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Abstract: Baculoviruses can persist in insect host organisms after infection and may be vertically
transmitted to the next generation, in which they may be reactivated. The goal of the present study
was to compare the efficiency of the vertical transmission of high- and low-virulence strains and
the subsequent reactivation of Lymantria dispar multiple nucleopolyhedrovirus (LdMNPV) in the
offspring of Lymantria dispar L. adults who survived after viral infection. As a result of parental
infection, the fecundity of survived females, pupae weight, and fertility were significantly different
compared to the untreated insects. However, differences in these parameters between high- and
low-virulence strains were not observed. The prevalence of virus strains in the offspring measured by
quantitative polymerase chain reaction also did not differ. When the larvae reached the fourth instar,
they were starved to activate the vertically transmitted virus. The frequency of virus activation in
the experiment was not dependent on the virulence of the virus strains. These results are helpful
for understanding the strategy of virus survival in nature and for the selection of the most effective
strains with transgenerational effects in the years following pest treatment.
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1. Introduction

The causes of cycles in insect pest populations have long been a major focus in ecological
research [1,2]. Among the many factors affecting the cycles of insect pest populations, baculoviruses
occupy an important role [3,4]. Specifically, baculoviruses are important natural enemies of many
lepidopteran species and have been developed as biological control agents for a range of pests in
agriculture and forestry [5–7]. They are generally highly pathogenic and infect host larvae during
feeding [8]. Nucleopolyhedrovirus (NPV) diseases involve the production of millions of occlusion
bodies (OBs) containing occlusion-derived virions [9] that are visible under a light microscope.
Upon host death, liquefaction occurs and the external cuticle of the cadaver ruptures, resulting in the
liberation of OBs. This leads to the contamination of plant substrates (including leaves), where OBs
may be horizontally transmitted to healthy larvae [10]. Virus-induced mortality is observed at the
larval and pupal stages and is never observed at the adult stage.

It is known that baculoviruses can be transmitted not only horizontally but also vertically.
Horizontal transmission is thought to be a major route of baculovirus transmission [11]. Vertical transmission
of baculovirus occurs through the transovarial and transovum routes [10,12]. Transovarial transmission
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involves virus passage to offspring embryos within the eggs, whereas the transovum route involves
contamination of the egg surface with viral particles during the oviposition process that infect the
neonate larvae when they ingest the chorion during hatching. In order to methodically divide means
of vertical transmission, the surfaces of eggs are usually decontaminated using disinfectants [13,14].
It was found that the external disinfection of eggs reduces the virus prevalence of offspring of many
insects [12] and is regularly used during insect rearing to reduce the risk of epizootics of baculovirus in
laboratory colonies. The development of technologies such as standard polymerase chain reaction
(PCR) and quantitative PCR (qPCR) has allowed the role of transovarial transmission of baculovirus
and its influence on the dynamics of the host population to be evaluated [15–18].

The horizontal and vertical types of transmission strategies generally exclude one another because
a virus with high virulence kills the host prior to the adult stage. This mean that the ability for
vertical transmission will be selected during natural selection in high virulent strains [4]. For this,
vertically transmitted strains should possess low virulence to be effectively transmitted to the next
host generation by way of surviving adults. Low virulence of the virus is associated with a covert
infection that does not have any signs of lethal NPV disease [12,17]. There are two types of covert
infection: (i) persistent infection that involves low levels of virus replication in the host cell and (ii)
latent infection wherein the virus is essentially dormant. The first type of covert infection has been
proven for baculoviruses [15,19]. The second type has not been proven for baculoviruses, although it
has been demonstrated for other viruses [20]. These types of covert infections can be activated in
virus-harboring hosts and pass to overt infections by exposure to physiological stresses such as high
host densities, high relative humidity, starvation, food quality, the presence of other pathogens leading
to death, and horizontal transmission [21–26]. The presence of a covert infection was proposed to
explain the spontaneous outbreaks of baculovirus epizootics in apparently healthy insects [3,27].
Nevertheless, how the formation of covert infection occurs in insects and the duration in which a
covert infection can be activated by stress factors remain poorly understood.

