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Abstract

Several studies have shown that cancers actively regulate alternative splicing. Altered splicing mechanisms in cancer lead to
cancer-specific transcripts different from the pool of transcripts occurring only in healthy tissue. At the same time, altered
presentation of HLA class I epitopes is frequently observed in various types of cancer. Down-regulation of genes related to
HLA class I antigen processing has been observed in several cancer types, leading to fewer HLA class I antigens on the cell
surface. Here, we use a peptidome wide analysis of predicted alternative splice forms, based on a publicly available
database, to show that peptides over-represented in cancer splice variants comprise significantly fewer predicted HLA class I
epitopes compared to peptides from normal transcripts. Peptides over-represented in cancer transcripts are in the case of
the three most common HLA class I supertype representatives consistently found to contain fewer predicted epitopes
compared to normal tissue. We observed a significant difference in amino acid composition between protein sequences
associated with normal versus cancer tissue, as transcripts found in cancer are enriched with hydrophilic amino acids. This
variation contributes to the observed significant lower likelihood of cancer-specific peptides to be predicted epitopes
compared to peptides found in normal tissue.
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Introduction

Cancer-specific splice variants are of significant interest as they

may be involved in pathogenesis and may further potentially be

used as biomarkers and generate novel targets for cancer [1,2].

The human immune system is capable of responding to some of

these cancer specific antigens, as first shown by a melanoma-

specific antigen, MAGE-1, able to stimulate human T cells [3,4].

More generally, individuals with high or medium cytotoxic activity

of peripheral-blood lymphocytes are further associated with a

significantly lower risk of cancer, suggesting a role for natural

immunological host defense mechanisms in cancer [5].

Alternative splicing can change the structure of mRNA by

inclusion or skipping of exons, and this may alter the function,

stability or binding properties of encoded proteins and thereby

contribute to human diseases such as cancer [6]. In a study

investigating alternative splicing events in ovarian and breast tissues

affected by tumors it was found that about half of all splicing events

in these tissues are altered in tumors, many of them due to exon

skipping [7]. Similar trends have been observed in other types of

cancers, e.g., in colon cancer and testicular tumor [8,9], as well as in

gastric cancer, where genes showing differential expression between

cancer cell lines and corresponding normal tissues were found [10].

In addition to cancer being involved in dysregulating pathways, thus

contributing to changes in alternative splicing and gene expression

controlled by these proteins [11], human leukocyte antigen (HLA)

class I antigen processing components and HLA expression have also

been shown to be downregulated in connection with cancer [12,13].

A study investigating alterations of HLA class I expression in 12

ovarian cancer patients reported low levels of HLA class I antigens in

tumor cells from all patients. One patient-derived tumor cell line

showed a complete haplotype loss, including the HLA-A2 locus [14].

These observations are interpreted as mechanisms adopted by

tumors to escape immune surveillance and to avoid tumor cell

recognition and destruction [15,16]. It has been suggested that

elimination of growing tumors by the immune system may lead to

selection of tumor variants that are efficient in avoiding immune

system recognition [17]. There thus seems to be accumulative

evidence for cancer being coupled to alternative splicing as well as

to an efficacy in evasion from the immune system by downreg-

ulation and altering HLA expression. Most of the studies relating

cancer-specific alternative splicing to altered immune system

surveillance are, however, of limited size and in most cases

anecdotal. Here, we wanted to investigate, in a large-scale study, if

the alternative cancer exome already at the step of mRNA splicing

contains a bias compared to normal transcripts in the set of

possible HLA class I epitopes.

Results

Transcripts over-represented in cancer contain fewer
predicted epitopes restricted by the three most common
HLA class I supertypes

The aim of this study was to investigate, using a large-scale data

set, if peptidomes specific for cancer versus normal tissue have
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different properties related to altered degree of immune system

surveillance. To do this, we constructed two sets of peptides, one

over-represented by cancer tissue and one over-represented by

normal tissue. Globally permutated versions of these sets were

produced as described in Material and Methods. The global

permutation destroys structural characteristics within the HLA-

binding 9-mers, only maintaining global compositional properties.

For comparison, we constructed locally permutated normal and

cancer sets by permutating each peptide separately, thus

preserving the local amino acid composition of each peptide. To

investigate immune-related properties, potential epitopes covering

all 12 HLA class I supertypes were predicted using NetMHCpan.

For each supertype, we calculated the percentages of predicted

epitopes for the six peptide data sets: normal, normal globally and

normal locally permutated, cancer and cancer globally and cancer

locally permutated.

