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Abstract

Background: Motor imagery training might be helpful in stroke rehabilitation. This study explored if a single
session of motor imagery (MI) training induces performance changes in mental chronometry (MC), motor
execution, or changes of motor excitability.

Methods: Subacute stroke patients (n = 33) participated in two training sessions. The order was randomized. One
training consisted of a mental chronometry task, the other training was a hand identification task, each lasting 30
min. Before and after the training session, the Box and Block Test (BBT) was fully executed and also performed as a
mental version which served as a measure of MC. A subgroup analysis based on the presence of sensory deficits
was performed. Patients were allocated to three groups (no sensory deficits, moderate sensory deficits, severe
sensory deficits). Motor excitability was measured by transcranial magnetic stimulation (TMS) pre and post training.
Amplitudes of motor evoked potentials at rest and during pre-innervation as well as the duration of cortical silent
period were measured in the affected and the non-affected hand.

Results: Pre-post differences of MC showed an improved MC after the MI training, whereas MC was worse after the
hand identification training. Motor execution of the BBT was significantly improved after mental chronometry
training but not after hand identification task training. Patients with severe sensory deficits performed significantly
inferior in BBT execution and MC abilities prior to the training session compared to patients without sensory deficits
or with moderate sensory deficits. However, pre-post differences of MC were similar in the 3 groups. TMS results
were not different between pre and post training but showed significant differences between affected and
unaffected side.

Conclusion: Even a single training session can modulate MC abilities and BBT motor execution in a task-specific
way. Severe sensory deficits are associated with poorer motor performance and poorer MC ability, but do not have
a negative impact on training-associated changes of mental chronometry. Studies with longer treatment periods
should explore if the observed changes can further be expanded.

Trial registration: DRKS, DRKS00020355, registered March 9th, 2020, retrospectively registered
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Background
Motor imagery (MI) is a process that involves the mental
execution of an action in the absence of movement, and
it activates neural structures and processes similar to
those activated when certain movements are actually
performed [1, 2]. Different aspects contribute to MI abil-
ities. The subject needs to be able to imagine actions in
a three-dimensional space [3]. He or she should also be
able to correctly estimate the duration of an imagined
movement. This ability addressing the temporal struc-
ture of simulated actions is called mental chronometry
(MC). MC involves the comparison of movement times
during imagined and executed motor tasks [3]. It has
been shown to be a reliable tool for screening for MI
abilities [4]. A third aspect of MI is the vividness of
motor imagery. This ability is typically addressed by self-
assessment questionnaires (e.g., [5–7]).
Mental practice (MP) is a training method using MI

elements and has been administered to stroke patients
as an adjunct therapeutic approach for more than 15
years (e.g., [8, 9]). Current evidence suggests that most
[3, 10–12] but not all stroke patients [13–16] have MI
abilities similar to healthy subjects. However, controlled
treatment trials have shown conflicting results. Recent
reviews concluded that a trend in support of MP as a
treatment option for upper extremity rehabilitation was
evident [17] but that heterogeneity in methodological
quality was too high to recommend MP in general [18].
The primary goal of this study was to investigate if

even a single session of MI training produces detectable
changes in MC performance, motor performance and
motor excitability. In particular, we explored if changes
in performance and/or excitability are task-specific. As
secondary goal, we explored if the effects of a single MI
training are influenced by impairments of sensory
functions.

Methods
The same group of stroke patients participated in a MI
training and, as a control condition, in a hand identifica-
tion task training that addresses imaging (mental rota-
tion) in three-dimensional space. Transcranial magnetic
stimulation (TMS) techniques were used to assess
changes of motor excitability. It has been shown that,
during a motor imagery task, motor excitability increases
specifically for those muscles involved in the task [19],
Excitability changes are typically assessed by measuring
the amplitudes of motor evoked potentials. In a preced-
ing study we demonstrated that stroke patients with a
severe sensory deficit had less motor excitability in-
creases during a motor imagery task than stroke patients
with a pure motor deficit [20]. In the present study, we
did not examine motor excitability during but before
and after the training period.