Lymantria dispar multiple nucleopolyhedrovirus (LdMNPV) is a highly pathogenic, host-specific
Alphabaculovirus that has been used as the basis of biological insecticides for the control of the gypsy
moth, Lymantria dispar L. (Lepidoptera: Erebidae) [28,29]. To date, many different geographic strains
of LdMNPV have been genetically characterized [30–32] and biological activity against gypsy moth
larvae has been quantified [10,33–36]. It has been found that strains may differ significantly in terms of
virulence. For example, the strains of LdMNPV (LdMNPV-45/0) isolated from Northern American
populations of L. dispar possess a more than 10-fold higher potency over three LdMNPV (LdMNPV-27/0)
strains isolated from a continental Asian (Western Siberia) host population [36]. In addition, a previous
study demonstrated that surviving L. dispar individuals that consumed OB could vertically transmit the
virus to offspring and were detected in the following two generations by PCR [37]. We hypothesized
that a low-virulence strain has an advantage in its capability of being transmitted vertically to the
next generation when compared to a highly virulent strain. The primary goal of the present study
is to estimate the prevalence of the vertical transmission of strains that significantly differed in their
virulence after virus inoculation of parents. We also considered the capability of these strains to be
activated as an overt infection in the next generation using starvation as the triggering factor for
virus activation [23,24]. Additionally, we compared the debilitating effects of virus strains on the
performance of parents that survived after treatment.

2. Materials and Methods

2.1. Insects and Virus

The egg masses of diapausing insects were collected in the Novosibirsk region (Western Siberia;
54.33◦ N, 81.13◦ E) in autumn 2016 and stored in a refrigerator at 2 ◦C. The population of L. dispar was
at the rising phase of population dynamics. The egg masses were mixed, and the result used as a
single stock for treatment (more details in Section 2.2). The stock was estimated on the prevalence
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of covert LdMNPV infection in the egg masses of host populations by qPCR. Ten pooled samples
of L. dispar eggs containing 10 eggs per pool were randomly chosen from the mixed egg masses for
the analysis. In total, 100 eggs were analyzed. Total DNA was extracted from each egg using the
phenol–chloroform method [38] with some modification. To eliminate possible contamination of
the egg surface of virus by transovum route we placed each egg in a microcentrifuge tube (1.5 mL)
with 1 mL of 1% sodium hypochlorite for 10 minutes followed by washing with sterile water [13].
In addition, the eggs were kept under ultraviolet light for the same time with shaking [14] for the
degradation of viral DNA on the eggs’ surface. Next, each egg was mechanically homogenized
with a pestle in a lysis solution containing guanidine isothiocyanate for DNA extraction (kit C-8879;
VECTOR-BEST, Russia). A fragment of the polyhedrin gene was used as the target sequence for
detecting the presence of LdMNPV DNA in the samples. The amplification reactions for the
analysis of the gypsy moth NPV polyhedrin gene contained 50 nM of primer 1, 50 nM of primer 2,
DNA at 500 ng/25 µL at the final volume, and the reaction mixture HS-qPCR Mix SYBR (Biolabmix,
Novosibirsk, Russia). The reaction conditions were five minutes at 95 ◦C, 40 cycles of 30 s at
95 ◦C, and one minute at 60 ◦C, with a melting curve of 60 ◦C to 95 ◦C. The primers for the gypsy
moth NPV polyhedrin gene were LdPH1268-F 5’-GCACTTCCTCAACTCGGTCA-3’ and LdPH1394-R
5’-CGTTTAGTACGCCGGTCCTT-3’ (Primer-BLAST; National Institutes of Health, Bethesda, MD, USA).
Viral DNA detection was conducted using SYBR Green on a CFX96 (Bio-Rad Laboratories, Hercules,
CA, USA). The sensitivity of the reaction was assessed using 2-fold serial dilutions of pure virus DNA
with a known concentration. The most reliable and repeatable limit of detection was equivalent to 3
viral genome copies of LdMNPV. qPCR detection did not reveal the amplification of LdMNPV-specific
DNA fragments in any tested samples of stock L. dispar eggs. Thus, the mixed stock of L. dispar was
considered to be free from endogenous virus or to have an extremely low virus prevalence.

In spring 2017, the eggs of the stock were sterilized using 1% sodium hypochlorite. Then, the eggs
were placed in a Petri dish with 100 eggs each. The Petri dishes were kept under thermostat at a
constant temperature (28 ◦C) for 48 hours for egg hatching. Next, neonate L. dispar were placed in
plastic containers (100 individuals/20 L container) and fed with the leaves of cut branches of silver birch
Betula pendula Roth. The insects were reared under laboratory conditions at a constant temperature
(23 ◦C) and in a natural daylight regime. Then, insects were used for the treatments.

