studies [9, 53]; for instance, the 2-O, 3-O desulfated heparin
CX-01 has been demonstrated to enhance the complete remission
and hematological recovery of acute myeloid leukemia with chemo-
therapy upon suppressing CXC chemokine CXCL12-mediated cell
sequestration within marrow in a pilot clinical investigation [54]; in
parallel, the N-acylated glyco-split heparin SST0001(Roneparstat)
was identified as a potent inhibitor for heparanase and receptor tyro-
sine kinases, thus to confer notable benefits of stable disease to
advanced multiple myeloma in a phase I clinical trial [53, 55]. Hence,
deciphering the iceberg of heparin biology and chemistry has just
advanced beneath the surface of water, where novel therapeutic
potentials are yet to be translated from the cutting-edge scientific
discoveries.
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