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Soft resonator of omnidirectional 
resonance for acoustic 
metamaterials with a negative 
bulk modulus
Xiaodong Jing, Yang Meng & Xiaofeng Sun

Monopolar resonance is of fundamental importance in the acoustic field. Here, we present the 
realization of a monopolar resonance that goes beyond the concept of Helmholtz resonators. The 
balloon-like soft resonator (SR) oscillates omnidirectionally and radiates from all parts of its spherical 
surface, eliminating the need for a hard wall for the cavity and baffle effects. For airborne sound, 
such a low-modulus resonator can be made extremely lightweight. Deep subwavelength resonance 
is achieved when the SR is tuned by adjusting the shell thickness, benefiting from the large density 
contrast between the shell material and the encapsulated gas. The SR resonates with near-perfect 
monopole symmetry, as demonstrated by the theoretical and experimental results, which are in 
excellent agreement. For a lattice of SRs, a band gap occurs and blocks near-total transmission, and 
the effective bulk modulus exhibits a prominent negative band, while the effective mass density 
remains unchanged. Our study shows that the SR is suitable for building 3D acoustic metamaterials 
and provides a basis for constructing left-handed materials as a new means of creating a negative 
bulk modulus.

Resonance is of fundamental importance in the acoustic field, particularly to the manipulation of sound 
waves within a distance far smaller than wavelength. Built-in local resonance can endow composites that 
are made of subwavelength resonators with unusual dispersions, ranging from exponential decaying to 
negative refraction. Such artificially designed composites are known as acoustic metamaterials because 
they can break the conventional rules of sound wave propagation in ordinary materials1–9. When the 
composites are treated as homogenous media, their properties correspond to a medium with negative 
effective constituent parameters. Based on the concept and methodology of negative parameters, the 
research of acoustic metamaterials has been continuously progressing towards extraordinary applica-
tions, such as super acoustic damping or insulation, acoustic hyperlens, acoustically invisible cloaks and 
so on10.

Resonance can be characterized by its spatial symmetry of oscillation. Monopolar and dipolar res-
onances are the two basic forms of resonance, with rotational and polarizing symmetry, respectively. 
Moreover, in the context of acoustic metamaterials, the spatial symmetry of resonance has special impli-
cation in creating negative effective constituent parameters. A negative mass density or bulk modulus, 
albeit impossible for static situation, can occur as a result of out-of-phase oscillation in a frequency band 
above the resonance. In the out-of-phase regime, resonance with rotational symmetry causes dynamic 
volume change at the same sign as the pressure change, whereas normally, the two are of opposite signs, 
leading to a negative bulk modulus. When the symmetry of resonance is polarizing, however, a nega-
tive mass density occurs in the sense that the mass center accelerates in the opposite direction of the 
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driving force. As a result, it is the symmetry that determines which of the two basic constitute parameters 
becomes negative on the macroscopic scale.

In recent years, the study of acoustic metamaterials has been strongly stimulated by the advent of new 
types of resonators, such as the rubber coated sphere1 and the mass-decorated membrane2. These reso-
nators are dipolar resonators and serve to realize negative mass density. On the other hand, a negative 
bulk modulus results from the mechanism of monopolar resonance with rotational symmetry. Natural 
or man-made bubbles can resonate with monopole symmetry at the best approximation11, but the bub-
bles are restricted to an underwater environment. So far, in terms of the realization of the negative bulk 
modulus, researchers have mainly resorted to the use of Helmholtz resonators (HRs)3–8. Strictly speaking, 
monopole symmetry can only be satisfied in the sense of spatial average over an HR. The resonant struc-
ture is usually described as bottle-like, with the fluid slug in the neck(s) acting as a mass and the volume 
of the cavity functioning as a spring. The hard wall of the cavity is essential to provide a baffle effect. 
Without the baffle, the oscillating fluid slug, just like a vibrating suspended disk, radiates in a dipolar 
pattern12. As both its inductance and capacitance are derived from a single fluid, an HR can solely be 
tuned by adjusting its geometry. Thus, the resonator may become impractically large when dealing with 
low-frequency sound. Currently, despite the numerous modifications to HRs, there has been limited 
success to experimentally achieve a negative bulk modulus. More attention has focused on the anoma-
lous propagation in one-dimensional (1D) tunnels3,6,7 or planar (2D) waveguides8 with shunted HRs. In 
short, Helmholtz resonators represent a category of volume-source-like acoustic resonators characterized 
by partial openings in a hard-wall cavity or a cluster of cavities. Evidently, we need to go beyond this 
conventional concept and achieve subwavelength monopolar resonance using a new approach, which is 
particularly important to the development of acoustic metamaterials and is also of general interest to 
the acoustic field. More recently, efforts have been pursued to realize monopolar resonance in a different 
manner from the classical HRs, in particular, the resonating unit formed by a couple of mass-decorated 
planar membranes and a solid ring13.

