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Abstract: The detrimental role of hepatic lipotoxicity has been well-implicated in the pathogenesis
of NAFLD. Previously, we reported that inhibiting autophagy aggravated saturated fatty acid
(SFA)-induced hepatotoxicity. Insulin, a physiological inhibitor of autophagy, is commonly increased
within NAFLD mainly caused by insulin resistance. We therefore hypothesized that insulin
augments the sensitivity of hepatocyte to SFA-induced lipotoxicity. The present study was conducted
via employing human and mouse hepatocytes, which were exposed to SFAs, insulin, or their
combination. Unexpectedly, our results indicated that insulin protected hepatocytes against
SFA-induced lipotoxicity, based on the LDH, MTT, and nuclear morphological measurements,
and the detection from cleaved-Parp-1 and -caspase-3 expressions. We subsequently clarified that
insulin led to a rapid and short-period inhibition of autophagy, which was gradually recovered
after 1 h incubation in hepatocytes, and such extent of inhibition was insufficient to aggravate
SFA-induced lipotoxicity. The mechanistic study revealed that insulin-induced alleviation of ER stress
contributed to its hepatoprotective role. Pre-treating hepatocytes with insulin significantly stimulated
phosphorylated-Akt and reversed SFA-induced up-regulation of p53. Chemical inhibition of p53 by
pifithrin-« robustly prevented palmitate-induced cell death. The PI3K/Akt pathway blockade by
its special antagonist abolished the protective role of insulin against SFA-induced lipotoxicity and
P53 up-regulation. Furthermore, we observed that insulin promoted intracellular TG deposits in
hepatocytes in the present of palmitate. However, blocking TG accumulation via genetically silencing
DGAT-2 did not prevent insulin-protected lipotoxicity. Our study demonstrated that insulin strongly
protected against SFA-induced lipotoxicity in hepatocytes mechanistically through alleviating ER
stress via a PI3K/Akt/p53 involved pathway but independently from autophagy.
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1. Introduction

Nonalcoholic fatty liver disease (NAFLD), which is becoming the most common cause of chronic
liver disease, encompasses a spectrum of conditions, ranging from accumulation of lipids in liver
(steatosis) to fatty alterations with inflammation and hepatocellular injury or fibrosis (nonalcoholic
steatohepatitis, NASH), and even to cirrhosis and liver failure [1]. Evidence has accumulated indicating
that NAFLD represents a principal hepatic manifestation of the metabolic syndrome [2]. Although
the underlying mechanisms contributing to the pathogenesis of NAFLD are not fully understood,
lipotoxicity has been identified as a substantial risk for the metabolic syndrome, including NAFLD [3 4].

Hepatic lipotoxicity referred to the ectopic deposition of excess lipids in the hepatocytes under the
circumstance of hyperlipidemia. It is well-accepted that saturated fatty acids (SFAs), such as palmitate
and stearate, account for the most parts of lipotoxicity, whereas unsaturated fatty acids (USFAs), such as
oleate, generally confer protection against SFA-induced hepatotoxicity [5]. The potential mechanisms
involved in SFA-induced lipotoxicity in hepatocytes are not fully illustrated; however, a well-accepted
idea is that endoplasmic reticulum (ER) stress and oxidative stress are the major intracellular responses
activated by palmitate exposure and contribute to the SFA-induced lipotoxicity via a p53 involved
pathway [6,7]. Alleviating SFA-induced hepatotoxicity provides a conceivable strategy for protecting
against the development of NAFLD.

In addition to the lipotoxicity, insulin resistance is another hallmark of NAFLD, which is
accompanied by reduced insulin sensitivity in the liver and increased circulating insulin level [8].
The detrimental effect of insulin resistance and accompanying increased circulating insulin have
been identified in several aspects and in multiple tissues, such as disturbing energy metabolism,
promoting hepatic steatosis and TG accumulation in adipose tissue, and also followed by aggravated
inflammation, which conform to the pathogenesis of NAFLD [9-11].

Autophagy is a reparative life-sustaining process by which cytoplasmic components
are sequestered in double-membrane vesicles and degraded upon fusion with lysosomal
compartments [12]. Previously, we have reported that the activation of autophagy protected
against SFA-induced lipotoxicity in human hepatocytes [13] and high-fat diet (HFD)-induced hepatic
steatosis [14]. Similar evidence was also obtained from different experimental settings in various
types of cells [15,16]. Moreover, impaired autophagic flux has been observed in the liver from both
NAFLD patients and HFD-induced murine models of NAFLD [17], which might play a critical
role in NAFLD, as supported by our previous observations that inhibiting autophagy significantly
aggravated hepatotoxicity [13,18]. More recently, insulin has been implicated in the inhibition of
autophagy via a phosphatidylinositol 3-kinase (PI3K)/Akt-regulated mammalian target of rapamycin
(mTOR) pathway [19]. However, the physiological role of insulin-mediated inhibition of autophagy in
SFA-induced hepatotoxicity remains largely unknown. Based on the previous reports, we hypothesized
that the increased insulin sensitizes SFA-induced hepatotoxicity and mechanistically contributes to
the development of NAFLD via regulating autophagy. Unexpectedly, our results demonstrated that
insulin prevented SFA-induced lipotoxicity in hepatocytes. The following mechanistic study revealed
that the insulin-activated PI3K/Akt pathway is involved in this protection via blocking SFA-induced
ER stress and p53, independently of autophagy inhibition and TG accumulation.

