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Abstract: Background: Little is known about the relation between morbid obesity and duodenal
transcriptomic changes. We aimed to identify intestinal genes that may be associated with the de-
velopment of obesity regardless of the degree of insulin resistance (IR) of patients. Material and
Methods: Duodenal samples were assessed by microarray in three groups of women: non-obese
women and women with morbid obesity with low and high IR. Results: We identified differen-
tially expressed genes (DEGs) associated with morbid obesity, regardless of IR degree, related to
digestion and lipid metabolism, defense response and inflammatory processes, maintenance of the
gastrointestinal epithelium, wound healing and homeostasis, and the development of gastrointestinal
cancer. However, other DEGs depended on the IR degree. We mainly found an upregulation of
genes involved in the response to external organisms, hypoxia, and wound healing functions in
women with morbid obesity and low IR. Conclusions: Regardless of the degree of IR, morbid obesity
is associated with an altered expression of genes related to intestinal defenses, antimicrobial and
immune responses, and gastrointestinal cancer. Our data also suggest a deficient duodenal immune
and antimicrobial response in women with high IR.

Keywords: microarray; duodenum; morbid obesity; inflammation; cancer; insulin resistance;
immune system

1. Introduction

Obesity has reached epidemic proportions in recent decades. It is associated with
numerous disorders such as a low-grade systemic inflammation, insulin resistance, dys-
lipidemia, and hypertension, which in turn increase the risk of heart disease, stroke, and
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type 2 diabetes mellitus (T2DM) [1,2]. Overfeeding, changes in the composition of the diet
(higher caloric density), and a sedentary lifestyle are some of the main underlying causes
for overweight and obesity [3]. The gastrointestinal (GI) tract is the first point of interaction
between the host, the microbiota, and antigens coming from the diet; therefore, unhealthy
food consumption habits disturb, in the first instance, the composition of the intestinal
microbiota and the homeostasis of the GI tract. In this sense, it is known that obesity is
associated with dysbiosis, altered intestinal mobility, permeability, and inflammation, as
well as gut–brain disorders [4,5]. These imbalances can not only modulate the metabolism,
promoting and aggravating the development of obesity, but can also be the starting point
that triggers a series of events involved in the development of comorbidities associated
with obesity, such as insulin resistance and T2DM [6].

Most studies on obesity and T2DM are focused on the study of metabolism modulating
tissues such as adipose, skeletal muscle, or liver [7]. The remission of T2DM, as well as the
improvement of other pathologies in patients with morbid obesity undergoing bariatric
surgery, has revealed the important involvement of the small intestine in metabolism and
body homeostasis [8]. However, the GI tract is not only involved in digestive functions. The
intestine, through the secretion of specific molecules, and the immune system modulate the
composition of the microflora, which is considered an important virtual endocrine organ [9].
On the other hand, the GI has a direct role in the regulation of the body’s energy balance
through the coordinated action of hormonal, neural, and immunological signals [10].
Although studies have been conducted on the matter, little is known about the intestinal
transcriptomic changes in patients with morbid obesity and how these changes may be
different depending on the degree of insulin resistance. To date, there are few studies in
this regard, with the majority being carried out in animal models [11–14]. In previous
studies we have observed significant changes in the protein expression of various cytokines
and chemokines related to pro/anti-inflammatory processes in the duodenum of patients
with morbid obesity and different grades of insulin resistance, as well as in intestinal
permeability [15]. Moreover, we have observed changes in the duodenal transcriptome
of women according to their insulin resistance level, independently of the patient’s body
mass index (BMI) [16].

To provide more information, in this study we aimed to identify intestinal genes that
may be associated with the development of obesity regardless of the degree of insulin resis-
tance of patients. To this effect, we identified genes with the same expression profile in the
duodenum of women with morbid obesity alongside both high and low insulin resistance,
which are the same genes that are associated with BMI regardless of insulin resistance.

2. Material and Methods
2.1. Subjects

The study included 15 patients with morbid obesity (MO) (BMI > 40 kg/m2) and
6 healthy, non-obese (NO) women (BMI < 30 kg/m2) (Table 1) (see Supplementary Table S1
for more detailed information about the women). The MO women included in this study
underwent sleeve gastrectomy (SG) at the Regional University Hospital of Malaga (Spain).
One month before SG, they underwent programmed gastroscopy to discard alterations in
the stomach, at which time duodenal biopsies were obtained. Subjects were excluded if
they had T2DM with anti-diabetic oral or insulin treatment, acute inflammatory disease,
or infectious disease or if the patient did not consent. The MO women were classified
into two groups according to the homeostasis model assessment of IR (HOMA-IR) level
(low HOMA-IR value (<4.7) (MO-low-IR, n = 7) or high HOMA-IR value (>4.7) (MO-high-
IR, n = 8)) (both groups without treatment for T2DM) [15,16]. The cut-off point for the
HOMA-IR was taken from previous studies carried out in our population of patients with
morbid obesity [15–17]. The non-obese women were selected among those who underwent
programmed gastroscopy at the Virgen de la Victoria University Hospital (Málaga, Spain)
with non-pathological results, at which time duodenal biopsies were taken. They had
a similar average age to the MO group and reported that their body weight had been



Biomedicines 2022, 10, 1024 3 of 20

stable for at least 3 months prior to the study. We included only one group of NO patients
who had low insulin resistance (NO-low-IR). This cut-off point for the HOMA-IR was
obtained from the 75th percentile of the HOMA-IR value for non-obese subjects in our area
with normal glucose metabolism according to the 1998 American Diabetes Association
classification [18]. These subjects (NO and MO women) had been included in previous
studies [15,16]. All individuals included were of Caucasian origin. The samples were
processed and frozen immediately after arrival at the Regional University Hospital Biobank
(Andalusian Public Health System Biobank). Participants gave their written informed
consent. The study was carried out in accordance with the Code of Ethics of the World
Medical Association (Declaration of Helsinki) and approved by the Malaga Provincial
Research Ethics Committee, Spain (PI12/00338).