Patients
Altogether, 33 stroke patients (13 female, mean age:
63 ± 11 years, 16 with right-sided paresis, time since on-
set: 2.1 ± 1.1 months) were included after having given
consent to participate in the study. Participants were re-
cruited during inpatient neurological rehabilitation at
Kliniken Schmieder, Allensbach, Germany. They stayed
in the hospital for at least 4 weeks and had 3 treatment
hours per day, 5 days a week. Treatments focused on
hand and arm function for approximately 2 h per day
and were similar for all patients regarding the amount
and duration of therapy. For this trial, the patients in
addition participated in a motor imagery training and a
hand identification training. Both kinds of trainings have
been used in stroke patients before [10, 15, 20, 21].
Our inclusion criteria were the ability to understand

the instructions, the willingness to participate, an ische-
mic or hemorrhagic stroke < 6 months ago as proven by
cranial computed tomography or magnetic resonance
imaging of the brain and the ability to grasp and release
blocks that are typically used in a classical Box and
Block Test [22]. The cubes have an edge length of 2.5
cm. Subjects should be able to grasp and release at least
15 cubes. There were no restraints regarding time for
accomplishing the task or the way of grasping.
Exclusion criteria were hemianopia, spatial neglect,

anosognosia, severe other illness that could interfere
with the ability to participate actively. Exclusion criteria
for TMS application were a history of epileptic seizures,
pregnancy, metallic implants in the brain and heart pace
makers.
The location of the lesion was determined based on ei-

ther magnetic resonance imaging or computer tomog-
raphy. Lesions were stratified as being “subcortical”
without any evidence of an involvement of cortical areas
or as being “cortical/subcortical” with an involvement of
cortical and subcortical areas.
Patient recruitments were started in March 2017 and,

after reaching the estimated number of participants, ter-
minated in July 2018.

Measures
Somatosensory testing
The sensory testing included detection of light touch,
localization of touch and assessment of vibration sense
as described earlier [15]. Detection of light touch was
assessed with a cotton carrier at the fingertip of Digit II
of the affected hand without visual control by the pa-
tient. It was noted if the patient felt the light touch on
the affected hand immediately, only when applying pres-
sure, or if the carrier couldn’t be felt at all. To assess
localization of touch, three different fingers of the af-
fected hand were touched, again without visual control
by the patient. Distinction was made if the patient

Liepert et al. BMC Sports Science, Medicine and Rehabilitation           (2020) 12:66 Page 2 of 7



detected the touch at all fingers correctly, if there was a
mistake in one or two fingers, or no localization of
touch was possible at all. A tuning fork with a scale of
0 to 8 served to test the vibration sense on the dorsal
side of metacarpal joint of Digit II of the affected hand.
0 to 3 was defined as severe sensory loss, 4–6 as mod-
erate sensory loss, and 7–8 as no sensory deficit in vi-
bration sense.

Box and block test (BBT)
A modified version of the BBT with 15 blocks was used
for evaluation of motor performance and MC ability.
The BBT is a widely used means of measuring upper ex-
tremity dexterity, including grasping, moving an object
over a barrier and releasing it [22]. This test is frequently
used as a measure of dexterity and has been shown to be
valid and reliable [23–25]. It has been used to measure
motor imagery abilities in preceding studies [20, 26].
The task requires the ability to grasp and release objects
and to perform shoulder and elbow movements because
the patient has to raise his arm in order to surmount the
partition of the box with a height of 15 cm.
The patients first perform the BBT mentally and then

execute it as a motor task with one hand. For mental
performance of the BBT, the patient received an audi-
tory go-signal from the examiner and indicated orally
when he or she had completed the task. Motor imagery
(MI) and motor execution (ME) of the BBT were first
performed for the affected hand and then for the non-
affected one. The sequence of motor imagery and af-
fected side first was chosen in order to avoid any influ-
ence and learning experience from motor execution and
from the unaffected side. The times the patient needed
to perform the task mentally and physically were mea-
sured by a stopwatch. MC ability was calculated as a ra-
tio of ([motor execution time– motor imagery time]/
motor execution time) [15]. The reason for applying this
ratio was to account for the influence of different ME
times. For example, a difference of 3 s between MC and
ME indicates a worse MC ability if ME takes 15 s than
when it takes 30 s. In dependence on whether ME or MI
time was shorter, the ratio could either be a positive or a
negative value. Since we were exclusively interested in
the absolute difference, all ratios were expressed as
positive values. The closer to zero a ratio is, the higher is
the congruency between MI and ME. In the next step,
pre-training ratios were subtracted from post-training
ratios. In this case, the change of ratio was relevant:
negative values indicated that post-training values had
been closer to zero than pre-training ratios. Thus, nega-
tive values indicate an improved MC performance post-
training whereas positive values show a deterioration in
MC performance.

BBT measures were done before and after both train-
ing sessions.