2. Materials and Methods

2.1. Chemicals

Insulin (I3536), palmitic acid (P0500), stearic acid (54751), oleic acid (O1008), bovine serum
albumin (A7030), LY294002 (L9908, inhibitor of PI3Kw«/f/6), and Pifithrin-oc (p4236, inhibitor of
p53) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Other chemicals used in this study
were purchased from different companies, and were shown as follows: rapamycin (LC Laboratories,
Woburn, MA, USA, R-5000), bafilomycin Al (LC Laboratories, Woburn, MA, USA, B-1080, inhibitor
of autophagy, functioned via inhibiting the fusion between autophgic and lysosome), chloroquine
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(Enzo Life Sciences, Farmingdale, NY, USA, 0219391910, inhibitor of autophagy, functioned via
inhibiting the activity of lysosome), Earle’s Balanced Salt Solution (HyClone Laboratories, Logan, UT,
USA, SH30029.02), MTT Cell Proliferation and Cytotoxicity Assay Kit (C0009), and Hoechst 33258
(C1011) were purchased from beyotime Institute of Biotechnology (Nantong, China), fetal bovine serum
(PAA Laboratories, GmbH, Pashing, Austria, A15-701). Palmitic acid-, stearic acid-, and oleic acid-BSA
conjugates were prepared as described previously [20]. Briefly, each kind of fatty acid was dissolved in
ethanol and saponified with sodium hydroxide. The sodium salt was dried, re-suspended in saline
and heated at 80 °C until it completely dissolved. While the solution was still warm, isovolumetric
20% (w/v) BSA was added and the mixture was stirred at 50 °C for 4 h to allow the acids to bind to
BSA. Palmitic acid-, stearic acid-, and oleic acid-BSA complex (3 mmol/L fatty acid: 1.5 mmol/L BSA;
molar ratio, 2:1) was then sterilized by filtering for the future usage.

2.2. Animal and Experimental Protocol

All protocols in this study were approved by the Medical Ethics Committee of Harbin Medical
University (Harbin, China) and were performed in accordance with the National Institutes of Health
regulations for the care and use of animals in research. The approval code is 81472981. Sixteen c57bl/6
mice (male, 8-week old) obtained from Beijing Vital River Laboratory Animal Technology Co., Ltd.
(Beijing, China) were maintained at a 12:12 h light: dark cycle, and given water ad libitum. Animals
were housed in an environmentally controlled room at 21 + 2 °C, and 50% + 5% humidity. The mice
were randomly divided into normal diet group (ND, n = 8, 63.8% carbohydrate, 20.3% protein, and
15.9% fat) and high-fat diet group (HFD, n = 8, 40.5% carbohydrate, 17.1% protein, and 42.4% fat) fed
for 8 weeks. Plasma and liver tissue were collected for further measurements.

For analyzing insulin’s in vivo regulations of autophagy, thirty c57bl/6 mice (male, 8-week old)
were fasted overnight (lasting 16 h). Insulin (0.1 U/g BW, Lantus SoloStar, 5B024A) was administered
via intraperitoneal injection. After the indicated time points, mice (n = 5) were sacrificed and the
plasma and liver tissue were collected for further measurements.

2.3. Animal Sample Analysis

Plasma free fatty acids (FFAs), were determined using Gas Chromatography-Mass Spectrometer
(GC-MS) as described in our previous study [21]. Plasma ALT and insulin were detected using ALT
test Kit (Wako, Osaka, Japan, 996-10801) or mouse insulin ELISA Kit (Mercodia, Uppsala, Sweden,
10-1247-01) according to the manufacturer’s instructions, respectively. Triglyceride (TG) deposits in the
liver tissue were measured using a Triglyceride test Kit (ApplyGen, Beijing, China, E1013) according
to the manufacturer’s instructions.

2.4. Cell Culture

Human liver carcinoma cell line (HepG2), obtained from American Type Culture Collection
(ATCC, HB8065), was routinely grown in Dulbecco’s Modified Eagle Medium (DMEM, Sigma-Aldrich,
St.  Louis, MO, USA, D5648) cultural medium, containing 10% (v/v) fetal bovine serum
(PAA Laboratories, GmbH, Pashing, Austria, A15-701), 100 U/ml penicillin, and 100 pg/mL
streptomycin (Life Technologies, Gaithersburg, MD, USA, 15140-122). Alpha mouse liver (AML)-12
hepatocyte was established from a mouse transgenic for human transforming growth factor «, and was
obtained from the ATCC (CRL-2254), and was cultured in DMEM /Ham’s Nutrient Mixture F-12, 1:1
(DMEM/F-12, Sigma-Aldrich, St. Louis, MO, USA, 051M8322) containing 10% (v/v) fetal bovine serum,
5 mg/mL insulin (Sigma-Aldrich, St. Louis, MO, USA 13536), 5 ug/mL transferrin (Sigma-Aldrich,
St. Louis, MO, USA, T8158), 5 ng/mL selenium (Sigma-Aldrich, 229865), 40 ng/mL dexamethasone
(Sigma-Aldrich, St. Louis, MO, USA, D4902), 100 U/mL penicillin, and 100 pg/mL streptomycin.
The cultured medium was deprived of insulin when the experiments were performed on AML-12
cells, except for the indicated adding. For all the in vitro tests, the insulin level in the control group was
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zero, and in the experimental groups was described as indicated. All the hepatocytes were cultured at
37 °C in a humidified O, /CO, (95:5) atmosphere.