The primary purpose of this paper is to design and realize a type of soft resonator (SR) with spherical 
oscillating symmetry. In our work, the basic ideas of the SR are exemplified with two types of popular 
toys. Using experimental results and theoretical analyses, we demonstrate that the SR is capable of pro-
ducing near-perfect monopolar resonance and that it has some unique features.

Results
Concept and theory. As illustrated in Fig. 1(a), the SR we propose is as simple as a spherical shell 
with encapsulated gas. The outer shell is highly soft, which can be made of flexible materials, such as 
latex. Similar to the surface tension of a water drop, there is a slight elastic tension in the shell that keeps 
the shape of the SR spherical. In analogy to an LC electrical circuit, the soft shell is nearly a pure inductor 
at low tension, while the encapsulated air acts as the capacitor. Gas with a smaller specific heat ratio, such 
as helium, is an alternative to air due to the benefit of increasing the capacitance without increasing the 
volume14. Figure 1(b) shows a slab of acoustic metamaterial made of an SR lattice in air.

Using the electrical-acoustic analogy, we formulated the acoustic impedance of a unit SR with lumped 
element modeling, as described below:
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where = −i 1 , ω is the angular frequency, and S is the surface area of the spherical shell; the acoustic 
resistance, RSR, is the sum of the viscous resistance, µR , and the radiation resistance, 

Figure 1. (a) Basic structure of a soft resonator. (b) A crystal-like lattice of SRs with a lattice constant of 
b, where the line square indicates the unit cell defined by the first Brillouin zone for the field averaging 
analysis.
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ρ= ( ) / + ( )R c ka ka[1 ]r 0 0
2 2 11, where k is the wavenumber; the acoustic inductance, MSR, includes the 

shell mass, M, and the radiation mass, ρ= / + ( )M aS ka[1 ]r 0
2 11; the acoustic capacitance is 

α= /( + )C C 1SR , where ρ= /C V c0 0
2 (V is the gas volume) and α γ τ ρ= ( − ) / a c2 3 1 3 0 0

2 accounts for 
the effect of shell tension τ 11; and ρ0, c0 and γ are the density, sound speed and specific heat ratio of air, 
respectively. The resonance occurs when the linear frequency part balances with the inverse frequency 
part in Eq. (1); thus, the angular resonant frequency is written as

ω =
( )

S
M C 2

r
SR SR

The above formula indicates that the resonant frequency of an SR depends on the outer radius, the 
shell thickness and the membrane tension. Generally, increasing the shell tension leads to the increase 
of the resonant frequency because the tightening effect is equivalent to reducing the gas volume by a ratio 
of α/( + )1 1 . However, this effect is weaker compared with those of the gas volume and shell mass 
because, generally, a small membrane tension is sufficient to retain the spherical shape of the SR. 
Neglecting the effect of τ, it can be deduced from Eq. (2) that the resonant frequency is proportional to 

ρ ρ( + )( − )a a t a tr0
3 , where ρr is the density of shell material. The contour plot in Fig. 2 shows the 

resonance frequency as a two-dimensional function of SR radius, a, and shell thickness, t, assuming the 
shell material is latex. As shown in Fig. 2, an SR as small as 1–2 centimeters in radius with a thin shell 
less than 1 mm can work in the frequency range of 1.0–3.0 kHz. For a resonance below 500 Hz, an SR 
necessitates a relatively larger radius amounting to several centimeters and a thicker shell of a few 
millimeters.

For an acoustic metamaterial made of subwavelength units, homogenized medium theory is appropri-
ate for analyzing its response to an incident sound wave. The electrical-acoustic analogy, which is usually 
applied to lumped element modeling, can also be extended to the field averaging analysis. Following the 
field averaging method for obtaining effective parameters of the electromagnetic composites in15, our 
analysis considers a unit cell defined by the first Brillouin zone, as shown in Fig. 1(b). The homogeniza-
tion implies that the material response is equivalent to that of a fluid-like medium. For such a medium 
in the unit cell, the integral form of the time-harmonic linearized continuity equation is written as