Table 1. Anthropometric and biochemical variables of the three groups of women.

NO-Lower-IR MO-Lower-IR MO-Higher-IR

N 6 7 8
Age (years) 43.6 (11.0) 48.0 (10.0) 45.0 (17.0)
Weight (kg) 55.5 (14.0) 110.6 (21.0) 3 126.3 (34.4) 3

BMI (kg/m2) 22.1 (6.9) 46.02 (6.7) 3 50.9 (14.3) 3

Waist (cm) 74.5 (14.3) 116.0 (18.0) 3 131.0 (10.5) 3

Hip (cm) 103.5 (6.0) 143 0 (31.0) 2 151.5 (23.5) 2

Glucose (mg/dL) 78.0 (13.0) 84.0 (7.0) 95.5 (19.0)
Insulin (µIU/mL) 8.0 (2.5) 10.5 (4.8) 24.3 (8.9) 3,*

Cholesterol (mg/dL) 194.5 (32.0) 186.0 (53.0) 188.0 (69.0)
Triglycerides (mg/dL) 83.5 (39.0) 110.0 (57.0) 142.0 (84.0)

HOMA-IR 1.47 (0.54) 2.13 (1.10) 5.2 (2.13) 3,#

Data given as median (interquartile range). Significant differences between MO-low-IR and MO-high-IR
groups: * p < 0.05, # p < 0.01. Significant differences between NO-low-IR and MO-low-IR groups or between
NO-low-IR and MO-high-IR groups: 2 p < 0.01, 3 p < 0.001. HOMA-IR, homeostatic model assessment of insulin
resistance index; MO-high-IR, women with morbid obesity with high insulin resistance; MO-low-IR, women with
morbid obesity with low insulin resistance; NO-low-IR, nonobese women with low insulin resistance.

2.2. Analytical Procedures

Serum glucose, cholesterol, and triglycerides (Randox Laboratories Ltd., Antrium,
UK) were measured in fasting state by standard enzymatic methods. Insulin was ana-
lyzed using an immunoradiometric kit (DIAsource ImmunoAssays SA, Louvain-la-Neuve,
Belgium). The homeostasis model assessment of insulin resistance (HOMA-IR) was cal-
culated with the following equation: HOMA-IR = fasting insulin (µIU/mL) × fasting
glucose (mmol/L)/22.5 [17].

2.3. Duodenal Samples

Duodenal biopsies from NO and MO women from the 2nd part of the duodenum
were obtained in a fasting state during a gastroscopy that the patients underwent [15,16].
The mucosa was washed with physiological saline solution, immediately frozen in liquid
nitrogen, and maintained at −80 ◦C until analysis. Total RNA isolation from frozen
duodenal biopsy samples was performed using an RNeasy Mini Kit (Qiagen GmbH,
Hilden, Germany).

2.4. Microarray Procedure

The study of the differential expression profiling, with a SurePrint-G3 Human GE
8 × 60 K microarray kit (ID 028004; GPL13607) (Agilent Technologies, Madrid, Spain), was
carried out following an experimental design in which a two-pairwise comparison was
performed. Samples for each experimental condition were labeled, hybridized, washed, and
scanned according to the two-color microarray-based gene expression analysis v6.5 protocol
of the Genetic Diagnostic Bioarray facilities (Bioarray, Alicante, Spain). This microarray
contained 62,976 probes, of which 58,717 had no controls. These probes correspond to
21,414 genes (filtered by gene identification). From these 58,717 probes, 45,283 showed
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mRNA expression. The data discussed in this publication have been deposited in the
NCBI’s Gene Expression Omnibus (GEO) (GEO Series access number GSE147562).

2.5. Microarray Data Analysis

Data analysis was performed with Agilent Feature Extraction Software v.10.7 (Agilent
Technologies), using the latest gene annotations available. The expression of each gene
was reported as the ratio of the value obtained after each condition relative to the control
condition after normalization of the data against the median of the control samples. A
filter was applied to select the genes with significant differential expression (DEGs) that
displayed an adjusted FDR of less than 0.05 by a nonparametric analysis (Rank Product).
This analysis has the advantage of being less sensitive to the variability of the samples;
thus, it is suitable in systems where high variability is expected. Prior to any further
analysis, the array points were filtered in order to discard replicated genes, filtering first by
probe name and later by systematic name. Due to the direction of the hybridizations, the
DEGs in this study were those that were up- or downregulated in the MO groups when
compared with the NO group. We obtained two lists of DEGs (FDR < 0.05) between (a) the
MO-low-IR group with respect to the NO-low-IR group, and between (b) the MO-high-IR
group with respect to the NO-low-IR group. These two gene lists were overlapped by a
Venn diagram obtaining the upregulated and downregulated DEGs shared by MO-low-IR
and MO-high-IR women with respect to the NO-low-IR group (genes in intersection), as
well as the exclusive DEGs of MO-low-IR and MO-high-IR.