2.2. Virus Treatments and the Life-History Traits of Surviving Parents

Larvae (1 day after fourth instar molting) were infected with two strains of LdMNPV from the
collection of the Laboratory of Ecological Physiology of the Institute of Systematics and Ecology of
Animals (Novosibirsk, Russia): strain 45/0 (Springfield, MA, USA; 42.15◦ N, 72.49◦ W), kindly given by
Dr John Podgwaite (USDA Forest Service) and strain 27/0 (isolated in the Novosibirsk region, Russia;
55.14◦ N, 75.52◦ E).

To initiate infection, groups of 250 fourth instar larvae were allowed to eat leaf discs (dia = 8 mm)
containing a dried drop of suspension of 4 × 104 OBs/disc for LdMNPV-45/0 and 2 × 105 OBs/disc
for LdMNPV-27/0 as described in detail by Akhanaev et al., 2017 [39]. The doses used significantly
differed for the low- and high-virulence strains. Based on previous studies, these doses of OBs were
designed to kill approximately 50% to 60% of the insects. One additional group of larvae consumed
leaf disc with water as untreated insects. Only larvae that entirely consumed their leaf discs within
12 hours were included in the subsequent bioassay. To exclude horizontal transmission, the infected
larvae were reared individually in plastic containers (125 mL) until death or pupation.

Once the adults emerged from surviving pupae, they were moved into plastic containers (1000 mL)
(1♀:1♂) with filter paper for oviposition. Males and females from the same viral strain treatment
were used. After mating and oviposition, egg masses were collected and marked to indicate them as
belonging to parental pairs of adults. The following life-history traits were compared for those adults
that survived OB treatment between treated and untreated insects: larval development time (from egg
hatching to pupation), pupal weight, duration of the pupal stage, sex ratio, fecundity, and fertility.
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Since females of L. dispar have clear sexual dimorphism (e.g., females have one additional larval stage,
different weight), the analysis was performed separately between males and females. The collected egg
mass was kept at room temperature for two months for postembryonic development. Then, the eggs
were moved to a refrigerator at 2 ◦C for winter diapause. In the following year, the offspring were
used for estimating success transmission of the virus.

2.3. Estimation of the Transmitted Virus in Offspring

To estimate the prevalence of transmitted LdMNPV infection in the offspring, we used the qPCR
technique. For this, we randomly selected 5 eggs from each egg mass laid by females that survived after
infection. Total DNA was extracted from each egg individually (n = 320) and analyzed as described
in Section 2.1.

Separately, another pool of eggs from the same egg masses described in the previous paragraph
was used to examine the capability of vertically transmitted LdMNPV infection to its activation.
After overwintering, each egg mass from surviving parents was sterilized for the elimination of
LdMNPV from egg surfaces using disinfectant (see above). The offspring were reared under laboratory
conditions. When larvae reached the fourth instar, they were exposed to starvation to test for possible
activation of the transmitted virus. Previously we showed that starvation is an effective stress-factor
for the activation of covert to overt infection [23,24]. To do this, the larvae of second generation
(i.e., the next generation after virus infection) were placed in individual plastic containers (125 mL) and
the offspring of each family were divided into two lines. The first line continued to feed on leaves of
the host plant until pupation (without starvation), while the second line of larvae was starved for three
days to activate the vertically transmitted virus. In summary, 375 larvae of LdMNPV-45/0 and 200
larvae of LdMNPV-27/0 were starved and the same amount were used as untreated insects. After three
days of starving, feeding was resumed. Mortality was registered daily until all insects either died or
pupated. All dead larvae were checked for viral disease using light microscopy (Axioscope 40 Carl
Zeiss, Germany) to determine the presence of OBs.

2.4. Statistical Analysis

Mortality of host treatments was analyzed using the generalized linear model with a binomial
distribution and a logit link function (GLM). As no untreated insects died of virus infection, no correction
factors needed to be applied. Non-viral deaths, predominantly fungal, did occur at a very low level
(<1%) late in the assay. Data on the influence of the virus on the life history of surviving parents and
reproduction were evaluated with the Shapiro–Wilk W test. Non-normally distributed data were
analyzed with the Kruskal–Wallis test, followed by Dunn’s post hoc test. Normally distributed data
were analyzed by one-way ANOVA, followed by Tukey’s post hoc test (only for data of fertility).
Data of median development time of pupae were analyzed using a nonparametric Mann–Whitney U
test between virus strains.