Transcranial magnetic stimulation (TMS)
TMS was performed with a circular coil. Recordings
were taken from the first dorsal interosseous muscle
(FDI) on both hands. Both hemispheres were studied
consecutively. First, the optimal coil position, defined as
the place where motor evoked potentials (MEPs) could
be evoked with the lowest stimulus intensity, was
determined. This coil position was marked with ink on
the skin to ensure an exact repositioning of the coil
throughout the experiment. Then, the motor threshold
was identified. Resting motor threshold (MT) was de-
fined as the stimulus intensity needed to produce MEPs
with a size of 50–100 μV in 5 out of 10 consecutive trials
during complete muscle relaxation [27].
Transcranial magnetic stimulus intensity was set at

130% of the individual motor threshold. Six motor
evoked potentials were recorded with the target muscle
at rest. Another six MEPs as well as the cortical silent
period (cSP) were collected during pre-innervation of
the target muscle with approximately 20% of the max-
imum voluntary contraction force.
Recordings were stored (Viking IV, Viasys Comp.) and

analysed off-line. MEPs were measured peak-to-peak,
and a mean amplitude was calculated. The cSP duration
was defined from the beginning of the MEP until the re-
occurrence of EMG activity with an amplitude of at least
30% of the pre-stimulation EMG activity.
TMS was done before and after both training sessions.
The persons performing the measurements were

blinded regarding the type of training.
The primary outcome measure was the change of MC

ability, secondary outcomes measures were changes of
ME abilities and changes of TMS parameters.

Training
Motor imagery training (MI)
The BBT was used in the same way as described above.
Patients were advised to exclusively imagine performing
the task with the affected upper limb. A total of 15
blocks was placed in the box, arranged in 5 rows of 3
blocks. The patient received an auditory go-signal from
the examiner and indicated orally when he or she had
completed the task. The time between go-signal and
stop-signal was measured with a stop-watch and re-
corded. This procedure was repeated as often as possible
until 30 min were over. The patient did not receive any
information about his or her level of performance. We
chose to give no immediate feedback in order to imitate
the typical clinical setting when MI is used as an add-on
therapy.
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Hand identification task training (HIT)
In this mental rotation task, the subject watches a hand
that is displayed in 8 different orientations on a PC
screen and has to decide whether it is a right or a left
hand by pressing the appropriate button on the keypad.
Altogether, 40 hand images per run were presented, with
four runs being performed. The results were analyzed
with respect to the correctness of the answer and the
time interval between target presentation and button
press (response time). Patients used their unaffected
hand to press the button.
Both trainings were performed for 30 min. The se-

quence of trainings (first MI training followed by HIT
training or vice versa) was randomized for each patient.
Randomization was done by a person otherwise not in-
volved in the study. A closed envelope that contained
the information about the sequence for each single pa-
tient was given to the persons that performed the train-
ing sessions.
A minimum of 3 days was chosen as the interval be-

tween the sessions.

Subgroups according to the degree of sensory impairment
Based on sensory assessments the patients were subdi-
vided into three groups. Group 1 patients did not have
any sensory deficits. Group 2 comprised patients with
mild to moderate sensory loss while group 3 was formed
by the patients with severe sensory loss.

Statistical analysis
Statistical calculations were performed with IBM SPSS,
version 25. A Shapiro Wilk test was performed to
analyze if the data show a normal distribution. Only the
ratios (ME-MI)/ME showed a normal distribution. BBT
results and the TMS parameters were not normally dis-
tributed. For analysis of the non-normally distributed
data Friedman tests were performed. Affected and non-
affected side were calculated separately. The ratios were
analyzed with a paired sample t test. For analysis of the
3 patient groups with different degrees of sensory defi-
cits an analysis of variance (ANOVA) was calculated for
the normally distributed MC data. The non-normally
distributed BBT motor execution data were analyzed
with Kruskal-Wallis test and, as posthoc analysis, with
Mann-Whitney tests.
The level of statistical significance was assumed with

p < 0.05.

Results
Clinically, 10 patients presented a pure motor disturb-
ance, 18 patients had a moderate impairment of sensory
functions and 5 patients suffered from severe sensory
deficits. Radiological results indicated subcortical
hemorrhage in 8 patients and ischemic strokes in 25

patients. Altogether, 22 patients had pure subcortical le-
sions, the other 11 patients showed an additional in-
volvement of cortical areas.