2.6. Functional Enrichment

The lists of up- and downregulated genes offered by the Venn diagram were func-
tionally analyzed using Gene Set Enrichment Analysis (GSEA; GSEA/MSigDB web site
v6.4 version; MSigDB database v7.2 updated September 2020; https://www.gsea-msigdb.
org/gsea/index.jsp, accessed on 27 March 2021) [19,20], which is a computational method
that determines whether an a priori-defined set of genes shows statistically significant,
concordant differences between two biological states. We computed overlaps between our
gene sets and gene sets in the MSigDB database. Using this platform, we identified gene
sets significantly overrepresented (FDR q-value < 0.05) in different selected collections and
sub-collections. The FDR q-value is a false discovery rate analog of hypergeometric p-value
after correction for multiple hypothesis testing according to Benjamini and Hochberg.
Overrepresentation analysis is a technique for determining whether a set of terms is present
more than it would be expected. The collections and sub-collections used in the analysis
were the following: gene ontology gene sets (GO terms), chemical and genetic perturba-
tions (CGP), hallmark (H), human phenotype ontology (HPO), KEGG subset of canonical
pathways (CP:KEGG), REACTOME subset of canonical pathways (CP:REACTOME), and
cancer modules (CM). GO defines the function used to describe gene function with respect
to three aspects: molecular function (MF) (molecular activities of gene products), cellular
component (CC) (where gene products are active), and biological process (BP) (pathways
and larger processes made up of the activities of multiple gene products).

2.7. Technical Validation of Microarray Data by Real-Time–Quantitative PCR (RT–qPCR)

The technical validation of the data obtained in the microarray was carried out in our
previous study performed in these same patients [16].

2.8. Statistical Methods

We designed the experiment taking into account the anticipated number of undifferen-
tially expressed genes in the microarray (20,000), 1 as the number of false positives, 0.80 as
the desired power, 2 as the mean difference in log-expression between two groups, and 1 as
the anticipated standard deviation of the difference in log-expression between two groups.
With this design, the sample size for each group is 6 [21,22]. The statistical analysis was
performed with R statistical software, version 2.8.1 (Department of Statistics, University
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of Auckland, Auckland, NZ; http://www.r-project.org/). Differences between groups
were established using the Mann–Whitney test. Values were considered to be statistically
significant when p ≤ 0.05. The results are given as the median (interquartile range). The
statistical significance of the microarray gene expression is described above.

3. Results
3.1. Differentially Expressed Genes (DEGs) in the Microarray Hybridizations

We obtained two lists of DEGs (FDR < 0.05): between the MO-low-IR and NO-low-IR
groups and between the MO-high-IR and NO-low-IR groups. Excluding the unnamed
genes, we found a total of 175 DEGs among the MO-low-IR and NO-low-IR groups (80 up-
regulated and 95 downregulated) and 138 DEGs between the MO-high-IR and NO-low-IR
groups (39 upregulated and 99 downregulated). In the intersection of these two groups
of DEGs, we found 73 DEGs that were associated with BMI, regardless of the degree
of insulin resistance (Figure 1). It is worth noting the high degree of similarity in the
up/downregulation patterns of these shared genes, where we found 20 upregulated and
48 downregulated genes in both groups of obese patients. We only found five genes shared
between both groups (MUCL3, PGC, TCN1, TFF2, BPIFB1) that were upregulated in MO-
low-IR but downregulated in MO-high-IR when compared with women without obesity
(Figure 1).
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Figure 1. Venn diagram of the differentially expressed genes (DEGs) (FDR < 0.05) in the microarray.
We obtained two lists of DEGs between the MO-high-IR and NO-low-IR groups and between the
MO-low-IR and NO-low-IR groups. NO: non-obese women. MO: women with morbid obesity.

However, other DEGs were differentially expressed between MO and non-obese
groups that were dependent on insulin resistance degree; there were 102 DEGs exclusively
in the MO-low-IR group and 65 DEGs exclusively in the MO-high-IR group with respect to
the NO-low-IR group. In this case, we observed a greater presence of exclusive upregulated
DEGs in MO-low-IR and a predominance of downregulated genes in MO-high-IR (Figure 1).

3.2. Functional Enrichment

With the aim of delving into the processes, routes, or biological aspects related to
the set of differentially expressed genes, we selected a wide range of gene sets collected
in The Molecular Signatures Database (MSigDB) for functional analysis with GSEA. The
complete analysis of the overrepresented gene sets (FDR < 0.05) and the associated p-value

http://www.r-project.org/
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and FDR q-value are represented in Supplementary Table S2. To simplify the information,
we have grouped the gene sets into the most relevant biological functions, processes, or
responses in which gene expression is upregulated and downregulated in the duodenum
of women with morbid obesity (Table 2); selected gene sets for each function are indicated
in Supplementary Table S2.

Table 2. Significantly overrepresented (FDR < 0.05) gene sets involved in different functions obtained
from the analysis of differentially expressed genes (DEGs) found in the intersection, from exclusive
DEGs found in MO-low-IR and from exclusive DEGs found in MO-high-IR.

