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Abstract Optimumexperimental design theory has recently been extended for param-
eter estimation in copula models. The use of these models allows one to gain in
flexibility by considering the model parameter set split into marginal and dependence
parameters. However, this separation also leads to the natural issue of estimating only
a subset of all model parameters. In this work, we treat this problem with the appli-
cation of the Ds-optimality to copula models. First, we provide an extension of the
corresponding equivalence theory. Then, we analyze a wide range of flexible cop-
ula models to highlight the usefulness of Ds-optimality in many possible scenarios.
Finally, we discuss how the usage of the introduced design criterion also relates to the
more general issue of copula selection and optimal design for model discrimination.
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1 Introduction

Design optimization is generally largely employed in many applied fields as a con-
venient tool to improve information drawn from experiments. Recently, in Perrone
and Müller (2016), the authors have extended the classical equivalence theory of D-
optimality to a wider class of models for the usage of copulas, i.e. restrictions of joint
probability distributions of random vectors with uniform margins on the unit interval
[0, 1].

In particular situations, the interest of the experimenter is on the estimation of
a meaningful subset of the model parameters. This analysis can be performed by
applying Ds-optimality. Such a design criterion is particularly useful in designing
experiments under assumption of copula models, where the marginal and the joint
behavior of the phenomenon are modeled separately and are reflected by different
model parameters.

Furthermore, for flexible copula models, maximizing the information on a subclass
of dependence parameters also relates to one of the most important tasks in copula
modeling: the choice of the specific copula to employ. This task is usually performed
through the usage of omnibus goodness-of-fit tests that require minimum assump-
tions, for recent reviews see, e.g., Berg (2009), Genest et al. (2009), or Fermanian
(2013). Other more specific avenues consist in applying graphical tools (Michiels
and Schepper 2013) or information based criteria (Grønneberg and Hjort 2014). In
fully parametric models, as considered in this paper, the latter can be formulated in
terms of functions of the Fisher information matrix, which will allow us to generate
optimal designs for copula model discrimination. As stated, developments of power-
ful goodness-of-fit tests and strategies to avoid the wrong choice of the dependence
constitute a considerable part of the literature on copulas. The issue of model choice
or discrimination is in principle also a well known part of (optimum) experimental
design theory and several criteria (e.g., Ds-optimality, T -optimality, KL-optimality)
have been proposed [see Dette and Titoff (2009), López-Fidalgo et al. (2007), Studden
(1980) and Deldossi et al. (2016) for a special application to copula models].

In this work we first extend the general theory of DA-optimality to copula models.
Then, we present the usage of the Ds-criterion for various purposes including the
discrimination between various classes of dependences and possible scenarios. This
is motivated by the well known equivalence between test-based (T -optimality) and
estimation-based (Ds-optimality) criteria for linear nestedmodels differing by a scalar
parameter [see, for instance, Fedorov and Khabarov (1986)]. However, we argue that
design according to the latter criterion may be also useful in the nonnested case.
Finally, we show through some examples possible real applications.

2 Background

In this section, we summarize basic definitions and properties of copula functions
and design of experiments. We also present the usage of design techniques for the
introduced classes of statistical models.
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Ds -optimality in copula models 405

2.1 Statistical modeling via copulas

The problem of specifying a probability model for dependent random variables Y1
and Y2 can be simplified by expressing the corresponding 2-dimensional joint distri-
bution FY1Y2 in terms of its two margins FY1 and FY2 , and an associated 2-copula (or
dependence function) C defined as follows.

Definition 1 A two-dimensional copula (or 2-copula) is a bivariate function C :
[0, 1] × [0, 1] −→ [0, 1] with the following properties:

1. for every u1, u2 ∈ [0, 1]

C(u1, 0) = 0, C(u1, 1) = u1, C(0, u2) = 0, C(1, u2) = u2; (1)

2. for every u1, u2, u3, u4 ∈ [0, 1] such that u1 ≤ u3 and u2 ≤ u4,

C(u3, u4) − C(u3, u2) − C(u1, u4) + C(u1, u2) ≥ 0.