2.5. Cell Death Assays

Cell death was determined by the measurements of LDH release, MTT test, and Hoechst staining.
In LDH assay, culture medium was collected and detected using LDH assay kit (Thermo Scientific
Inc, Waltham, MA, USA, NC9674653) according to the manufacturer's instructions. For MTT test,
MTT (0.5 mg/mL) was added after the indicated treatment and incubated at 37 °C for 4 h. MTT test
was performed to detect absorbance at 550 nm by microplate reader (M2, MD, CA). In Hoechst
staining, cells were stained with Hoechst staining solution (beyotime, C1011) according to the
manufacturer’s instructions and imaged by Nikon eclipse Ti-S fluorescence microscope (Nikon, Tokyo,
Japan). For propidium iodide staining, cells were trypsinized and stained with propidium iodide
staining solution (BD Pharmingen, San Diego, CA, USA) according to the manufacturer’s instructions.
Fluorescence was measured using flow cytometry.

2.6. ROS Detection

Intracellular ROS levels were detected as previously described [22]. After the indicated treatment,
cells were washed with PBS for 3 times, and incubated with 20 uM 2’,7’-dichlorofluorescin diacetate
(DCFH-DA, Sigma-Aldrich, D6883) in PBS at 37 °C for 30 min. DCFH fluorescence was measured by
Nikon Ti-S fluorescence microscope (Nikon, Tokyo, Japan). The results were normalized to fluorescence
intensity of the control group.

2.7. Analysis of RFP-LC3 Puncta

The mRFP-GFP-LC3 plasmid was kindly provided by Tom Wileman (University of East
Anglia) [23]. Cells were transient transfected with mRFP-GFP-LC3 plasmid using Lipofectamine
2000 (Invitrogen, Carlsbad, CA, USA, 11668) according to the manufacturer’s instructions. Puncta was
detected by Nikon eclipse Ti-S fluorescence microscope (Nikon, TYO, Japan). At least 50 cells were
counted in each individual experiment.

2.8. Western Blot Analysis

Western blot was performed as described previously [24] and the following antibodies were used:
anti-Caspase3 (9662), anti-PARP1 (9532), anti-p53 (2524), anti-phospho-Akt (13038), anti-Akt (4691),
anti-LC3B (3868), anti-Grp94 (20292), anti-Grp78 (3177), anti-CHOP (5554), and anti-Atg5 (12994) from
Cell Signaling Technology Inc (Beverly, MA, USA); 3-actin (sc-58679) from Santa Cruz Biotechnology
(Santa Cruz, CA, USA).

2.9. RNA Interference

Cultured cells were transfected with human Atg5 siRNA (sc-41445) from Santa Cruz Biotechnology
(Santa Cruz, CA, USA) using Lipofectamine 2000 according to the manufacturer’s instructions. In the
control group, cells were transfected with scrambled siRNA (Santa Cruz Biotechnology, Santa Cruz,
CA, USA, sc-37007).

2.10. Statistical Analysis

All data were expressed as mean + S.D. except for special instruction. The statistical analyses
were performed with the SPSS V20.0 (IBM Corp, Armonk, NY, USA) program using t-test or
one-way ANOVA, followed by the Student-Newman-Keuls test. All p-values were two-tailed, and a
p-value < 0.05 was considered significant for all statistical analyses.
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3. Results
3.1. Subsection