Function a Exclusive DEGs in MO-Lower-IR DEGs in Intersection Exclusive DEGs in
MO-Higher-IR

Defense response and
inflammation [1]

BTNL8, CDA, CEACAM6, CEBPE,
CLC, CRCT1, CYP2S1, EGLN3,

ENPP3, FBXO2, FCGR1B,
HLA-DQA2, KBTBD13, LAIR2,
LAMC2, MMP7, MMP9, NOS2,
PLOD2, RBP4, SLC40A1, SORD,

XCL1, ZDHHC11, BICC1, CYP4F11,
EPB42, ERAP2, FAP, HLA-DQB1,

KRT1, LIFR, PWRN1

ANGPTL4, BPIFB1 *, CCL18,
GREM1, GREM2, HBA2, HBB,
LYPD8, ODAM, PGC *, PHEX,

S100A8, TFF2 *, TCN1 *, CD86, ELF5,
FKBP5, GKN2, LPL, MUC6, MYH7,

PNLIPRP2, PSPHP1, REG1B, ZBTB16

CR2, DNAJB13, MMP1, MMP3,
SLCO4C1, XPNPEP3, APOD,
CXCL9, ENTPD3, F5, FBXL13,

FUT9, GBP3, KCNN4, LRRC17,
MUC1, PCDHGC3, PER1, PSPH,

SERPINA3, SERPINA5, SLPI,
SPINK5, TNXB, ZG16B

Adaptative immune
response [2]

BTNL8, CLC, FBXO2, FCGR1B,
HLA-DQA2, KBTBD13, LAIR2,

XCL1, ERAP2, HLA-DQB1
CD86, ZBTB16 CR2, FBXL13

Innate immune
response [3]

CDA, CEACAM6, FCGR1B,
HLA-DQA2, MMP9, NOS2, XCL1,

ERAP2, HLA-DQB1, KRT1

BPIFB1 *, CCL18, HBB, PGC *,
PHEX, S100A8, TCN1 *,

MUC6, REG1B

CR2, SLCO4C1, CXCL9, F5,
GBP3, MUC1, SERPINA3,

SLPI, SPINK5

Inflammation [4]
ENPP3, LAMC2, MMP9, NOS2,

RBP4, XCL1, BICC1, CYP4F11, EPB42,
KRT1, HLA-DQB1

CCL18, HBA2, HBB, ODAM,
S100A8, LPL, ZBTB16

CR2, DNAJB13, MMP1, MMP3,
XPNPEP3, APOD, CXCL9, F5,

PER1, PSPH, SERPINA3, SPINK5

Mediators in the
production, signaling and
response to cytokines [5]

FCGR1B, HLA-DQA2, MMP9,
NOS2, XCL1, HLA-DQB1, LIFR CCL18, GREM2, TFF2 *, CD86 MMP1, MMP3, CXCL9,

GBP3, MUC1

Antimicrobial
response [6]

CEBPE, FCGR1B, HLA-DQA2,
NOS2, XCL1, ZDHHC11,

HLA-DQB1, KRT1

BPIFB1 *, CCL18, LYPD8, PGC *,
S100A8, CD86, FKBP5, GKN2, LPL,

MUC6, PNLIPRP2, REG1B

CR2, CXCL9, GBP3,
MUC1, SLPI, SPINK5

Hypoxia [7]
ARSL, EGLN3, MMP7, NOS2,
PLOD2, SLC6A8, SLC6A10P,

CYP4F11, HLA-DQB1
ANGPTL4 APOD, MUC1

Epithelial maintenance
and wound healing [8] CYP4F2, RBP4, CYP4F11, FAP, KRT1 HBD, HBB, ODAM,

S100A8, TFF2 *, MUC6
HBG1, APOD, F5,

SERPINA3, SERPINA5

Homeostasis [9]
CYP4F2, ERN1, NOS2, PM20D1,
RBP4, SCT, SLC30A10, SLC40A1,

XCL1, EPB42, FTO, KRT1

APOC3, ANGPTL4, S100A8,
SLC11A2, TFF2 *, CCDC66, CLRN1,

HMBOX1, JPH4, LPL, MUC6

MYOC, SCN3B, CXCL9, KCNN4,
SERPINA3, ZG16B

Fucosylation [10] FUT2 FUT9, FUT1

Cell proliferation [11]

CEACAM6, CLC, EGLN3, ENPP3,
ERN1, FBXO2, FUT2, LAMC2,

MMP9, NOS2, RBP4, SPEG, XCL1,
FTO, FAP, LIFR

A4GNT, GREM1, ODAM, CD86,
GKN2, GKN1, REG1B, ZBTB16 APOD, CXCL9, FUT1, NCCRP1

Digestion and lipid
metabolism [12]

CLC, PLAAT2, RBP4, SCT, CAPN8,
GUCA2A, LCT

ANGPTL4, APOC3, PGC *, TFF2 *,
GKN1, MUC6, LPL, LIPF, PNLIPRP2

UCN2, AQP5,
KCNN4, SERPINA3

Response to biotic
stimulus [13]

CEBPE, FCGR1B, HLA-DQA2,
NOS2, XCL1, ZDHHC11, FAP,

HLA-DQB1, KRT1

BPIFB1 *, CCL18, LYPD8, PGC *,
S100A8, CD86, FKBP5, GKN2, LPL,

MUC6, PNLIPRP2, REG1B

CR2, CXCL9, GBP3,
MUC1, SLPI, SPINK5

Metabolic process [14]

CDA, CYP4F2, CYP2S1, FUT2,
LDHC, MMP7, MMP9, NOS2,

PLAAT2, PLOD2, PM20D1, RBP4,
SCT, SORD, SULT1C2, SLC6A8,

CYP4F11, FAP, UGT2B15

APOC3, ANGPTL4, HBD, HBB,
HBA2, LPL, LIPF, PNLIPRP2, PSPHP1

HBG1, MMP3, MMP1, TYRP1,
APOD, CYP2D6, ENTPD3,
FADS6, FUT1, FUT9, PSPH,

SERPINA3, TNXB
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Table 2. Cont.