ω
ρ

ρ⋅ = − Ω
( )Σ

∯ ∭u dS i d
30

where ∑ and Ω  denote the surface area and the volume of the unit cell, respectively, and 
u is the fluctu-

ating velocity over ∑. The above equation relates the acoustic density to the fluctuating volume flux 
stemming from two sources: the pulsation of the SR and the compressibility of the fluid outside the SR. 
The normal pulsating velocity on the shell surface can be calculated from the definition of the specific 
acoustic impedance, = /u p ZSR, where ZSR is given in Eq. (1). The pressure rise is uniform over the 
length scale of the unit cell. Thus, we can obtain the average acoustic density:

Figure 2. Contour plot for the resonant frequency of a unit SR as a function of outer radius (a) and 
shell thickness (t) calculated from Eq. (2).
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Next, substituting Eq. (4) into the isotropic relation ρ= /c pe
2 , we arrive at the equation of the effec-

tive sound speed:
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where ω ω σ= / −1r1 ; σ is the filling ratio of the SRs in the lattice; and Γ = /R S MSR SR is a loss-related 
parameter. Due to the omnidirectional oscillation of the SR, the mass acceleration of the shell contributes 
little to the effective density. Thus, the effective bulk modulus is written as follows:

σ
σω

ω ω ω
=





− +

− + Γ




 ( )E E i

1 1 1
6e

r

r0

2

2 2

where ρ=E c0 0 0
2 is the bulk modulus of the ambient air.

For a plane wave normally incident on a slab of homogenized metamaterial, the amplitude transmis-
sion coefficient can be calculated with the effective parameters5, as shown below:

ξ ξ=
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where d is the slab thickness, = /n c ce0  is the relative refractive index, and ξ = /n1  is the relative acous-
tic impedance. In deriving the above equations, the time dependence of ω( )i texp  is assumed.

Experiment. In the experiment, the proof-of-concept SRs are conveniently obtained from two types 
of popular toys, i.e., small balloons and rubber balls with thorns, as shown in the images in Fig. 3(a). The 
small balloons are denoted as SRs-A. To produce a second sample, SRs-B, the thorns were removed from 
the toy balls. Therefore, the thorns play no role in the experiment. Both samples are inflated with air. The 
geometrical parameters of the two samples are as given in the legend of Fig. 3. The shell tension is deter-
mined from the Young-Laplace law, τ = /p a 2g

, where the inflation gauge pressure, pg
, is measured by 

inserting the probe of a small pressure meter into the samples.
The acoustic measurement is performed in a square waveguide, where the samples are arranged in 

one row along the axial direction. For the situation of a plane wave normally incident on the cubic lattice 

Figure 3. (a) Images of the two types of SR samples: small balloons (t =  0.21 mm, 2a =  42 mm) and rubber 
balls with thorns removed (t =  1.0 mm, 2a =  45 mm) together with the original one with thorns, where 
the shell thickness and the diameters are average values. (b) Schematic of the square waveguide setup for 
measuring the scattering matrix of the SR samples using the two-load method, where a single movable 
microphone at port 1, 2, 3 or 4 and a fixed reference microphone at port 0 are used to obtain the complex 
acoustic pressures from the cross-spectrum (Sxy) between their output signals.
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in Fig. 1(b), we can consider a single row of the SRs due to the symmetry of the SR and the periodicity 
condition between adjacent rows. As shown in Fig.  3(b), the waveguide is a 1.5-m-long tube with a 
square cross section of 50 ×  50 mm2 and is made of acrylic material. The test section is in the axial mid-
dle of the waveguide, where the portion of upper wall can be removed for installing the SR samples into 
the waveguide. The samples are located in the test section by simply hanging from the upper tube wall. 
The spherical outer surfaces of the samples are separated from the inner walls of the waveguide by a gap 
of approximately 2.5–4.0 mm (at the closest point), such that the elastic shells are free of oscillation. In 
principle, a matrix material is dispensable for an SR to produce monopolar response; therefore, we did 
not introduce a matrix material for holding the samples together.

The sound source is comprised of two pairs of face-to-face loudspeakers on one end of the wave-
guide. A digital control method is used for the loudspeakers to generate multi tones with nearly constant 
amplitude16. To ensure only plane waves exist in the waveguide, the upper tonal frequency is kept below 
3.0 kHz, which is slightly lower than the cutoff frequency of the first nonplanar mode. There is a pair of 
microphone ports in front of and behind the test section. The complex sound pressures are measured 
by a single movable microphone installed at each of the four ports and a reference microphone fixed 
near to the sound source. A cross-spectrum analysis is performed between the signals of the mov-
able microphone and the reference microphone to determine the phase of the sound pressures. The 
single-microphone technique can avoid measurement errors that are associated with microphone phase 
mismatch in the harmonically static situation17. The use of multi-tone source signal enables the acquired 
sound pressure spectrum to have a fine resolution of frequency (10 Hz).