It is well known that some HLA class I supertype representatives

are more common than others. It is therefore expected that for the

less frequent HLA alleles, the results are more likely to include

noise. The source of our data set, the ASTD database, is to a large

extent originating from EST data without HLA specific informa-

tion. EST data is mostly based on Caucasian Europeans [18];

therefore we can safely assume that the more common HLA types

in the European population are also more common in our dataset.

The HLA allele frequencies were obtained from the dbMHC

database [19]. Approximate numbers of expected phenotype per

supertype in the European population are given in Table 1.

The three most common supertype representatives in the

European population are HLA-A*02:01, HLA-A*01:01 and HLA-

A*03:01. For these three supertype representatives, the transcripts

associated with normal tissue have a significantly higher percent-

age of predicted epitopes than transcripts over-represented in

cancer. Figure 1 shows the observed numbers, in percentages of

predicted epitopes per 9-mers, for the different data sets for these

three most common supertype representatives. All observed

differences between normal and cancer tissues shown in Figure 1

are significant (p,0.006, 2-sample test for equality of proportions).

For most HLA class I supertypes, cancer transcripts
contain fewer predicted epitopes

Further, the percentage of predicted epitopes for permutated

and not-permutated sequences for all 12 supertype representatives

is shown in Table 2. Here, we observed a similar tendency as

compared to our observation for the three most common

supertypes in the European population. For non-permutated

sequences, seven out of the twelve supertype representatives (HLA-

A*01:01, HLA-A*02:01, HLA-A*03:01, HLA-A*24:02, HLA-

A*26:01, HLA-B*15:01 and HLA-B*58:01) had a significant

lower fraction of predicted epitopes in sequences assigned to

cancer pathology. A statistical significant difference, where cancer-

associated peptides contained more predicted epitopes was, on the

other hand, only observed for one supertype representative,

namely HLA-B*27:05.

When analyzing permutated sequences, similar results were

observed. Only one supertype representative (HLA-B*40:01,

locally permutated) had significantly more predicted epitopes in

the permutated cancer sequences than in the permutated normal

sequences. On the other hand, permutated, normal sequences had

consistently for both the local and global permutated sets more

predicted epitopes for seven supertype representatives (HLA-

A*01:01, HLA-A*02:01, HLA-A*03:01, HLA-A*24:02, HLA-

A*26:01, HLA-B*15:01, HLA-B*58:01). For these seven supertype

representatives, the difference between normal and cancer data

sets is significant in the permutated as well the non-permutated

data sets. The observation that cancer transcripts contain fewer

predicted epitopes for most HLA class I supertype representatives,

is stable, when different thresholds for the prediction of potential

epitopes are applied (data not shown).

HLA motif and amino acid composition biases
The relative difference in predicted epitope density between

normal and cancer is, for our previously defined most common

HLA alleles, relatively stable. Also, the difference in epitope

density is largest when comparing non-permutated to globally

permutated peptide sets. For HLA-A*02:01, a noticeable decrease

of predicted epitopes is observed when comparing normal and

cancer non-permutated peptides to normal and cancer permutated

peptides. As seen from Table 2 and Figure 1, the difference in

percentage of epitopes is the largest when comparing the non-

permutated sequences to the globally permutated sequences

(normal: 0.83 vs 0.73, cancer: 0.77 vs 0.69). For HLA-A*01:01,

the percentage of epitopes in non-permutated versus permutated

sequences appears to be relative stable (normal: 0.82 vs 0.80,

cancer: 0.77 vs 0.76), whereas permutated HLA-A*03:01 sequenc-

es have more predicted epitopes than the corresponding non-

permutated sequences (normal: 0.94 vs 1.01, cancer: 0.91 vs 0.96).

For these three supertype representatives, the percentage of

predicted epitopes in locally permutated peptides always falls

between the respective percentages for non-permutated and

globally permutated sequences. Locally permutated peptides

preserve only local amino acid composition, and globally

permutated peptides have their local structural properties

destroyed and preserve only global amino acid composition.

These observations indicate that both global and local structural

amino acid properties are factors that define the observed

differences in the epitope densities between the normal and

cancer peptidome.

An analysis of relative amino acid composition was performed

for all over-represented 9-mers associated with normal and cancer.

We found that hydrophilic residues are more common in

polypeptides from cancer transcripts than from the normal

polypeptides. The relations of N/C ratios compared to the

Table 1. Phenotype frequencies.