Function a Exclusive DEGs in MO-Lower-IR DEGs in Intersection Exclusive DEGs in
MO-Higher-IR

Transport [15]
AQP12A, SCT, SLC30A10, CYP4F2,

MMP9, NOS2, PM20D1, RBP4,
SLC40A1, SLC6A8, XCL1, KCNJ13

APOC3, GREM1, HBD, HBB, HBA2,
S100A8, SLC11A2, TFF2 *, TCN1 *,

JPH4, LPL, VPS18

HBG1, KCNN2, KCNK9,
SCN3B, SLCO4C1, AQP5,
APOD, CXCL9, GABRB3,
KCNN4, KCNE2, PER1

Proteolysis [16]
EGLN3, FBXO2, MMP9, MMP7,
PM20D1, XPNPEP2, ERAP2, FAP,

KLK12, SPINK4
PHEX, PGC *, S100A8, C17orf97

MMP1, MMP3, XPNPEP3, CPO,
FBXL13, KCNE2, NCCRP1, SLPI,
SERPINA5, SPINK5, SERPINA3

Response to
xenobiotics [17]

CDA, CYP4F2, CYP2S1, RBP4,
NOS2, SORD, UGT2B15 LPL, NAT8 CYP2D6, KCNE2

Response to drug [18] CYP2S1, NOS2, SORD, SPINK4 LPL, NAT8 APOD, CYP2D6, KCNE2

Response to toxic
substance [19] HBA2, HBB, HBD HBG1, GSTT1

Gastrointestinal
cancer [20]

BTNL8, CDA, LAMC2, MMP7,
PLAAT2, SULT1C2, SLC6A8,

TMED6, XPNPEP2, ZDHHC11,
GAS5, GUCA2A, HLA-DQB1,

HOXC6, LGALS2, LIFR, UGT2B15

APOC3, GREM2, LCN15, LYPD8,
HBB, ODAM, PGC *, S100A8, TFF2
*, TCN1 *, C6orf58, FKBP5, GKN1,

GKN2, LPL, LIPF, PNLIPRP2, REG1B,
RERE, UCA1, ZBTB16

CR2, FDCSP, MMP1, MMP3,
MYOC, XPNPEP3, TYRP1,

CLDN2, C16orf89, ENTPD3,
FUT9, GABRB3, HLF, KCNE2,

KCNN4, LRRC17, MUC1,
SERPINA3, SLPI, SPINK5, VSIG2

Upregulated DEGs are marked in bold. * DEGs in the intersection that are upregulated in MO-low-IR and
downregulated in MO-high-IR relative to the control group are in bold and marked with an asterisk. a The
numbers of these functions are described in Supplementary Table S2 and they include different significantly
overrepresented (FDR < 0.05) gene sets.

Our results indicated an alteration in important processes such as inflammation,
immune response, hypoxia, digestion, maintenance of the gastrointestinal epithelium,
wound healing, homeostasis, and cell proliferation; as well as in the response to biotic
stimuli, drugs, xenobiotics, and toxic substances, among others (Table 2). On the other hand,
we found the dysregulation of a group of genes that are associated with the development
of gastrointestinal cancer. A more detailed analysis of the most relevant results obtained on
the processes and biological functions is shown in the following sections.

3.2.1. Digestion and Lipid Metabolism

In the intersection of the two groups of DEGs, the overrepresented gene set (FDR < 0.05)
showed an altered expression of genes in the duodenum that are related to digestion and
lipid metabolism (Table 2 and Figure 2). There was a group of genes up- or downregulated
in both MO groups regardless of the degree of insulin resistance. Lipases such as LPL, LIPF,
and PNLIPRP2 were downregulated, while the inhibitors of lipase activity ANGPLT4 and
APOC3 were upregulated in the duodenum of both MO groups. In addition, the mucin
MUC6 was downregulated in both MO groups. Other genes, such as TFF2 and PGC were
upregulated in MO-low-IR but downregulated in MO-high-IR (Table 2 and Figure 2).

However, there were genes involved in digestion that were expressed exclusively in
each group of patients (Figure 2 and Table 2). For example, SCT and RBP4 were upregulated
and LCT was downregulated in the MO-low-IR group.

3.2.2. Defense Response and Inflammatory Processes

We found relevant results in the intersection of the two groups of DEGs and through
the analysis of the genes involved in defensive functions and inflammation (Figure 3 and
Table 2). According to the analysis with GSEA, many of these genes were related to gene
sets of innate and adaptive immune responses (Supplementary Table S2).
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Figure 2. Representation of the Log2 of fold change of the differentially expressed genes (DEGs) included
in the overrepresented gene sets (FDR < 0.05) related to digestion and lipid metabolism processes.

We found shared upregulated and downregulated genes involved in both types of
defensive responses regardless of the degree of insulin resistance. However, our results
point to a trend towards increased expression of genes involved in adaptive and innate
immune responses in MO-low-IR and a decrease in MO-high-IR (Table 2 and Figure 3).