Mental chronometry ratios
Calculation of pre-post differences of MC ratios
showed that only the group that had performed the
MC training had a smaller MC ratio after the inter-
vention whereas MC ratios increased after HIT train-
ing (MI training: − 0.05 ± 0.16; HIT: 0.05 ± 0.15). This
difference was significant (p = 0.015).

BBT motor execution
On the paretic side, a significant difference between pre
and post values was found for MI training but not for
HIT training (Table 1). However, post values did not dif-
fer significantly between both exercises (p = 0.699). No
significant differences between pre and post values were
found on the unaffected side.

Sensory deficits
The three subgroups of patients (no sensory deficit
[Group 1], moderate deficit [Group 2], severe deficit
[Group 3]) were analyzed in relation to BBT motor exe-
cution, MC abilities prior to the training sessions and
MC pre-post differences.
The three groups differed significantly in their motor

performance (Group 1; 19.1 ± 3.8 s; Group 2: 26.0 ± 11.8
s, Group 3: 45.8 ± 14.6 s; p < 0.001. Group 1 versus
Group 2: p = 0.102; Group 1 versus Group 3: p < 0.001;
Group 2 versus Group 3: p < 0.001) and in their MC
abilities prior to HIT training and MI training (Group 1:
0.27 ± 0.17; Group 2: 0.26 ± 0.17; Group 3: 0.41 ± 0.15;
F = 3.788; p = 0.028. Group 1 versus Group 3: p = 0.078;
Group 2 versus Group 3: p = 0.03; Group 1 versus Group
2: not significant) but were not significantly different in
the mental chronometry pre-post differences (Group 1:
MI training: − 0.049 ± 0.1; HIT: 0.019 ± 0.19; Group 2:
MI training: − 0.054 ± 0.17; HIT: 0.066 ± 0.13; Group 3:
MI training: − 0.062 ± 0.2; HIT: 0.04 ± 0.11).

Table 1 Motor execution times, measured in seconds, before
(pre) and after (post) a single session of mental chronometry
training (MC) and hand identification training (HIT). Mean values
± standard deviations are presented. n.s., not significant

Box and block test

MC group HIT group

Affected Unaffected Affected Unaffected

Pre 27.4 ± 12.7 12.5 ± 2.1 27.3 ± 14.4 12.5 ± 2.3

post 25.5 ± 12.7 12.5 ± 2.6 26.8 ± 14.6 12.3 ± 2.4

P value (pre – post) 0.006 0.67 (n.s.) 0.199 (n.s.) 0.41 (n.s.)
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Training
MI training
In total, patients needed 22.1 ± 9 (mean ± standard
deviation) seconds for moving the 15 blocks mentally. A
subdivision of the results into a first and a second half of
the trials showed no significant difference (first half:
21.8 ± 8.4 s, second half: 22.3 ± 9.7 s; p = 0.35).

Hit
In total, patients needed 3.2 ± 1.1 s for deciding whether
a right or a left hand was presented on the screen. The
reaction time was significantly longer (p < 0.001) in the
first run compared to the other runs (first run: 3.8 ± 1.3
s, second run: 3.1 ± 0.9 s, third run: 3.2 ± 0.8 s, fourth
run: 2.9 ± 1 s). No significant difference was found be-
tween runs 2, 3 and 4.
Similarly, the number of correct responses was signifi-

cantly lower in the first run compared to runs 3 (p =
0.006) and 4 (p = 0.002). There was no significant differ-
ence between runs 2, 3, and 4. Mean percentage of cor-
rect response: run 1, 80.4 ± 13.4%, run 2, 81.8 ± 20.9%,
run 3, 86.6 ± 15.7%, run 4, 86.9 ± 16.4%.

TMS results (Table 2)
TMS was performed in 26 patients. Seven patients had
to be excluded due to presence of an exclusion criterion.
MEP amplitudes at rest showed a significant difference

between affected and unaffected side for MI training
(p = 0.012) but not for HIT training (p = 0.052). No sig-
nificant pre/post difference was found in either group.
MEP amplitudes during pre-innervation neither

showed a significant difference between affected and un-
affected side nor between pre and post values.
The cortical silent period showed significantly longer

durations of the cSP in the affected side in both groups
(MI training: p = 0.01; HIT training: p = 0.012). There
were no significant differences between pre and post
values.