A comparison of effects test of the vertically transmitted virus in the next generation between low-
and high virulence strain treatments was conducted by GLM. Data were analyzed using the program
PAST 3.0 [40] and statistical programming language R [41].

3. Results

3.1. Virus Treatment of the Stock Lymantria Dispar Population and the Life-History Traits of Surviving Parents

Host survival was severely reduced by baculovirus infection (χ2 = 140.1, df = 1, p < 0.0001).
The percentages of NPV mortality were 49.2% for LdMNPV-45/0 and 63.5% for LdMNPV-27/0.
We observed that the mortality caused by LdMNPV-45/0 was lower and the difference was statistically
significant as compared with LdMNPV-27/0 (χ2 = 146.8, df = 1, p < 0.0001). This difference was the
result of different viral loads for different strains in which we tried to equalize the induced mortality of
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the hosts. All dead larvae were characterized by typical signs of polyhedrosis following infection by
both viral strains.

The larva development time was longer for larvae of both sexes that survived the OB-treated when
compared to untreated insects (males: H2, 271 = 74; p < 0.001, females: H2, 299 = 71.2, p < 0.001, Table 1).
Moreover, a significant difference was found in the duration of larval development between strains
(Dunn’s test, p < 0.05), although differences in absolute values were as low as 1 day. The duration of
the pupal stage was not significantly affected for both sexes by OB treatment (male: Mann–Whitney
U = 2692.5, n = 164, p = 0.923; female: Mann–Whitney U = 2624, n = 165, p = 0.065). Pupal weight
was significantly higher among the survivors of OB treatment when compared to in the untreated
insects (H2, 557 = 61.1, p < 0.001). The surviving pupae after LdMNPV-27/0 were heavier than those
surviving after LdMNPV-45/0 infection (Dunn’s test, p < 0.05). The sex ratio of survived adults did
not differ significantly between strains (p > 0.05), although the proportion of males was lower in the
untreated insects when compared with the OB-treated insects (p < 0.05). The fecundity of parental
females was reduced by up to 30% in OB-treated insects when compared to the untreated insects
(H2, 54 = 22.1, p < 0.001), independently of virus strains (Dunn’s test, p > 0.05). Finally, fertility as
measured by the proportion of eggs that successfully hatched was significantly lower in OB treatments
than in the untreated insects (F2, 44 = 11.2, p < 0.05) and did not differ between virus strains (Tukey’s test,
p > 0.05, Table 1).
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Table 1. Summary of effects of Nucleopolyhedrovirus (NPV) treatment on survivors of Lymantria dispar.

Cases

Median Development Time, Days
Mean ± SE

Pupal Weight, g
Sex Ratio,
% of Male

Mean ± SE
Fecundity, Egg

Mean ± SE
Fertility, %

Larvae Pupae

Male Female Male Female

LdMNPV-45/0 31
(n = 119) C

34
(n = 93) C

12
(n = 119) A

11
(n = 93) A 1.06 ± 0.03 (n = 215) C 64.6 (n = 113) B 129.5 ± 16.6 (n = 29) B 37.4 ± 4.8 (n = 26) B

LdMNPV-27/0 33
(n = 41) B

35
(n = 66) B

13
(n = 45) A

11
(n = 72) A 1.18 ± 0.04 (n = 114) B 63.8 (n = 72) B 110.2 ± 18.1 (n = 15) B 43.4 ± 7.7 (n = 15) B

Untreated insects 30
(n = 108) A

32
(n = 140) A NA NA 0.82 ± 0.01 (n = 248) A 44 (n = 248) A 429.2 ± 56.2 (n = 10) A 91.6 ± 2 (n = 6) A

Identical letters indicate no significant differences among cases (Dunn’s and Tukey’s post hoc test: p > 0.05), NA – Not Available.
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3.2. Estimation of the Transmitted Virus in Offspring

The prevalence of the vertically transmitted virus in eggs varied depending on the family of
survivors (χ2 = 69.8, df = 26, p < 0.001). The mean percentage of offspring positive for viral DNA
did not exceed 30% in the OB-treated insects and did not differ significantly between virus strains
(χ2 = 0.35, df = 1, p = 0.552, Figure 1).
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Figure 1. Prevalence of covert viral infection in Lymantria dispar eggs after vertical transmission of low
(LdMNPV-27/0) and high (LdMNPV-45/0) virulent strains via one host generations.