Interestingly, according to the overrepresented gene set (FDR < 0.05) related to inflam-
matory processes and bibliographic analysis, both pro- and anti-inflammatory processes
were altered in MO (Figure 4). Morbid obesity, regardless of the degree of insulin resistance,
was associated with changes in the expression of genes involved in pro- (such as CD86 and
S100A8) and anti-inflammatory (such as CCL18 and ZBTB16) responses (Figure 4). These
genes are involved in different functions (Table 3). However, we found a different gene
expression pattern depending on the insulin resistance level, mainly in pro-inflammatory
responses. In the MO-low-IR group, there was a significant upregulation of genes associ-
ated with pro-inflammatory immune processes (such as XCL1, ENPP3, NOS2, CLC, CEBPE,
RBP4, MMP9) (Figure 4 and Table 3). Additionally, we found a downregulation of certain
genes related with pro-inflammatory processes (CXCL9, SERPINA3) in the MO-high-IR
group (Figure 4).
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Figure 3. Representation of the Log2 of fold change of the differentially expressed genes (DEGs)
included in the overrepresented gene sets (FDR < 0.05) related to defense response, inflammation,
and innate and adaptive immune responses.

On the other hand, there was an overrepresentation (FDR < 0.05) of a gene set related
to antimicrobial processes and responses to another organism (Supplementary Table S2).
Our results indicate a defective response to external organisms in MO-high-IR, while in
MO-low-IR it appears to be increased (Figure 5).
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Table 3. Bibliographic analysis of differentially expressed genes (DEGs) (FDR < 0.05) that are ex-
pressed or involved in the migration, proliferation, activation, or maturation of different immune cells.

Direction of the Gene
Expression in MO DEG Expression or Action in Immune Cells Reference

DEGs from the
intersection

Upregulated

CCL18 CCL18 causes maturation of cultured monocytes to macrophages
in the M2 spectrum. [23]

S100A8
S100A8 induces mucosal CD4+ T cells with a Th1 pro-inflammatory response. [24]

S100A8/A9 is constitutively expressed in immune and epithelial cells of
inflamed tissues. [25]

Downregulated

ZBTB16 ZBTB16 controls the development of invariant natural killer T cell
effector functions. [26]

CD86
CD86 is typically found on the surface of antigen-presenting cells and can

either bind CD28 or CTLA-4, resulting in a costimulatory or a co-inhibitory
response, respectively.

[27]

Exclusive DEGs
from MO-low-IR

Upregulated

XCL1 XCL1 is produced mainly by NK and activated CD8+ T cells and facilitates the
activation and migration of intestinal dendritic cells. [28]

ENPP3
ENPP3 prevents a decrease in plasmacytoid dendritic cell numbers

in the small intestine. [29]

ENPP3 is highly expressed in activated basophils and mast cells and is
rapidly induced by IgE. [30]

NOS2 An increase in Nos2 expression is characteristic of classically activated
M1 macrophages. [31]

CLC CLC has lysophospholipase activity and is a characteristic constituent of
eosinophils and basophils. [32]

CEBPE CEBPE is an essential transcription factor for granulocytic differentiation. [33]
BTNL8 BTNL8 is highly expressed on neutrophils. [34]

RBP4 RBP4 induces antigen-presenting cells as the drivers of
an inflammatory response. [35]

MMP9 MMP9 recruits neutrophils to sites of inflammation. [36]
Downregulated HLA-DQB1 HLA-DQB1 is expressed in antigen presenting cells. [37]

Exclusive DEGs
from MO-high-IR Downregulated CXCL9 CXCL9 is secreted in response to IFN-γ. Mainly secreted by monocytes,

endothelial cells, fibroblasts, and cancer cells in response to IFN-γ [38]
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included in the overrepresented gene sets (FDR < 0.05) related to antimicrobial response and response
to another organism.

3.2.3. Hypoxia

In the MO-low-IR group, there was an upregulation of genes involved in overrepre-
sented (FDR < 0.05) gene sets related to hypoxia, although the hypoxia process does not
seem to play a special role in MO-high-IR and in the intersection between the MO-low-IR
and MO-high-IR groups (Table 2).

3.2.4. Epithelial Maintenance, Wound Healing, and Homeostasis

In the intersection of the two groups of DEGs, we found changes in the expression
of genes (FDR < 0.05) related to the maintenance of the gastrointestinal epithelium and
epithelial structure (Table 2 and Supplementary Table S2). We found an upregulation of
several genes in both MO groups regardless of the degree of insulin resistance (Table 2).

However, the functional analysis revealed mainly an upregulation of genes involved
in wound healing functions and tissue homeostasis in the MO-low-IR group but not in the
MO-high-IR group (Table 2).

3.2.5. Cancer

In the analysis with GSEA, we found a significant overrepresentation (FDR < 0.05) of
gene sets involved in the development of colorectal adenoma and gastric cancer in both MO
groups (Table 2 and Supplementary Table S2). As shown in Supplementary Table S3, the
changes in gene expression found in this study seem to be associated with the promotion
of the migration, invasion, or proliferation of cancer cells.
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4. Discussion