3.1.1. SFAs Induce Hepatotoxicity in Human Hepatocytes

HEFD, a more clinically relevant diet, was employed in this study to induce NAFLD according
to the previous studies [25]. After 8 weeks of HFD feeding, more severe injury was observed in the
HFD group, evidenced by the detection of plasma ALT (Figure 1A). The TG accumulation in the liver
tissue was significantly higher in the HFD group than that in the ND mice (Figure 1B). Additionally,
the FFAs profile was robustly altered by HFD feeding, among which total FFA and SFA levels were
significantly increased (Table 1). Subsequently, we tested SFA-induced hepatotoxicity in HepG2 cells.
In line with previous studies, our results revealed that palmitate exhibited significantly lipotoxicity
in a dose-dependent manner in human hepatocytes, which was supported by the LDH, MTT, and
PI staining (Figure 1C,D,G), Besides, the nuclear morphological measurement was performed via
staining the nuclei with Hoechst 33258. We observed that the nuclei in the control group maintain
integrity, while PA (400 uM and 600 uM) significantly increased the number of condensed nuclei,
which were more brightly stained. (Figure 1E). The intracellular protein indicators for damaged
cells, including cleaved-parp-1 and -caspase-3, were markedly up-regulated by palmitate incubation
(Figure 1F). Besides, palmitate treatment also enhanced intracellular ROS production (Figure 1H).
The similar hepatotoxicity was also observed when replacing palmitate with stearic acid, an 18-carbon
chain saturated fatty acid (Figure S1).
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Figure 1. SFA-induced hepatic lipotoxity in ¢57bl/6 mice and HepG2 cells. C57bl/6 mice were fed
with a normal diet (ND) or high-fat diet (HFD) for 8 weeks. Plasma ALT and hepatic TG contents
were detected as described in the Materials and Methods. HepG2 cells were treated with palmitic
acid (PA) with the indicated dosage for 12 h. (A) Plasma ALT (n = 8); (B) liver TG (n = 8); (C) LDH in
the cultured medium was detected as described in the Methods; (D) Cell viability was detected by
MTT test; (E) Nuclear morphology was detected by Hoechst staining using fluorescence microscopy
(magnification x 100); (F) Total lysates of HepG2 cells were subjected to immunoblotting assay for
Caspase-3 and PARP-1; (G) Cell death was dectected by propidium iodide staining with flow cytometry;
(H) Intracellular ROS production was measured by DCFH-DA stain using fluorescence microscopy
(magnification x 100). Each in vitro test was performed at least 3 times. Bars with different characters
differ significantly (p < 0.05).
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Table 1. Composition of Plasma FFAs in ND and HFD mice.

Free Fatty Acids ND (umol/L) HFD (umol/L)
C14:0, MA (Myristic acid) 6.76 + 0.32 5.07 £ 0.08
C16:0, PA (Palmitic acid) 580.88 + 0.88 730.11 £ 20.11 *
C16:1, PLA (Palmitoleic acid) 73.14 + 3.95 49.30 + 1.39 *
C18:0, SA (Stearic acid) 211.88 + 4.16 383.58 + 13.59 **
C18:1, OA (Oleic acid) 185.58 + 8.47 461.37 + 13.67 **
C18:2, LA (Linoleic acid) 716.22 + 14.16 919.71 + 28.19 *
v-C18:3, y-LNA (y-Linolenic acid) 23.18 + 0.75 22.46 £+ 0.81
C18:3, LNA (Linoleic acid) 7.60 £ 0.29 554 +0.18*
C20:2, EDA (Eicosadienoic acid) 5.04 +0.18 8.08 + 0.26
C20:4, AA (Arachidonic acid) 383.16 £+ 9.88 748.75 £ 24.72**
C20:5, EPA (Eicosapentaenoic acid) 15.18 + 0.75 17.87 + 0.75
C22:5, DPA (Docosapentaenoic acid) 17.48 + 0.37 23.93 £+ 0.47 **
C22:6, DHA (Docosahexaenoic acid) 576.08 + 12.48 957.23 £+ 26.60 **
C24:0, TA (Tetracosanoic acid) 15.24 + 1.27 17.32 + 0.81
C24:1, SOA (Selacholeic acid) 17.16 + 0.47 18.02 + 0.67
Total fatty acids 2834.59 + 58.42 4368.35 + 132.21 **
Saturated fatty acid 814.79 + 6.61 1136.77 + 34.44 **

Monounsaturated fatty acids

275.86 + 12.91

528.68 + 15.72

1743.92 + 38.84 2703.56 + 81.97 **
616.32 +13.87 1004.56 + 28.01 **

1127.61 + 24.95 1698.99 +53.97 **
ND, normal diet; HFD, high fat diet; Values are means + SEM; 1 = 8 mice for each group; * p < 0.05; ** p < 0.01.

Polyunsaturated fatty acids
n-3 fatty acids
n-6 fatty acids

3.1.2. Autophagy Protects against Palmitate-Induced Lipotoxicity

Activation of autophagy protected against SFA-induced cytotoxicity in various types of cells,
such as rat pancreatic beta-cells, mouse hepatocytes and human endothelial cells [15,16,18]. Here,
we firstly examined the status of autophagy in the liver tissue of HFD-induced NAFLD mice, we
observed that the autophagy was more significantly inhibited in the HFD group than that in the normal
diet group, evidenced by the lower LC3-II formation existing in the NAFLD mice liver (Figure 2A).
The effect of autophagy inducers on palmitate-induced cell death in HepG2 cells was subsequently
detected. Cells were pretreated with the well-accepted autophagy inducer rapamycin or cultured
with EBSS medium to mimic starvation before palmitate exposure. We observed that autophagy
played a protective role in palmitate-induced cell death in HepG2 cells, which was determined by
LDH, nuclear morphous, and cleaved-parp-1 and -caspase-3 expressions measurements (Figure 2B-D).
Conversely, pretreating cells with special inhibitors of autophagy, CQ or bafilomycin, obviously
exacerbated palmitate-induced hepatotoxicity (Figure 2B-D). Genetically inhibiting autophagy using
siRNA targeted Atgb also enhanced palmitate-induced cell death (Figure 2E,F).
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Figure 2. Regulating autophagy contributes to SFA-induced lipotoxicity in hepatocytes. HepG2
cells were treated with palmitic acid (PA, 400 uM) for 12 h with or without rapamycin (Rap, 1 uM),
Earle’s Balanced Salt Solution (EBSS), chloroquine (CQ, 20 uM), or Bafilomycin A1l (Baf, 100 nM)
pre-treatment for 4 h. (A) Liver protein was extracted using RIPA lysis. Inmunoblotting was performed
for LC3; (B) LDH in the cultured medium was detected as described in the Methods; (C) Nuclear
morphology was detected by Hoechst staining using fluorescence microscopy (magnification x 100);
(D) Total lysates of HepG2 cells were subjected to immunoblotting assay for Caspase-3 and PARP-1;
(E) Cells were transfected with either scrambled or Atg5 siRNA. Transfected efficiency was detected
by immunoblotting assay; (F) After transfected with Atg5, cells were treated with palmitic acid
(PA, 400 uM) for 12 h. LDH in the cultured medium was detected as described in the Methods section.
Each in vitro test was performed at least 3 times. Bars with different characters differ significantly
(p <0.05).
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3.1.3. Autophagy Protects against Palmitate-Induced Lipotoxicity