According to our model, the starvation activated vertically transmitted virus from OB-treated
parents in the next generation (χ2 = 30.6, df = 1, p < 0.001, Figure 2) while starvation did not cause
LdMNPV-induced mortality in the untreated insects. However, frequency activation of the virus
was not different between virus strains (χ2 = 0.00, df = 1, p = 0.987). The interaction between virus
strain and starvation was non-significant (χ2 = 0.06, df = 1, p = 0.802). In parallel, we observed a low
frequency of activation of the virus in the OB treatment insects reared without starvation, which was
not significantly different among virus strains (χ2 = 0.01, df = 1, p = 0.911, Figure 2). Importantly,
there was a low number of cadavers seen during starving, although virus activation mainly occurred
after feeding was resumed.
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When we calculated the frequency of vertically transmitted virus activation in relation to
virus-harboring larvae (not the total number of larvae), we observed more marked differences in
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activation rates of compared strains: 81.8% in the LdMNPV-27/0-treated insects and 55.7% in the
LdMNPV-45/0-treated insects.

4. Discussion

Studies of vertical baculovirus transmission in L. dispar have previously been conducted with
conflicting results. For example, Murray et al. (1991) [42] reported that they did not record the
transmission of the virus from parents to offspring. Elsewhere, Shapiro et al. (1987) [43] observed the
death of insects from spontaneous polyhedrosis in the first generation at prevalence ranging from
4.7% to 11.5%. The authors suggested the insect mortality from polyhedrosis among the offspring
of infected parents was the result of the vertical transmission of the virus. Later, other authors and
the results of the current study also noted the transmission of LdMNPV to a subsequent generation
following the viral infection of L. dispar [37,44]. We sterilized egg surfaces before baculovirus DNA
detection, suggesting that a significant portion of virus was transmitted to the next generation by
the transovarial route. Cabodevilla et al. (2010) [45] showed that horizontally transmitted isolates
of Spodoptera exigua multiple nucleopolyhedrovirus strains were significantly more pathogenic
than vertically transmitted isolates. They demonstrated that vertically and horizontally transmitted
genotypes of the nucleopolyhedrovirus differed in their capability to persist as sublethal infections in
the adult stage, thus suggesting that certain vertically transmitted genotypes may be better adapted to
vertical transmission. Furthermore, Fuxa and Richter (1991) [46] demonstrated an increased rate of
vertical transmission of a strain of Spodoptera frugiperda multiple nucleopolyhedrovirus—a strain
that was genetically different from a horizontally transmitted strain [47] and less virulent [48]. In these
studies, researchers used strains isolated from pupae or larvae that had been infected through vertical
transmission. In the current study, we compared vertical transmission involving two strains of
LdMNPV that differed in both genotype and potency [36,49], although both strains were isolated
from insects that died following horizontal transmission. In other words, we compared the ability of
horizontally infected strains to vertical transmission. We found that both virus strains were transmitted
to the next generation, regardless of their virulence.