The connection between copulas and cumulative joint probability distributions is
stated in Sklar’s Theorem (Sklar 1959), which affirms that for every 2-dimensional
joint distribution FY1Y2 there exists a 2-copula C , defined as in Definition 1, such that

FY1Y2(y1, y2) = C(FY1(y1), FY2(y2)) (2)

for all reals y1, y2. Moreover, if FY1 and FY2 are continuous, then C is unique; oth-
erwise, C is uniquely defined on Range(FY1) × Range(FY2). Conversely, if C is a
2-copula and FY1 and FY2 are distribution functions, then the function FY1Y2 given by
(2) is a joint distribution with marginals FY1 and FY2 .

As a consequence of Sklar’s theorem, parametric families of copulas represent a
powerful tool in statistics to describe the joint relationship between dependent random
variables. The issue of selecting the appropriate dependence within an assumed true
parametric copula family relates to the meaningful role played by the copula param-
eters, which correspond, for instance, to a specific measure of association for the
modeled random variables. As a matter of fact, assuming Y1 and Y2 to be two continu-
ous random variables whose copula isC(·, ·;α1), the measure of association Kendall’s
τ directly relates to the expectation of the random variable W = C(U, V ;α1), and
can be explicitly written as

τ = 4
∫∫

[0,1]2
C(u, v;α1)dC(u, v;α1) − 1, (3)

with U, V ∼ U([0, 1]). Therefore, the relation in Eq. (3) results in a correspondence
between the copula parameter α1 and a fixed τ value (Nelsen 2006).

To make advantage of copulas in statistical modeling, several research efforts have
been made to provide a variety of parametric families that reflect fundamental statis-
tical properties of dependent random variables such as exchangeability, association
measures, and tail dependences (Joe 2014; Durante and Sempi 2015).
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406 E. Perrone et al.

First examples of classical copula families have been derived from well-known
classes of joint distributions. This is the case of the elliptical copulas and extreme
value copulas respectively obtained from elliptical and extreme value distributions. In
addition, flexible parametric copula families can be constructed by considering any
finite convex linear combination C of k ∈ N 2-copulas Ci , with i = 1, · · · , k.

Other fundamental classes of copulas have been derived from mathematical func-
tionals. A notable example of such a class is the family of Archimedean copulas
(Genest and Mackay 1986; McNeil and Nešlehová 2009), which relate to the notion
of triangular norms (Klement et al. 2000). Archimedean copulas have become very
popular due to their interesting analytic properties which make them tractable for
inferential purposes (Genest et al. 2011). Although Archimedean copulas represent a
commonly used tool for applications, they are not suitable to describe many real sce-
narios as they belong to the class of exchangeable copulas [see, for instance, Genest
and Nešlehová (2013)].

Roughly speaking, exchangeable copulas are copulas which do not change under
any permutations of their arguments, i.e., copula functions which are symmetric. On
the one hand, this mathematical property is suitable to describe the joint behavior of
exchangeable random variables, i.e., continuous random variables Y1 and Y2 such
that the random vector (Y1,Y2) has the same joint distribution of the random vector
(Y2,Y1). On the other hand it could represent a strong limitation in many cases where
a causality relationship between the two random variables Y1 and Y2 is desirable. Pos-
sible ways of quantifying non-exchangeability in copula models have been provided
in the literature (Klement and Mesiar 2006; Nelsen 2007).

Although some classes of bivariate copulas can directly deal with
non-exchangeability (Capéraà et al. 2000; Charpentier et al. 2014; Klement et al. 2005;
Baets et al. 2007), many other copulas largely used in modeling belong to the class of
exchangeable ones. Tomake these families suitable to awider rangeof real phenomena,
a possibility is to apply transformations which commute exchangeable copulas into
non-exchangeable ones (Durante 2007; Frees and Valdez 1998; Khoudraji 1995). As
an example, we here present the Khoudraji’s asymmetrization described in Khoudraji
(1995) which we use later on in this work. Specifically, a given exchangeable copula
C(·, ·;α1), with parameter α1, can be modified into the copulaC = C(·, ·;α1, α2, α3)

defined, for every (u, v) ∈ [0, 1]2, by
C(u, v;α1, α2, α3) = uα2vα3C(u1−α2 , v1−α3;α1), (4)

where α2, α3 ∈ [0, 1]. For α2 �= α3, C is non-exchangeable. The usage of such a
transformation in the design framework has already been discussed in Durante and
Perrone (2016). Another possible application will be presented in Sect. 4.

In the next subsection we introduce the theoretical framework of experimental
design for copula models already developed in Perrone and Müller (2016).