In this study, plasma insulin level was significantly elevated in HFD-induced NAFLD mice
(Figure 3A). Pretreating cells with a progressive dose of insulin presented a markedly protective
role against palmitate-induced cell death (Figure 3B,C,E,F). In nuclear morphological measurements
(Figure 3D), the nuclei in the control group and insulin group maintained integrity and 400 pM
PA treatment significantly increased the number of condensed nuclei, while insulin decreased the
number of PA-damaged nuclei. The lipotoxicity was also alleviated by insulin when replacing
pamitate by stearate (Figure S2). Moreover, in a non-transformed mouse hepatocyte cell line (AML-12),
palmitate-induced cell death was significantly blocked by insulin treatment (Figure 3G).
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Figure 3. Insulin protects against SFA-induced hepatotoxicity. Mouse plasma insulin level was
detected as described in the Materials and methods (1 = 8). HepG2 cells were exposed to palmitic
acid (PA, 400 uM) with or without different dose of insulin pretreatment for 1 h. (A) Plasma insulin;
(B) LDH in the cultured medium was detected as described in the Methods; (C) Cell viability was
detected by MTT test; (D) Nuclear morphology was detected by Hoechst staining using fluorescence
microscopy (magnification x 100); (E) Total lysates of HepG2 cells were subjected to immunoblotting
assay for Caspase-3 and PARP-1; (F) Cell death was dectected by propidium iodide staining with flow
cytometry; (G) AML-12 hepatocytes were used to replace HepG2 cells. LDH in the cultured medium
was detected as described in the Methods. Each in vitro test was performed at least 3 times. Bars with
different characters differ significantly (p < 0.05).

3.1.4. Autophagy Is Independent from Insulin-Protected Lipotoxicity in Hepatocytes

Insulin has been implicated in negative regulation of autophagy via a PI3K/Akt/
mTOR-dependent pathway [20]. To further illustrate the reason why insulin inhibits autophagy but
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does not accelerate palmitate-induced hepatotoxicity, we firstly detected insulin-regulated autophagy
in hepatocytes, and our results indicated that insulin-suppressed autophagy could only be observed in
the early stage, but was gradually recovered to the normal level after 1 h incubation in both human
and mouse hepatocytes, evidenced by the detection of LC3-II (Figure 4A,B). When pre-cultured with
EBSS medium, insulin-regulated autophagosome formation was in line with LC3-II expression, which
was quantitated by the intracellular fluorescent puncta (Figure 4C). Next, we analyzed insulin’s
in vivo regulation of hepatic autophagy. The plasma insulin level was significantly increased after
intraperitoneal injection (Figure 4D). The hepatic autophagy was rapidly inhibited by insulin, but
was gradually recovered after 12 h, which was evidenced by the observation of LC3-II formation
(Figure 4E). We also imitated insulin-inhibited autophagy though incubating cells with CQ only for
1 h, and then replenished the cultural medium containing only palmitate, and the result indicated
that short-term inhibition of autophagy did not exacerbate palmitate-induced cell death in human
hepatocytes (Figure 5A,B). In nuclear morphological measurements (Figure 5C), the nuclei in the
control and CQ group maintained integrity and 400 pM PA treatment significantly increased the
number of condensed nuclei, while short-term (1 h) CQ intervention presented no additional effect on
PA-damaged nuclei.
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Figure 4. Time course-dependent regulation of insulin on hepatic autophagy. Hepatocytes were
cultured within EBSS medium for 12 h, and then exposed to insulin (200 nM) for the indicated
duration. Total lysates of cells were subjected to immunoblotting assay for LC3. Plasmid (containing
mRFP-GFP-LC3) transfection was performed 12 h before EBSS intervention for autophagosome
detection. For in vivo analysis of hepatic autophagy, mice were suffered to insulin injection as described
in the Methods. (A,B) Immunoblotting assay for LC3 conversion in HepG2 cells and AML-12 cells;
(C) The effect of insulin on autophagy was examined by fluorescence microscopy for puncta formation;
(D) Mice plasma insulin level (1 = 5); (E) LC3 expression in mice liver (n = 5). Each in vitro test was
performed at least 3 times. Bars with different characters differ significantly (p < 0.05).