In this study, we analyzed changes in gene expression in the duodenum of two groups
of women with morbid obesity, one with high and one with low insulin resistance, and
compared them with a group of metabolically healthy women. First, we found a group
of genes with a similar expression profile in both groups of women with morbid obesity
compared to the control group; that is, genes upregulated and downregulated in morbid
obesity regardless of the degree of insulin resistance. It is known that obesity is associ-
ated with a higher degree of systemic and local inflammation, where hypoxia and the
release of cytokines and pro-inflammatory hormones are some of the factors that promote
this process [39]. Thus, we have observed changes both in the expression of certain pro-
inflammatory and anti-inflammatory genes, such as S100A8, GREM1, GREM2, and CCL18.
S100A8 stimulates and promotes the migration of neutrophils and monocytes [40], with a
critical role in intestinal pro-inflammatory responses [24,41]. In the same line, the increase
in GREM1 and GREM2 expression could be associated with a hyperplasia of the duodenal
crypts, which is characteristic of epithelial damage [42]. Nevertheless, we have also found
an increase in the expression of the relevant anti-inflammatory chemokine CCL18, which is
inducible by Th2 cytokines [43] and involved in M2 macrophage maturation [23], and a
subexpression of CD86, which is associated with a pro-inflammatory state [44,45]. Thus,
these results suggest the activation not only of pro-inflammatory responses in the duode-
num in morbid obesity but also of synergistic anti-inflammatory mechanisms that could
negatively regulate the possible collateral damage that occurs during inflammation [46].

We observed other DEGs that were related to lipid metabolism and digestion irrespec-
tive of the degree of insulin resistance. The downregulation of LPL, accompanied by the
upregulation of two potent inhibitors of LPL enzyme, ANGPTL4 and APOC3 [47,48], was
found. Increasing evidence suggests that LPL is regulated in a tissue-specific manner [49].
However, little is known at the intestinal level. In line with these results, we observed the
downregulation of other lipases such as LIPF and PNLIPRP2. Overall, our data suggest
deficient metabolism in the lipid degradation at the intestinal level in women with morbid
obesity, which could constitute a protection mechanism in response to excessive fat intake
but at the same time may contribute to the development of dyslipidemia, which could have
a relevant role in the etiology of insulin resistance [50].

In morbid obesity, the microbiota could play a role as a regulator of metabolism [51].
Regardless of insulin resistance, the two groups of women with morbid obesity showed
upregulation of LYPD8 and downregulation of a greater number of genes, such as REG1B,
GKN2, LPL, PNLIPRP2, FKBP5, and CD86, that are related to responses to bacterial
stimuli and antimicrobial activity. The microbiota could be involved in the change of
CD86 expression since lipopolysaccharides (LPS) can alter its expression in both human
peritoneal and M2 macrophages [52]. LYPD8 plays an important role in inhibiting the
attachment of flagellated microbiota to colonic epithelia [53] and REG1B has antimicro-
bial effects [54]. On the other hand, the downregulation of LPL and PNLIPRP2 is not
only involved in the regulation of lipid metabolism, but both also have antimicrobial
effects. PNLIPRP2 displays its highest phospholipase activities on phosphatidylglycerol
and phosphatidylethanolamine, two major constituents of bacterial membranes [55] with a
supposed protective role against pathogenic microbiota [56,57]. In this sense, dietary lipids
can exert pro- or anti-inflammatory functions on cells of the innate immune system and
influence antigen presentation in cells of the adaptive immune system [58]. These results
suggest a greater vulnerability of the intestine against microorganisms in patients with
morbid obesity.

Nonetheless, our study has tried to delve deeper into the effects of high insulin resis-
tance on the transcriptomic profile of the duodenum. Our results agree with a previous
study where we observed an increase in the number of cytokines and chemokines in the
duodenum of morbidly obese patients with low insulin resistance [15]. In the current study,
we found a large number of upregulated genes involved in inflammatory processes related
to the presence of various types of immune cells, such as M1 macrophages, T lymphocytes,
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NKT, eosinophils, basophils, and neutrophils, in women with morbid obesity and low
insulin resistance. There was an increase in RBP4, which is expressed during the differ-
entiation of monocytes into primary macrophages [59] and plays an important role in the
development of insulin resistance in adipose tissue [60]. Moreover, an increase in NOS2
expression, which is induced in inflammatory processes by LPS [61] and hypoxia [62], was
found. Its expression is characteristic of classically activated M1 macrophages in adipose tis-
sue [31]. At the same time, we observed an increase in XCL1 expression, which is produced
by T, NK, and NKT cells during infectious and inflammatory responses [63,64] and has bac-
tericidal activity [65]. The expression of other genes is also increased, such as BTNL8, CLC,
and PHD3 (Egln3). BTNL8 is highly expressed by neutrophils [34], which supports the idea
that it has a regulatory role in inflammation [66]; along the same lines, other studies have
shown the involvement of PHD3 in the hypoxic regulation of neutrophilic inflammation
in humans and mice [67]. Moreover, the inhibition of PHD3 improves insulin sensitivity
and ameliorates diabetes by specifically stabilizing HIF-2α [68]. On the other hand, CLC
is typically expressed in eosinophils, and its increase is typically associated with altered
epithelial barrier functions, including food-allergic enteropathies and inflammatory bowel
diseases [69]. Although we found a large number of genes involved in pro-inflammatory
responses, we have also observed the upregulation of S100G, a molecule that has been
linked with anti-inflammatory effects [70]. However, the epithelial barrier function could
be damaged by the observed upregulation of CEACAM6 and downregulation of LGALS2
in the MO-low-IR group. The increase in CEACAM6 in the intestinal epithelium has been
linked with the massive colonization of adherent invasive Escherichia coli [71]. Additionally,
LGALS2 confers maximum protection against exposure to pathogens [72].