2.2 Design of experiments for copula models

Let xT = (x1, . . . , xr ) ∈ X be a vector of control variables, where X ⊂ R
r is a

compact set. The results of the observations and of the expectations in a regression
experiment are the vectors
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Ds -optimality in copula models 407

y(x) = (y1(x), y2(x)),

E[Y(x)] = E[(Y1,Y2)] = η(x,β) = (η1(x,β), η2(x,β)),

where β = (β1, . . . , βk) is a certain unknown parameter vector to be estimated and
ηi (i = 1, 2) are known functions.

Let us call FYi (yi (x);β) the cdf margins of each Yi for all i ∈ {1, 2} and
cY(y(x);β,α) the joint probability density function of the random vector Y, where
α = (α1, . . . , αl) are unknown (copula) parameters.

The aim of design theory is to quantify the amount of information on both sets
of parameters α and β, respectively, from the regression experiment embodied in the
Fisher Information Matrix (FIM).

The FIM m(x, γ ) for a single observation is a (k + l) × (k + l) matrix whose
elements are

E
(

− ∂2

∂γi∂γ j
log[cY(y(x);β,α)]

)
(5)

where γ = {γ1, . . . , γk+l} = {β1, . . . , βk, α1, , . . . , αl} and

cY(y(x);β,α) = ∂2

∂y1∂y2
C(FY1(y1(x);β), FY2(y2(x);β);α)

is the joint density function represented through a copula C in accordance to Eq. (2).
For a concrete experiment with N independent observations at n ≤ N support

points x1, . . . , xn, the corresponding information matrix M(ξ, γ ) then is

M(ξ, γ ) =
n∑

i=1

wi m(xi, γ ),

where wi and ξ are such that:

n∑
i=1

wi = 1, ξ =
{

x1 . . . xn
w1 . . . wn

}
.

Approximate design theory is concerned with finding ξ∗(γ ) such that it maximizes
some scalar functionφ(M(ξ, γ )), the so-called design criterion. In Perrone andMüller
(2016), the authors have developed the equivalence theory for the well known crite-
rion of D-optimality, i.e. the criterion φ(M(ξ, γ )) = log det M(ξ, γ ), if M(ξ, γ ) is
non-singular. The equivalence theory presented in Perrone and Müller (2016) allows
one to investigate the impact on the design of various model assumptions, where
the dependence structure is reflected by different parametric copula families. A still
neglected aspect is the role of the copula parameters as a source of information on
the appropriate model to be used. In this work we focus on this aspect, which relates
to the well-known design issue of model discrimination between rival models. First,
we extend the equivalence theory for the DA-criterion, and, as a consequence, for the
Ds-criterion. Then, we apply Ds-optimality to flexible copula models and we interpret

123
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this approach as a possible way to find optimal designs which discriminate between
rival models.

3 DA-, and Ds-optimality

In this section we provide the extension for the DA-criterion of a Kiefer–Wolfowitz
type equivalence theorem, assuming the dependence described by a copula model.
We then illustrate the basic idea of the new approach through a motivating example
already analyzed in Perrone and Müller (2016).

3.1 Equivalence theory

In this work, we consider the case when the primary interest is in certain meaning-
ful linear combination of parameters. Such combinations are element of the vector
AT γ , where AT is an s × (k + l) matrix of rank s < (k + l). If M(ξ, γ ) is non-
singular, then the variance matrix of the least-square estimator of AT γ is proportional
to AT {M(ξ, γ )}−1A and then a natural criterion, generalization of the D-optimality
for this context, would be of maximizing log det[AT {M(ξ, γ )}−1A]−1. This criterion
is called DA-optimality (Silvey 1980).

The followingTheorem shows a generalization for the DA-optimality of theKiefer–
Wolfowitz type equivalence theorem already proved in Perrone and Müller (2016) for
D-optimality. We have omitted the proof as it is fully analogous.

Theorem 1 For a localized parameter vector (γ̃ ), the following properties are equiv-
alent:

1. ξ∗ is DA-optimal;
2. for every x ∈ X , the next inequality holds:

tr [M(ξ∗, γ̃ )−1A(AT M(ξ∗, γ̃ )−1A)−1AT M(ξ∗, γ̃ )−1m(x, γ̃ )] ≤ s;

3. over all ξ ∈ 
, the design ξ∗ minimizes the function

max
x∈X

tr [M(ξ∗, γ̃ )−1A(AT M(ξ∗, γ̃ )−1A)−1AT M(ξ∗, γ̃ )−1m(x, γ̃ )],

where 
 denotes the set of all designs ξ .