A B

100+

12 of 22

LDH release
(Fold of control)

PA
cQ

=z
=
-
z
=
=
=
>
=
O]
&}

PA

cQ

[*] w w
o o 8 o
I I I ]
(=2
=

Apoptosis cell percentage
3

Figure 5. Short-term inhibition of autophagy does not aggravate palmitate-induced hepatic lipotoxicity.
HepG2 cells were exposed to autophagy inhibitor (CQ, 20 uM) for 1 h, after then the cultural medium
was totally replaced by the fresh medium containing only palmitic acid (PA, 400 M) and treated for
12 h. The lipotoxicity was detected. (A) LDH in the cultured medium was detected as described in the
Methods section; (B) Cell viability was detected by MTT test; (C) Nuclear morphology was detected by
Hoechst staining using fluorescence microscopy (magnification x 100). Each test was performed at
least 3 times. Bars with different characters differ significantly (p < 0.05).

3.1.5. PI3K/ Akt-Regulated p53 Pathway Contributes to Insulin-Protected Lipotoxicity

Oxidative stress and ER stress are the well-recognized intracellular pathways stimulated by

SFA exposure and contribute to SFA-induced cell injury [26,27]. We firstly assessed the role of
insulin on palmitate-driven oxidative stress, and the result indicated that insulin did not reduce
palmitate-induced increase in intracellular ROS contents, which rules out the anti-oxidative probability
of insulin in the protective processing (Figure 6A). Subsequently, the molecular markers of ER stress,
including Grp94, Grp78, and ChOP, were analyzed, and we clearly observed that palmitate-induced
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ER stress was robustly reversed by insulin exposure (Figure 6B). A well-known pro-apoptosis
protein, p53, mediated by ER stress [28], was detected in this study. Our result revealed that
palmitate exposure strongly enhanced p53 expression, nevertheless, insulin incubation prevented
palmitate-induced p53 up-regulation (Figure 6B). To further investigate the involvement of ER
stress in SFA-induced lipotoxicity in hepatocytes, 4-PBA, a well-known ER stress inhibitor, was
employed. We observed that 4-PBA significantly ameliorated PA-induced lipotoxicity in hepatocytes
(Figure 6C). Moreover, palmitate-suppressed Akt phosphorylation was also apparently reversed by
insulin treatment (Figure 6E) chemically inhibiting the PI3K/Akt pathway by its special antagonist.
The inhibitory effect of insulin on PA-induced ER stress and cell death was abolished by Ly294002
(Figure 6D-F). Besides, Ly294002 treatment also inhibited the protection of insulin on PA-induced
nuclei damage (Figure 6G). Additionally, blocking p53 by pifithrin, a special chemical antagonist,
significantly inhibited palmitate-induced ER stress and cell death (Figure 6H,],K). Pifithrin incubation
also alleviated PA-induced increase of condensed nuclei (Figure 6K). Additionally, Ly294002 enhanced
palmitate-induced cell death in mouse hepatocytes (Figure 6L). The similar observation was also
obtained when replacing palmitate by stearic acids (Figure S3). These results clearly revealed that the
PI3K/Akt-regulated p53 pathway was involved in insulin-protected lipotoxicity in hepatocytes.
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Figure 6. PI3K/Akt-regulated p53 contributes to insulin-protected SFA-induced lipotoxicity via
mediating ER stress. HepG2 cells were exposed to palmitic acid (PA, 400 uM) for 12 h with or
without insulin (200 nM) pretreatment for 1 h. PI3K/ Akt antagonist 1y294002 (10 uM) or p53 inhibitor
pifithrin-alpha (10 uM) were added 1 h before insulin treatment. The cellular index was detected
as follows: (A) Intracellular ROS production was measured by DCFH-DA stain using fluorescence
microscopy (magnification x 100); (B) Immunoblotting assay for GrpP94, Grp78, CHOP, and p53; (C) ER
stress inhibitor was pretreated for 1 h before exposed to palmitic aced (PA, 400 uM), LDH in the cultured
medium was detected as described in the Methods; (D,H) LDH in the cultured medium was detected
as described in the Methods; (E,I) Inmunoblotting assay for phosphorylated Akt, Grp94, Grp78, CHOP
p53; (FJ) cell death was dectected by propidium iodide staining with flow cytometry; (G,K) Nuclear
morphology was detected by Hoechst staining using fluorescence microscopy (magnification x 100);
(L) AML-12 hepatocytes were used to replace HepG2 cells. LDH in the cultured medium was detected
as described in the Methods section. Each test was performed at least 3 times. Bars with different
characters differ significantly (p < 0.05).
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3.1.6. Promoting TG Synthesis Is Absent from the Hepatoprotective Role of Insulin