The two-load method18 is used to obtain the scattering matrix of the slab composed of a single row 
of the samples in the test section. Two loads imply that there are two different termination conditions 
on the end of the waveguide opposite to the sound source. The sound pressure measurement is taken 
twice: once for the open exit and once for the highly reflective condition imposed by a small absorptive 
plug. For each load or termination condition, the sound pressure data acquired at the front pair of the 
ports (1 and 2 in Fig.  3(b)) is used to decompose the sound field in front of the test section into the 
forward and backward modes by means of the standard two-microphone transfer function method16. The 
wave decomposition is also performed for the sound field behind the test section. Assuming that the 
sound transmission through the samples is reciprocal, there is a general relation for the acoustic modes 
in the waveguide: =

�� ��
p pSI o with = ,

��
p A B[ ]T , where S is the 2 by 2 scattering matrix; A and B are the 

complex amplitudes of the forward and backward modes, respectively; and the subscripts I and O denote 
the modes in front of and behind the test section, respectively, as shown in Fig. 3(b). This relation can 
be written for each of the two loads; thus, four linear equations are formed to solve the unknown ele-
ments of S. Then, both the transmission and reflection coefficients can be calculated from the scattering 
matrix18.

Comparison of theoretical results with experimental data. As shown in Fig.  4, for a 
150-mm-thick slab composed of 3 SRs-A or -B in one row (b =  50 mm), the transmission coefficients 
reach lower than 0.5% at the dips of certain narrow bands. Thus, the incident acoustic energy is almost 

Figure 4. The experimental transmission coefficients for the SRs-A (red circles) and -B (blue circles) 
are presented as a function of frequency, showing excellent agreement with the predictions (solid line) 
of Eq. (7). The band gaps for the two samples occur at 1700 Hz and 850 Hz, respectively. For the results 
of the water-filled balloons (solid circle), the transmission decrease is due to the Bragg scattering effect as 
frequency approaches 3.0 kHz.
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entirely (> 99.999%) blocked from transmitting at the band gaps. This result is very significant, consid-
ering that the SRs are extremely lightweight and sparsely distributed (corresponding to a 30% filling ratio 
in the lattice). Moreover, the band gaps occur at subwavelength scales, with λ/ = /b 1 4g  and 1/8 for the 
SRs-A and -B, respectively, where λ g  is the wavelength at the band gap frequency. As a comparison, we 
also measured the small balloons of 42 mm in average diameter filled with incompressible water and did 
not observe similar transmission dips. Although the Bragg scattering is shown to cause the decrease in 
sound transmission, this decrease occurs near 3.0 kHz, where the wavelength matches the lattice con-
stant. Evidently, the subwavelength band gaps result from the local resonances of the SRs. The predicted 
resonant frequencies using Eq. (2) are 1680 Hz and 850 Hz for the SRs-A and -B, respectively, which agree 
with the experimental frequencies of the band gaps. Thus, by increasing the shell thickness or equiva-
lently the shell mass (the material of both toys is latex), the resonant frequency of an SR can be consid-
erably reduced.

Figure  4 shows that the amplitude transmission coefficients predicted by Eq. (7) are in excellent 
agreement with the experimental results, in terms of both the shapes and magnitudes of the transmission 
curves. When the frequency approaches 3.0 kHz, the deviation occurring between the predictions and 
the experimental results is understandable, given that the Bragg scattering effect is not taken into account 
by the homogenized medium theory.

The effective bulk modulus, Ee, is retrieved from the measured transmission and reflection coefficients 
with the standard retrieval method19. Figure  5(a) shows the results for a 50-mm-thick slab composed 
of only one SR-A in the waveguide. Excellent agreement is achieved between the predictions and the 
experimental results for both the real and imaginary parts of Ee. There is a prominent region of negative 
Ee (real part) on the higher frequency side of the resonance, showing the merit of the SR as a new means 
to produce the negative effective modulus. As further evidence of the monopolar symmetry of the SR’s 
oscillation, it is demonstrated that the measured effective mass density of the slab is almost equal to the 
ambient air density over the entire frequency range in Fig.  5(b), where the small jumps in the results 
near the resonance are probably due to the minor asymmetries in the shape or mass distribution of the 
small balloon. To our knowledge, there is still a lack of such experimental results on the effective mass 
density for proving the symmetry of the resonance in the previous studies for the HRs. Within a narrow 
band above resonance, the shell motion becomes out of phase with respect to the applied sound pressure, 
i.e., expanding under positive pressure and compressing under negative pressure. When the SRs form a 
crystal-like lattice, from a microscopic point of view and in analogy to Fano-type interferences20, their 
out-of-phase energy-releasing oscillations give rise to collective radiation, leading to either cancellation 
of the incident wave (exponentially damping) or steering of the acoustic energy flow (wave bending).