Although we here extend the theory to the general case of DA-optimality, in the
following our interest is in the first s < (k + l) parameters, only. In such a case,
M(ξ, γ ) can be written as:

M(ξ, γ ) =
(
M11 M12

MT
12 M22

)
,
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Ds -optimality in copula models 409

where M11 is the (s × s) minor related to the estimated parameters. Therefore,
the simplified criterion is to maximize the function φs(M(ξ, γ )) = log det(M11 −
M12M

−1
22 MT

12), which is called Ds-optimality. We now have

Corollary 1 Ds-optimality follows as a particular case of Theorem 1 by the choice
AT = (Is 0).

Given the characterization of Corollary 1, two designs ξ and ξ∗ can be compared by
means of a ratio called Ds-Efficiency defined as follows:

(
det[M11(ξ, γ̃ ) − M12(ξ, γ̃ )M−1

22 (ξ, γ̃ )MT
12(ξ, γ̃ )]

det[M11(ξ∗, γ̃ ) − M12(ξ∗, γ̃ )M−1
22 (ξ∗, γ̃ )MT

12(ξ
∗, γ̃ )]

)1/s

.

In the next section we will describe the usage of Ds-optimality through a simple
example originally reported in Fedorov (1971).

3.2 Ds-optimality for copula models: A motivating example

Let us assume that for each design point x ∈ [0, 1], we observe an independent pair
of random variables Y1 and Y2, such that

E[Y1(x)] = β1 + β2x + β3x
2,

E[Y2(x)] = β4x + β5x
3 + β6x

4.

The model is then linear in the parameter vector β and has dependence described by
the product copula with Gaussian margins.

This example has already been generalized in Perrone and Müller (2016) where
various dependences through copula functions have been introduced and the corre-
sponding D-optimal designs have been computed. In order to illustrate the usage
of Ds-optimality in this context, let us assume the dependence between Y1 and Y2
described by a Clayton copula with α1 = 18, corresponding to a Kendall’s τ [see Eq.
(3)] value of 0.9.

Even though the low losses in D-efficiency reported in Perrone and Müller (2016)
suggest that the impact of the assumed dependence is completely negligible, one
might aim at verifying whether the information related to the dependence structure is
only carried by the estimation of α1. Essentially, one might focus on the six marginal
parameters entirely disregarding the estimation of the dependence parameter α1. This
can be done in practice by applying the Ds-optimality to the parameter vector β.

Figure 1 shows the Ds-optimal design corresponding to this case. Comparing the D-
optimal design of the product copula, assuming no dependence, with the Ds-optimal
design for only the vector β, the loss in Ds-efficiency is of 8%. This shows that the
dependence structure itself can substantially affect the design even if the dependence
parameter α1 is ignored in the estimation.

In more complex models, a similar approach can be used to identify informative
designs to specific properties of interest. In the following, we highlight the usefulness
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Fig. 1 Design points (first column), weights (second column), sensitivity function (continuous line) and
weights (bars) of the Ds -optimal design for β1, . . . , β6

of flexible copula models through the application of the Ds-criterion to a subclass of
meaningfulmodel parameters.We construct in thisway designswhich better reflect the
strength and the structure of a specific dependence and might be used to discriminate
between classes of copulas.

4 Bivariate binary case

We analyze an example with potential applications in clinical trials already exam-
ined in Denman et al. (2011) and Perrone and Müller (2016). We consider a
bivariate binary response (Yi1,Yi2), i = 1, . . . , n with four possible outcomes
{(0, 0), (0, 1), (1, 0), (1, 1)} where 1 usually represents a success and 0 a failure (of,
e.g., a drug treatment where Y1 and Y2 might be efficacy and toxicity). For a single
observation denote the joint probabilities of Y1 and Y2 by py1,y2 = P(Y1 = y1,Y2 =
y2) for (y1, y2 ∈ {0, 1}). Now, define

p11 = C(π1, π2;α), p10 = π1 − p11,
p01 = π2 − p11, p00 = 1 − π1 − π2 + p11.