Many studies have investigated the activation of covert infections in pest populations. Hughes et al.,
(1993) [22] reported that a culture containing a low-level persistent infection of Mamestra brassicae
multiple nucleopolyhedrovirus could be activated when insects were infected by the closely related
Panolis flammea multiple nucleopolyhedrovirus and the more distantly related Autographa californica
multiple nucleopolyhedrovirus. Activation of covert infection also been shown for other species
using a similar approach [50–52]. However, Yang et al. (2015) [53] noted that they did not observe
activation among covert infections in L. dispar larvae by the peroral inoculation of a heterologous
virus. Stress factors such as crowded rearing conditions and high relative humidity (RH) were
reported to induce higher activation levels of NPVs in the offspring of Trichoplusia ni laboratory culture.
The activation of Trichoplusia ni nucleopolyhedrosis disease was significantly greater at 95% to 100%
RH than at RH levels of 75% or less. Crowded rearing conditions activate the covert virus more so
than in uncrowded conditions [21]. On the other hand, when using crowding as the stress factor for
L. dispar larvae, we did not observe the activation of covert infection [54]. Food reduction did not
activate covert viral infection of larvae of Malacosoma pluviale californicum [25]. Activation of a vertically
transmitted virus has been shown using various chemical compounds. After treatment using chemical
compounds, mortality varied from 12% to 41% for lethal polyhedrosis disease in covertly infected larvae
of Spodoptera exigua in the laboratory [55]. Similarly, Ilyinykh et al. (2004) [56] previously reported the
activation of LdMNPV in up to 18% of gypsy moth larvae fed on a diet containing 0.6% copper sulphate.
Recently we demonstrated activation of the covert virus in an L. dispar population using starvation [24].
The mortality rate of more than 70% of the activation of latent infection caused by starvation in covertly
infected insects was observed. Thus, different stressing effects may activate the vertically transmitted
virus in follow-up generations, allowing the virus to return to horizontal transmission. Our model
showed that the mortality induced by starvation indicates that this is an effective factor for NPV
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activation from covert to overt infection. Interestingly, the majority of dead insects were registered
on the first and second days after feeding resumed (i.e., on the fourth and fifth days after the start of
starvation). The portion of NPV-specific cadavers in starving groups whose parents were infected with
LdMNPV-27/0 (low virulence) was exceeded by about 1.4-fold in comparison with those infected by
LdMNPV-45/0 (high virulence). The percentage of spontaneously NPV-induced mortality in OB-treated
groups reared without starvation was the same between virus strains. This result indicates the same
capability of the virus strains to cause spontaneous polyhedrosis activation, while the effect of the
stress factor had a tendency to more effectively activate the low-virulence viral strain. It seems that
low virulent strains possess better ability to keep the possibility for transformation from covert to
overt form of infection to compare with high virulent strains. It is know that strain of baculoviruses is
the mixture of genotypes when it isolated even form single larvae [57]. Thus, we suggest that in low
virulent strains, the abundance of genotypes able to successfully overcome/avoid host immunity effect
is higher than in high virulent strains.

Many studies have shown debilitating effects on the host after consuming OBs (see review, [58]).
In the present study, prolonging the development of infected larvae led to the formation of heavy
pupae, although this did not result in increased female productivity since it is usually observed in
healthy female L. dispar [59]. Rothman and Myers (1994) [60] reported previously that reductions in
fecundity might be due to pathological damage to the reproductive tissues of infected females and
that there may be no correlation with the pupal mass of insects after OB treatments. The difference in
virulence levels of viral strains consumed by parents had some significant effect on parental generation
features but did not have an impact on the first generation (i.e., amount of offspring or their survival).
Thus, the effectiveness of vertical transmission is the same for low- and high-virulence strains when
they are used in the doses that lead to the close effect in mortality.

The development of highly sensitive molecular tools has enabled researchers to focus their attention
on the vertical transmission of insect viruses and to assess the role of vertical transmission in the
survival of baculoviruses in both natural and laboratory insect populations [18,19,61,62]. The present
findings suggest that low- and high-virulence strains have the same capability to be transferred to the
subsequent generation of insects. This demonstrates that surviving insects following NPV application
will produce offspring carrying the virus in a covert form. The most interesting property of vertically
transmitted baculovirus is its capability to trigger its replication within the host. A portion of insects
surviving after treatment is likely to be covertly infected following consumption of OBs and a portion
of those survivors may transmit the virus vertically, which is accompanied by subsequent horizontal
transmission after the stress factor effect. The study of the capability of different strains for vertical
transmission and their capability to reactivate the virus from covert to overt infection allows us to
examine these capabilities as an additional strategy for pest control. The possibility of triggering
lethal diseases and initiating viral epizootics could improve the effectiveness and reduce the cost of
baculovirus-based control methods. This opens widespread perspectives for use in plant protection,
especially against pests with high migratory activity or against forest pests in which outbreaks often
occur in hard-to-reach areas.

5. Conclusions

Our study shows no differences in capability to vertical transmission from parent to filial host
generation between low- and high virulent strains of LdMNPV when its used in the doses leaded
to same lethal effect. However, low virulent strain tends to be more frequently reactivated from
covert to overt form of infection by effect of such stress factor as starvation. From pest management
point of view this result indicates that if there is the needs to get prolong effect after baculovirus
treatment (i.e., inducing spontaneous epizootic in next herbivore generations) it is reasonably to use
low virulent viral strains for the application. Further investigation could be focused on the mechanisms
of replication of virus within the host after the stress factors effects.
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