In contrast to SFA-induced cytotoxicity, unsaturated fatty acids (USFAs) exhibited no effect
on cell viability, due to the facility in the synthesis of inert triglyceride (TG) [29]. In this study,
we observed that oleic acids, the most abundant USFAs in human circulating system, enhanced TG
synthesis and presented no cytotoxicity on HepG2 cells (Figure S4A,B). Moreover, cells incubated
with oleic acids robustly abrogated palmitate-induced cell death with an increased intracellular
TG accumulation (Figure S4A-D). Insulin has been well-regarded as a physiological factor in
spurring anabolism and uptake of TG by adipocytes [30]. In human hepatocytes, we observed
that insulin apparently elevated intracellular TG storage when cells suffered palmitate treatment
(Figure S5A,B). Palmitate treatment significantly reduced the mature SREBP-1c in the nucleus, but
insulin strongly reversed the decrease of SREBP-1c (Figure S6A). We further probed the participation
of SREBP-1c in the protective role of insulin. Our results showed that knocking-down SREBP-1c did
not block insulin-protected hepatotoxicity or promote intracellular TG accumulation (Figure S6B-D).
These results ruled out the participation of SREBP-1c in the protective role of insulin. To further
identify the role of increased TG storage in insulin-prevented lipotoxicity, diglyceride acyltransferase
(DGAT)-2, the essential enzyme catalyzing the formation of TG from diacylglycerol and acyl-CoA
in hepatocytes was investigated. The data revealed that insulin exposure strongly elevated DGAT-2
expression (Figure S7A). Genetically silencing DGAT-2 using its special siRNA significantly blocked
insulin-promoted intracellular accumulation of TG, but did not alter the protective role of insulin
(Figure S7B-E). These results clearly demonstrated that insulin-induced TG accumulation did not
contribute to its hepatoprotective role against lipotoxicity.

4. Discussion

The present study aims at clarifying the sensitivity of insulin in SFA-mediated hepatotoxicity
in the complicated pathological procedure of NAFLD. We conclude that insulin exhibits a strongly
protective role against SFA-induced lipotoxicity in both human and mouse hepatocytes. The results
from this study reveal for the first time that insulin-inhibited autophagy is independent from the
preventive role, and the further investigations demonstrate that the PI3K/Akt-regulated p53 pathway
mechanistically contributes to insulin-protected lipotoxicity in hepatocytes via alleviating ER stress.

Hepatotoxicity induced by SFAs, which has been well-considered as a critical manifestation,
plays a pivotal role in the origination and pathological development of NAFLD [3]. In addition
to lipotoxicity itself, several endogenous alterations have been observed to sensitize SFA-induced
liver injury, such as hyperglycemia and inflammatory cytokines, which probably accelerates the
progression of NAFLD [25,26]. Among these alterations, increased circulating glucose-induced
toxicity has been largely researched and is implicated in the amplifying of SFAs-led lipotoxicity
in hepatocytes [26,27]. Additionally, recent studies have also reported that the genetic changes in
NAFLD, including down-regulated phosphorylated-adenosine 5'-monophosphate (AMP)-activated
protein kinase (AMPK) and peroxisome proliferator-activated receptors o« (PPARx) markedly aggravate
SFA-induced hepatotoxicity [18,28]. Therefore, clarifying the sensitivity of lipotoxicity is an urgent
task and further provides an ideal therapeutic choice for the treatment of NAFLD.

Autophagy, a highly evolutionarily conserved process, refers to the removal and breakdown of
intracellular components (organelles and proteins) via sequestering and targeting bulk components
for lysosomal degradation [12]. Emerging evidence suggests that a tightly regulated adaptive
mechanism is involved in the autophagy that enhances cell survival under various environmental
and cellular stresses though eliminating damaged proteins and organelles [29]. The activation
of autophagy exhibits multiple benefits and protects cells against detrimental aggressions [30,31].
Recently, we reported that activating autophagy prevented hepatocytes from palmitate-induced
damage in mitochondrial and further apoptosis [13]. In line with this observation, such protection
was also existed in palmitate-induced cytotoxicity in pancreas beta-cells and endothelial cells [15,16].
Conversely, inhibiting autophagy aggravated SFA-induced cell injury [32]. Insulin has been reported
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as playing a negative role in the regulation of autophagy [19]. In the patients with NAFLD or
HFD-induced animals, the circulating fasting insulin is commonly elevated due to the insulin
resistance [33]. Moreover, insulin injection is a clinically-approved, effectual and widely received way
to regulate blood glucose in diabetes and/or NAFLD patients [34,35]. Therefore, we are anxious to
know whether increased insulin sensitizes SFA-induced hepatotoxicity via the negative regulation of
autophagy and further aggravates the pathological procedure of NAFLD. To answer this question,
we firstly confirmed the regulation of autophagy on SFA-induced lipotoxicity in human hepatocytes.
Next, hepatocytes were exposed to cultural conditions with both insulin and SFAs. Unexpectedly,
pretreating cells with insulin did not enhance the cytotoxicity induced by SFAs; conversely, insulin
presented a strongly protective role against the lipotoxicity. It is an interesting task to determine why:.
The insulin-stimulated PI3K/Akt/mTOR pathway has been implicated in the inhibition of autophagy
in some types of tissues [36,37]. However, limited study has addressed the regulative role of insulin on
hepatic autophagy, and the conclusions were inconsistent [38,39]. In this study, we investigated the
time-course relationship between insulin and hepatic autophagy, and observed that insulin exposure
only led to a rapid and short-period inhibition of autophagy, which was gradually recovered after
long-term incubation in both cultured hepatocytes and mice liver. Subsequently, we certified that
short-term inhibition of autophagy (using special autophagy inhibitors, CQ or Baf) was insufficient
to aggravate SFA-induced lipotoxicity, which further explained the reason why insulin exposure did
not enhance lipotoxicity. Therefore, autophagy-independent pathways were logically involved in the
protective role of insulin.