(6)

A particular case of the introduced model has already been analyzed in Heise and
Myers (1996). In that work, the marginal probabilities of success are given by the
models

log

(
πi

1 − πi

)
= βi1 + βi2x, i = 1, 2 (7)

with x ∈ [0, 10]. As we are using nonlinear models the Fisher information will depend
upon the unknown β and thus we need to localize parameters at β̃1 = (−1, 1) and
β̃2 = (−2, 0.5).
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Let us now allow the strength of the dependence itself be dependent upon the
regressor x . As in our context only positive associations make sense we consider in
the following the corresponding Kendall’s τ modeled by a logistic:

τ(x, α1) = eα1x−c

1 + eα1x−c
,

where c is a constant chosen such that τ takes values in [ε, 1] for α1 ∈ [0, 1]. For our
computations we choose ε = 0.05 and we select three values for α1 such that the τ

ranges are I1 = [0.05, 0.3], I2 = [0.05, 0.9], and I3 = [0.05, 0.95].
Then, using the relationship from Eq. (3) that associates the Kendall’s τ with the

copula parameter, we model p11 by pair convex combinations of Joe, Frank, Clayton,
andGumbel copulas by linking the two copulasC1 andC2 at the same τ values through
the functions h1 and h2:

C(π1, π2;α1, α2) = α2C1(π1, π2; h1(x, α1)) + (1 − α2)C2(π1, π2; h2(x, α1)).

Notice that the construction is more general and any convex combination of stan-
dard copulas from the R package ‘copula’ can be considered through the package
‘docopulae’ (Rappold 2015).

In this model, the impact of the dependence structure and the association level
is reflected by two different parameters, as the α1 parameter is only related to the
measure of association Kendall’s τ , while the α2 parameter is strictly related to the
structure of the dependence. Therefore, applying the Ds-criterion on α2, we find a
design for discriminating against the encompassing model. Evaluating at a local guess
of α̃2 = 0.5, symmetry considerations lead us to believe that in this specific model we
will also find good designs for discriminating between the two copulas considered.

We compare the design obtained for different τ intervals and localized values for α2
with the D-optimal design obtained for the same localized values (Fig. 2). Analyzing
the rather high losses in Ds-efficiency reported in Table 1, it shows that the D-criterion
alone is not sufficient when we require information about the structure of the model.

In this scenario, an interesting question is whether the obtained Ds-optimal designs
are robust with respect to the initial model assumptions. To analyze this aspect, we
computed the Ds-efficiencies for cross-comparisons of Ds-optimal designs. In Table 2,
the results for τ ∈ I2 and α̃2 = 0.5 are reported (see Fig. 2, also). Looking at
the table, one can notice that the losses correspondent to the assumed combination
Clayton-Gumbel are in general lower, not exceeding 16%. This means that such a
combination provides good results in order to discriminate between all the considered
dependences. Further studies in this direction would lead to the development of new
design techniques to construct robust and stable designs for discrimination between
various classes of dependences.

5 Bivariate discretized Weibull function

We now analyze an example originally reported in Kim and Flournoy (2015). In
this example we construct original (nested) asymmetric copula models and we
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Fig. 2 Sensitivity functions (continuous lines) and weights (bars) for D-optimal (left column) and Ds -
optimal (right column) designs for Clayton-Gumbel (first line) and Frank-Gumbel (second line) with τ ∈
I2 = [0.05, 0.9] and α2 = 0.5

Table 1 Losses in
Ds -efficiency in percent for
I1 = [0.05, 0.3], I2 =
[0.05, 0.9], and
I3 = [0.05, 0.95]

α̃2 τ ∈ I1 τ ∈ I2 τ ∈ I3 τ ∈ I1 τ ∈ I2 τ ∈ I3

Joe–Frank Clayton–Gumbel

0.1 34.94 38.80 41.37 49.85 49.45 45.10

0.5 42.36 38.20 41.83 43.65 39.27 39.03

0.9 55.11 47.23 44.15 37.87 34.65 37.78

Joe–Clayton Frank–Gumbel

0.1 35.92 36.35 39.01 47.13 48.29 46.17

0.5 45.37 43.17 45.53 37.65 34.41 34.37

0.9 49.92 48.72 45.36 38.51 34.19 36.26

apply Ds-optimality to discriminate between symmetric and asymmetric scenar-
ios. First investigations on the changes in the geometry of the D-optimal designs
for such asymmetric copula models have been carried out in Durante and Perrone
(2016), where a theoretical overview of exchangeability in the copula theory is also
given.