It is known that obesity is associated with a greater degree of hypoxia in adipose and
intestinal tissue, resulting in adverse metabolic effects like insulin resistance [73]. Hypoxia
could contribute significantly to the changes found in the expression of genes in the duo-
denum of women with morbid obesity. In this sense, we have found an upregulation of
different genes related to hypoxia regardless of the degree of insulin resistance, such as
ANGPTL4, LPL, S100A8, SLC11A2, HBB, HBA2, and HBD. An increased expression and se-
cretion of ANGPTL4 under hypoxic conditions has been observed in human adipocytes [74],
and chronic intermittent hypoxia inhibits LPL by upregulating ANGPTL4 [75]. The activa-
tion of hypoxia signaling could induce the expression of the transporter SLC11A2, thus
increasing the uptake of iron [76]. Additionally, an increase in the expression of S100A8
mediated by hypoxia has been observed in prostate cancer [77]. In addition, the upreg-
ulation of the three hemoglobins HBB, HBA2 and HBD may be indicative of a hypoxia
situation [78]. However, there is another group of upregulated genes related to hypoxia in
women with morbid obesity and low insulin resistance. This is in contrast to the literature
that shows an association between hypoxia and insulin resistance [79]. However, part of
these genes, in addition to participating in the regulation of hypoxia, could be involved
in other different pathways, playing a beneficial role and supporting the maintenance of
immune responses or tissue integrity and thereby influencing tissue recovery. For example,
MMP7, which is induced by microbial products, can regulate tissue repair and plays an
important role in the maintenance of innate immunity in the intestine, where it activates
anti-bacterial peptides such as pro-defensins [80]. On the other hand, Egln3 (PHD3) not
only functions as a tumor suppressor but may also promote fibrosis and anti-inflammatory
responses and prevent neutrophil apoptosis under hypoxic conditions [81,82]. In addition,
NOS2 produces NO, which is involved in the immune response as a defense mechanism;
NO is responsible for inhibiting the production of IL-12 and macrophages. The possible
functions of the rest of the genes related to hypoxic conditions are more unknown.

The downregulated genes found in the MO-high-IR group are mainly associated with
defensive responses against bacteria (SPINK5, CXCL9, GBP3, SLPI, and MUC1). We have
found a relation between both changes in microbiota and duodenal immune response in
the presence of high insulin resistance in morbid obesity in our previous studies [15,83].
Moreover, we found that neurotensin expression was increased in women with high
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insulin resistance. The secretion of this molecule is stimulated by glucose [84] and inhibits
the pro-inflammatory status of macrophages when administered under hyperglycemic
conditions [85]. Together, our results suggest that there could be a relationship between the
decrease in the duodenal immune response and the downregulation of genes involved in
the maintenance of the gastrointestinal epithelium in the presence of high insulin resistance.
This could constitute an underlying mechanism involved in the increase in the translocation
of bacterial components, such as LPS, through the intestinal barrier in individuals with
high insulin resistance [51].

Overweight and obesity are factors associated with an increased risk of cancer [86]. In
this study, we found in the duodenum of women with morbid obesity a downregulation
of a large number of genes that may be involved in antitumor processes, as well as the
upregulation of genes with protumor activity in various types of cancer, mainly gastroin-
testinal cancers. For example, a lower expression of genes that may play an important role
in suppressing gastric cancer (GKN1, LIPF, ANXA10, MUC6, PSCA, and SNHG5) was
found. On the other hand, we have observed the upregulation of genes that are involved in
the proliferation, migration, and invasion of cancer cells in colorectal and gastric cancer
(ANGPTL4, S100A8, LINC00668). In the same way, we have obtained similar results in the
exclusive DEGs of women with morbid obesity and high or low insulin resistance. Our
results show the differential expression of many genes related with different types of cancer
(see Supplementary Table S3) in the duodenum of women with morbid obesity, in whom
there are still no signs of cancer development. However, we do not know if this altered gene
expression will lead to the development of cancer in the future or if other factors are the
main drivers of cancer development in this type of subject. Although small intestine cancer
is not the most common form of gastrointestinal cancer, some studies point to an increased
risk of developing it in patients with obesity [87,88]. However, due to the characteristics of
this study, we do not know if the alteration in the expression of these genes may be related
to an increased risk of developing small intestine cancer.

This study has several limitations. Firstly, this study was only carried out in women,
so we cannot extrapolate the results to men. Additionally, although our results have shown
an association between morbid obesity and insulin resistance with the expression of genes
related to different pathways, e.g., cancer, more longitudinal studies are needed to confirm
our findings.

5. Conclusions

In this study we have shown that morbid obesity, regardless of the degree of insulin
resistance, is associated with alterations in intestinal defensive processes and antimicrobial
responses and with the activation of pro- and anti-inflammatory genes, which could be
associated with possible greater exposure and perhaps vulnerability of the intestine to
products and metabolites derived from microorganisms and the diet. Similarly, we also
found an alteration in pathways related to the lipid degradation at the intestinal level. More
interestingly, we found that morbid obesity is associated with changes in the expression
of certain genes that have been related to the development of cancer. Our data also
suggest a deficient duodenal immune and antimicrobial response in women with high
insulin resistance.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/biomedicines10051024/s1, Supplementary Table S1. Anthropometric and
biochemical variables for each patient of the three groups of women; Supplementary Table S2. Complete
analysis of the overrepresented gene sets (FDR < 0.05), the associated p-value and FDR q-value, and the
differentially expressed genes (DEGs); Supplementary Table S3. Bibliographical analysis of differentially
expressed genes (DEGs) (FDR < 0.05) involved in the development of cancer [89–133].
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