Subsequently, we investigated the potential mechanisms whereby insulin protected against
SFA-induced lipotoxicity. Oxidative stress and ER stress are classical intracellular pathways involved
in SFA-induced liver injury. Therefore, we first assessed the anti-oxidative stress role of insulin in
palmitate-induced hepatotoxicity. The results indicated that insulin did not reverse palmitate-induced
increase of intracellular ROS content, which ruled out the involvement of anti-oxidative mechanism.
Another pro-apoptosis pathway induced by palmitate, ER stress, was subsequently considered in this
study. A previous study has reported that insulin protects diabetic rats from obesity-induced hepatic
ER stress [40]. However, there existed some discrepancy in different experimental settings, in that
insulin induced ER stress in adipose tissue and immunocytes [41,42]. In this study, insulin significantly
reduced palmitate-stimulated ER stress, evidenced by the down-regulation of the molecular markers,
including GRP94, GRP78, and Chop, which clearly indicated that a potential anti-ER stress mechanism
contributed to insulin-protected lipotoxicity. Further, the detailed investigations using complementary
approaches demonstrated that insulin-activated PI3K/Akt pathway was mechanistically involved in
the protection via decreasing palmitate-up-regulated p53. Although the linkage between ER stress
and the p53 pathway was not well-investigated in this study, insulin-inhibited stress-activated protein
kinases (SAPK) phosphorylation might play a central role in the ER stress-activated p53 pathway in
hepatocytes [43].

Unsaturated fatty acids (USFAs), which are prone to construct TG, present no cytotoxicity in
hepatocytes and protect against SFA-induced hepatoxicity [44]. In line with previous observations, our
study showed that oleic acid, an 18-carbon chain mono-USFA, apparently facilitated the conversion of
plamitate into TG, and rescued palmitate-induced hepatotoxicity. Stearoyl-CoA desaturase-1 (SCD-1)
is the enzyme that manipulates the switch from SFAs to monounsaturated fatty acids (MUFAs) [45].
In vivo, SCD-17/~ mice feeding with a methionine-choline-deficient diet manifested decreased steatosis
but markedly increased hepatocellular apoptosis and liver injury when compared to the SCD-1*/*
counterparts [46]. The evidence strongly supports the viewpoint that conversing reactive SFAs
into inert TG exhibits reduced lipotoxicity in mammalian cells. In this study, we observed that
insulin exposure significantly elevated intracellular TG deposits. Therefore, we asked whether
insulin-promoted TG accumulation was involved in its protective role. The pro-lipid synthetic
pathways were investigated mainly by SREBP-1c and DGAT-2 in this study. Interestingly, genetically
silencing either SREBP-1c or DGAT-2 using their siRNA did not impair the protective role of insulin,
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indicating insulin-promoted TG accumulation was not involved in the protection of SFA-induced
hepatoxicity. Although the reason why blocking TG deposits did not affect the protective role of
insulin was not illustrated in this study, we presumed that insulin-induced TG accumulation probably
originated from glucose conversion, since almost the same extent intracellular TG deposit was induced
between only by insulin and by insulin together with palmitate. Additionally, we should not ignore
insulin supplementation-triggered TG accumulation in hepatocytes. It is better to consider the
conjunctive application of a lipid-reduced drug for the clinical use of insulin in diabetes patients
with NAFLD.

5. Conclusions

In summary, our study provides strong evidence that insulin exposure protects hepatocytes
against lipotoxicity induced by SFAs via a PI3K/Akt/p53 involved pathway through alleviating
ER stress. Our results also identify that insulin only inhibits a rapid and short-term autophagy
in hepatocytes, which is recovered after long-term exposure, and the protective role of insulin is
independent from autophagy.

Supplementary Materials: The following are available online at http:/ /www.mdpi.com/2072-6643/8/4/227/s1.
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The following abbreviations are used in this manuscript:

AML Alpha mouse liver
AMPK AMP-activated protein kinase
Baf Bafilomycin Al
CQ chloroquine
ER Endoplasmic reticulum
EBSS Earle’s Balanced Salt Solution
FFAs Free fatty acids
HFD High-fat diet group
HepG2 Human liver carcinoma cell line
MUFAs Monounsaturated fatty acids
mTOR Mammalian target of rapamycin
NAFLD Nonalcoholic fatty liver disease
NASH Nonalcoholic steatohepatitis
ND Normal diet group
PI3K Phosphatidylinositol 3-kinase
PPARx Peroxisome proliferator-activated receptors «
Rap rapamycin
SFAs Saturated fatty acids
SCD-1 Stearoyl-CoA desaturase-1
TG Triglyceride

USFAs Unsaturated fatty acids
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