We assume two dependent binary outcomes,U and V , for two system components,
respectively. Considering 0 indicating no failure and 1 indicating failure, the outcome
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Table 2 Losses in
Ds -efficiency in percent for
τ ∈ I2 and α̃2 = 0.5 by
comparing the true copula model
with the assumed one

True copula Assumed copula

C–G F–G J–C J–F

Clayton–Gumbel (C–G) 0.00 28.44 7.43 19.07

Frank–Gumbel (F–G) 16.09 0.00 30.17 19.51

Joe–Clayton (J–C) 4.25 34.27 0.00 13.51

Joe–Frank (J–F) 15.13 13.97 9.52 0.00

probabilities given a stress x can be written as:

puv(x, γ ) = P(U = u, V = v | x, γ ),

with u, v ∈ {0, 1} and where γ denotes a vector of all the model parameters.
Let Y and Z denote the amount of damage on component 1 and component 2,

respectively, and let f (y, z | x, γ ) be the bivariateWeibull regression model. Suppose
that failures are defined by dichotomizing damage measurements Y and Z :

U =
{
0 (no failure for component 1), if Y < ζ1,

1 (failure for component 1), otherwise

V =
{
0 (no failure for component 2), if Z < ζ2,

1 (failure for component 2), otherwise

(8)

where ζ1 and ζ2 are predetermined cut-off values. Then, the probabilities of success
and failure are:

p00 = ∫ ζ1
0

∫ ζ2
0 f (y, z | x, γ ) dy dz, p01 = ∫ ζ1

0

∫ ∞
ζ2

f (y, z | x, γ ) dy dz,

p10 = ∫ ∞
ζ1

∫ ζ2
0 f (y, z | x, γ ) dy dz, p11 = ∫ ∞

ζ1

∫ ∞
ζ2

f (y, z | x, γ ) dy dz.
(9)

Now, considering f (y, z | x, γ ) defined as follows:

f (y, z) =

⎧⎪⎨
⎪⎩

β1(β3 + β5)κ
2(yz)κ−1exp{−(β3 + β5)zκ − (β1 + β2 − β5)yκ } for 0 < y < z < ∞;

β2(β3 + β4)κ
2(yz)κ−1exp{−(β3 + β4)yκ − (β1 + β2 − β4)zκ } for 0 < z < y < ∞;

β3κ(y)κ−1exp{−(β1 + β2 + β3)} for 0 < y = z < ∞.

The marginal survival functions of the bivariate Weibull density are weighted univari-
ate Weibull survival functions:
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Fig. 3 Sensitivity functions (continuous lines) and design weights (bars) of the D-optimal design for the
Weibull case as reported inKim and Flournoy (2015) (left), and for asymmetric Claytonwith (α̃1, α̃2, α̃3) =
(1.5, 0.4, 0) (right); filled circle p00; filled square p11; filled inverted triangle p0.; filled triangle p.0

P(Y ≥ y) = β2

β1 + β2 − β4
exp{−(β3 + β4)y

κ }

+
(
1 − β2

β1 + β2 − β4

)
exp{−(β1 + β2 + β3)y

κ }

P(Z ≥ z) = β1

β1 + β2 − β5
exp{−(β3 + β5)z

κ}

+
(
1 − β1

β1 + β2 − β5

)
exp{−(β1 + β2 + β3)z

κ }

In Kim and Flournoy (2015), the authors set ζ1 = 0.8 and ζ2 = 0.7. Moreover, they
consider the following predictor functions:

⎧⎪⎨
⎪⎩

− log(β3 + β5) = θ0 + θ1x,

− log(β3 + β4) = θ0 + θ2x,

− log(β1 + β2 + β3) = θ0 + θ3x .

(10)

with x ∈ [0, 1].
In Kim and Flournoy (2015) the asymmetry in the causality has been reflected by

different cut points, e.g., unequal values for ζ1 and ζ2, and different initial failure rates
β1 and β2 as well as different coefficients θ1 and θ2 of the predictor.

In our example, we additionally allow asymmetry of the phenomenon to appear in
the dependence structure. In particular, such an asymmetry is introduced through the
transformation presented in Eq. (4), adding new parameters in the process.