Discussion
The current study provides two main results: First, a sin-
gle MI training modulated MC abilities and was associ-
ated with an improvement of motor execution. Second,
MC changes were task-specific. Following MI training,

stroke patients showed an improved MC performance
whereas MC performance deteriorated after hand identi-
fication training. On the one hand, this result suggests
that it is possible to improve MC abilities by a specific
training. On the other hand, the observation suggests
that focusing on another mental ability, in this case the
performance of mental rotations, might interfere with
MC performance, thus leading to an inferior MC ability.
Several studies have demonstrated that a single train-

ing session can induce a measurable change in perform-
ance (e.g., [28–32]). Our result is in line with this
evidence.
However, task specificity has been investigated less

consistently. In general, task-specific repetitive training
has been shown to improve upper limb functions (e.g.,
[33, 34]). For motor imagery, a beneficial task-specific ef-
fect has also been described [35]. Our results provide
further evidence for these findings. Notably, the exer-
cises we used for comparison both address features of
motor imagery. Thus, the control condition is more
comparable to the main intervention than this has been
the case in previous studies.
Interestingly, only after MI training a significant im-

provement of BBT motor execution was found. This
finding suggests a task-specificity and indicates that even
a single MI training may influence motor performance
of the same task. In contrast, after HIT training, no sig-
nificant improvement of the BBT motor execution was
found. In future studies we will explore whether un-
trained motor tasks might also be enhanced after MI
training.
Patients differed in their motor performance in rela-

tion to their sensory functions. Those without sensory
deficits showed the best performance, those with severe
sensory deficits the worst performance. This result repli-
cates an earlier report [15]. We also replicated the find-
ing that patients with the most severe sensory deficits
had the worst MC ability prior to the training. However,
the pre-post MC difference was similar in the three
groups. Thus, it seems as if sensory deficits do not pre-
clude the possibility to benefit from a motor imagery
training. Nevertheless, this assumption needs to be veri-
fied in a larger group of patients with severe sensory
impairments.

Table 2 Amplitudes of motor evoked potentials (MEP), measured in mV, and duration of the cortical silent period (cSP), measured in
ms, before (pre) and after (post) a single session of mental chronometry training (MC) and hand-identification training (HIT) in n = 26
patients. Mean values ± standard deviations are presented. Aff, affected side; unaff, unaffected side

MC
MEP rest
aff

MC
MEP rest
unaff

HIT
MEP rest
aff

HIT
MEP rest
unaff

MC
MEP
active
aff

MC
MEP
active
unaff

HIT
MEP
active
aff

HIT
MEP
active
unaff

MC
cSP aff

MC
cSP unaff

HIT
cSP aff

HIT
cSP unaff

Pre 0.53 ± 0.5 0.95 ± 0.6 0.48 ± 0.5 0.91 ± 0.8 4.0 ± 2.2 5.9 ± 2.5 4.5 ± 2.7 6.1 ± 2.6 208.0 ± 67.8 137.7 ± 39.2 224.4 ± 71.3 138.4 ± 42.2

post 0.65 ± 0.6 1.14 ± 0.6 0.62 ± 0.6 1.3 ± 1.1 4.2 ± 2.4 6.4 ± 3.3 4.4 ± 2.7 6.3 ± 2.4 200.4 ± 60.7 137.0 ± 46.6 214,8 ± 73.5 139.3 ± 45.1
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We were unable to demonstrate changes of motor ex-
citability after the interventions. In contrast, it has been
shown repeatedly that motor excitability is modulated
during an motor imagery task [20, 36], thus suggesting
that a single motor imagery training is not able to pro-
duce motor excitability changes that persist beyond the
imagery session. In part, this may be due to a high vari-
ability of the data. However, the type of training we
chose might also have an influence. A recent publication
in which a single session of mirror therapy had been ex-
plored reported MEP increases in the affected limb after
the training [37]. Apart from the different types of inter-
vention, patient group characteristics might also contrib-
ute to this difference in MEP results.
In accordance with preceding studies, TMS results

(MEP amplitudes and duration of the cSP) indicated sig-
nificant differences between affected and unaffected side.
(e.g., [38–40]).
Limitations of this study are that patients with severe

motor deficits were not included and that it is not yet
known if the improvements of motor functions are re-
stricted to BBT performance or can be transferred to
untrained motor tasks as well.

Conclusions
The current study provides evidence that a single train-
ing session of mental chronometry can improve mental
chronometry abilities and motor performance in a task-
specific way. Based on this result, we hypothesize that a
series of MC training sessions could strengthen the ef-
fect seen after a single session. Such a strengthened ef-
fect might then have the potential to further translate
into improved motor execution.
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