Discussion
The concept of SR is essentially different from the conventional designs of HR and its variants. When 
an SR is submitted to an isotropic acoustic pressure, all parts of its spherical shell oscillate uniformly 
in all directions, thus eliminating the need of a hard wall for the cavity and baffle effects. Moreover, the 
SR can be efficiently tuned by adjusting either the thickness or the material density of the shell. This 
advantage is also distinct from the natural bubbles. Deep subwavelength resonance is achieved, benefiting 

Figure 5. The experimental (blue circle) effective parameters are plotted as a function of frequency for a 
50-mm-thick slab composed of one SR-A, showing excellent agreement with the predictions (solid line) 
of Eq. (6). (a) The effective bulk modulus (normalized by ρ )c0 0

2  is frequency-dependent, with a narrow band 
of negative real part above resonance. (b) The effective mass density (normalized by ρ )0  exhibits a nearly 
constant real part approximately equal to ρ0 and a near-zero imaginary part.
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from the large density contrast between the solid shell material and air. The sample with a 1-mm-thick 
shell resonates at 850 Hz, corresponding to a wavelength 9 times longer than its diameter. Certainly, the 
wavelength to diameter ratio can be further increased by increasing the shell mass or using helium as the 
encapsulated air. Another feature of the SR is that there is little viscosity-related loss, making it more apt 
for low-loss applications. We can also observe the difference between the designs of the rubber coated 
sphere1 and the present SR, except that the former is for dipolar resonance. The outer soft shell of the SR 
acts as the mass instead of the inner hard sphere, and the encapsulated gas serves as the spring, which 
is much softer than the available rubbers, provided that the gas volume is not too small. As a result, by 
eliminating hard massive inclusions and using low-modulus encapsulated air as the spring, the SR can be 
made extremely lightweight. For a lattice of SRs, a band gap blocks nearly all the incident acoustic energy 
(> 99.999%) within a narrow frequency range. The effective bulk modulus is found to be frequency 
dependent and has a prominent negative band, while the effective mass density remains approximately 
the same as that of the ambient air. The experiment and the homogenized medium theory are in excellent 
agreement, well demonstrating the monopolar characteristics of the SRs. Note that this work only exem-
plifies the essential features of the SR by conveniently using everyday life toys; therefore, we anticipate 
that variants can evolve from these basic ideas in future studies. Although the proof-of-concept experi-
ment was performed in the 1D waveguide setup, it is evident that the SRs can act as the building blocks 
of 3D acoustic metamaterials. Moreover, because the hybridization between monopolar and dipolar res-
onances is the key to achieving double-negative parameters21,22, the SRs also provide a basis for designing 
novel left-handed materials for a wide range of acoustic applications. Surely, the SRs can also be used for 
conventional purposes as acoustic resonators, especially when omnidirectional response is preferred. As 
an interesting possibility, the decoration balloons may be used as an environmental noise shield as well. 
However, for noise abatement applications, the SR has the limitation of narrow-band effectiveness, sim-
ilar to most of the local resonant units. One method to achieve broad-band effectiveness is by stacking 
differently tuned SR units into a multilayer panel, as previously demonstrated for the membrane-type 
metamaterials23. This method, however, must be realized at the cost of increasing panel thickness. The 
latest design of membrane-covered honeycomb metamaterial shows a new possibility to achieve sound 
transmission loss in the low frequency range24. But it is still challenging to develop thin-layer broadband 
acoustic metamaterials based on the concept of negative material parameters.

Methods
Experimental devices. In the experiment, the microphones used are1/4 in. pressure field B&K 
4938-L-002 microphones. The outputs of the microphone conditioner are sampled using the National 
Instruments NI USB-6259 DAQ data acquisition board.

Physical parameters. In addition to the geometrical parameters of the SR samples, the other meas-
ured inputs for the computation include room temperature of 22 °C, air pressure of 101154 Pa, latex 
density of 860 kg/m3, and shell tension of 40 N/m and 26 N/m for SRs-A and -B, respectively. For the 
viscous resistance, µR , a small value of 0.15–0.3 ρ c0 0 is empirically adopted.
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