Going into details, we introduce two parameters ν1, and ν2 such that the following
is satisfied:

{
θ1 = θ2 + ν1,

β1 = β2 + ν2.
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Table 3 Losses in D-efficiency
in percent for crossed
comparison between the optimal
designs found for the Weibull
model as reported in Kim and
Flournoy (2015) and all our
models

True model Assumed model

Weibull Our models

min max min max

Weibull 0.00 0.00 9.43 10.18

Our models 17.78 71.65 0.00 3.37
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Fig. 4 Sensitivity functions (continuous lines) and design weights (bars) of D-optimal designs (first row)
and Ds -optimal designs (second row) for the Weibull case for asymmetric Clayton with (α̃1, α̃2, α̃3) =
(2, 0.4, 0.2) (left column), and for (α̃1, α̃2, α̃3) = (3.6, 0.6, 0) (right column); filled circle p00; filled square
p11; filled inverted triangle p0.; filled triangle p.0

The vector (ν1, ν2) then quantifies the dissimilarity of the margins. For our study, we
assume the joint dependence to be described by the asymmetric Clayton copula with
three parameters α1, α2 and α3, constructed according to Eq. (4). In this context, we
apply Ds-optimality to the parameters μ = (ν1, ν2, α2, α3) which denote the total
asymmetry of the phenomenon, both from the marginals and the joint dependence. In
such a way, we find designs which are more informative to the asymmetry and are then
suitable to discriminate between exchangeable models and non-exchangeable ones.
The used parameter setting corresponds to two Kendall’s tau values: 0.5 and 0.25,
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respectively. The initial values of the parameters α1, α2, and α3 are the same as used
in Durante and Perrone (2016), while the other parameter values are θ̃0 = −2, θ̃2 =
5, θ̃3 = 2, ν̃1 = −1, ν̃2 = 0.1, β̃2 = 0.2, and κ̃ = 2.

The D-optimal designs obtained spread weight to four design points, slightly dif-
fering in their distribution. Figure 3 shows a representative design for our model
side by side with the D-optimal design for the Weibull case as reported in Kim
and Flournoy (2015). The maximal and minimal values of the loss in D-efficiency
by comparing the design reported in Kim and Flournoy (2015) and the D-optimal
designs for our models are reported in Table 3. A full table with the losses of
such comparison for each set of initial values of α1, α2, and α3 is available
in the supplementary material. The results suggest that in every case it would
be advantageous to choose one of our models as generally more informative and
robust.

We are now interested in verifying whether the D-optimal design is informative
enough to discriminate between asymmetry and symmetry. To this aim, we compare
Ds-optimal designs for μ to the corresponding D-optimal designs (Fig. 4). In this
case, the loss in Ds-efficiency never exceeds 5%. In contrast to the binary case, such a
result indicates that the D-optimal design is already quite adequate for discriminating
between symmetric and asymmetric models.

6 Conclusions

In this paper we extend the equivalence theory to allow the application of the Ds-
optimality to copula models. In addition, we use the extended theory to embed the
issue of the choice of the copula in the context of designdiscrimination. Specifically,we
present a new methodology based on the usage of Ds-optimality to construct designs
that discriminate between various dependences. Through some examples we highlight
the strength of the proposed technique due to the usage of the copula properties. In
particular, the proposed approach allows to check the robustness of the D-optimal
design in the sense of discrimination and to construct more informative designs able
to distinguish between classes of dependences.

All the shown results are obtained by the usage of the R package ‘docopulae’ (Rap-
pold 2015). Although we here compare just a few possible dependences, the general
construction is much wider. The R package ‘docopulae’ allows the interested reader
to run designs assuming a broad variety of dependence structures. It then provides a
strong computational tool to the usage of copula models in real applications.

In the future, we aim at generalizing other discrimination criteria such as T -
optimality andKL-optimality to flexible copulamodels (Dette andTitoff 2009;Uciński
and Bogacka 2005; López-Fidalgo et al. 2007). Furthermore, powerful compound cri-
teria might be developed for such models [see, for instance, Atkinson (2008), Dette
(1993) and Tommasi (2009)]. In addition, the construction of multistage design proce-
dures that allow for discrimination and estimation might be of great interest in special
applications such as clinical trial studies (Dragalin et al. 2008; Müller and Ponce De
Leon 1996).
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