Allele Frequency

HLA-A*02:01 0.47

HLA-A*01:01 0.30

HLA-A*03:01 0.26

HLA-B*07:02 0.24

HLA-B*08:01 0.22

HLA-A*24:02 0.13

HLA-B*40:01 0.10

HLA-B*15:01 0.07

HLA-B*27:05 0.06

HLA-A*26:01 0.05

HLA-B*39:01 0.02

HLA-B*58:01 0.02

HLA frequencies in the European population. Data obtained from the dbMHC
database [19].
doi:10.1371/journal.pone.0038670.t001

Epitope Density in the Alternative Cancer Exome
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hydrophilicity scale of amino acids by Hopp-Woods, the

hydrophobicity scale by Wimley-White as well as the mean

ranking of amino acids according to the frequency of their

occurrence for 38 published hydrophobicity scales are shown in

Figure 2. In Figure 2, residues are more common in cancer if N/C

is smaller than 1. Hydrophilic residues are marked black.

The Hopp-Woods and Wimley-White scales correlate strongly

with the N/C ratios with a Spearman rank correlation coefficient

of 20.72 and 0.78, respectively. The mean ranking amino acid

scale is correlated with a correlation coefficient of 20.65. All three

correlation coefficients are significant (P-value ,0.003, exact

permutation test). No correlation was found for other amino acid

properties like mass, surface area or volume (data not shown).

It is striking to observe that all strong hydrophilic amino acids

(KPRQ, Hopp-Woods scale) are enriched in sequences associated

with cancer. A similar observation is made for Wimley-White

scale: We identified seven amino acids significantly more common

in cancer (APERKDQ). Six of these (all except A) are within the

seven most hydrophilic amino acids based on the Wimley-White

scale. A reversed trend is found for hydrophobic amino acids. The

Figure 1. Percentage of epitopes per 9-mer comparison. Data is shown for the three most common HLA-I alleles in the European population.
Each bar shows the percentage of predicted epitopes per 9-mer in the respective set. Each set consists of peptides that are either over-represented in
normal or cancer tissue. Globally permutated or locally permutated version of the peptide sets were constructed as described in Materials and
Methods. All observed differences between cancer and normal tissues are significant (p,0.006, 2-sample test for equality of proportions).
doi:10.1371/journal.pone.0038670.g001

Table 2. Epitopes per set for all supertype representatives.

% epitopes % epitopes globally permutated % epitopes locally permutated

Allele N C N/C P-val N C N/C P-val N C N/C P-val

HLA-A*01:01 0.82 0.77 1.06 0.000 0.80 0.76 1.06 0.000 0.81 0.76 1.07 0.000

HLA-A*02:01 0.83 0.77 1.08 0.000 0.73 0.69 1.05 0.000 0.79 0.71 1.10 0.000

HLA-A*03:01 0.94 0.91 1.04 0.002 1.01 0.96 1.05 0.000 0.96 0.92 1.04 0.005

HLA-A*24:02 0.89 0.79 1.13 0.000 0.77 0.70 1.11 0.000 0.89 0.77 1.15 0.000

HLA-A*26:01 0.76 0.71 1.07 0.000 0.70 0.66 1.06 0.000 0.71 0.68 1.05 0.001

HLA-B*07:02 1.29 1.30 1.00 1.000 1.27 1.29 0.99 1.000 1.25 1.28 0.97 0.054

HLA-B*08:01 1.02 1.03 0.99 1.000 1.00 0.99 1.01 1.000 0.97 0.97 1.00 1.000

HLA-B*15:01 0.86 0.79 1.09 0.000 0.83 0.77 1.08 0.000 0.85 0.79 1.07 0.000

HLA-B*27:05 0.99 1.02 0.97 0.021 0.99 1.00 0.98 1.000 1.04 1.04 0.99 1.000

HLA-B*39:01 0.97 0.96 1.02 0.985 1.05 1.02 1.02 0.221 1.01 1.00 1.01 1.000

HLA-B*40:01 0.87 0.89 0.98 1.000 1.03 1.06 0.98 0.325 0.95 0.99 0.96 0.002

HLA-B*58:01 1.01 0.91 1.11 0.000 0.99 0.89 1.10 0.000 0.98 0.91 1.08 0.000

Percentage of predicted epitopes is given for data extracted from the ASTD database as well as for permutated sequences. N/C is the ratio between the normal and
cancer percentages. P-values are calculated by two-tailed t-test and adjusted for multiple testing by Bonferroni correction.
doi:10.1371/journal.pone.0038670.t002

Epitope Density in the Alternative Cancer Exome
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top significant amino acids classified by both Hopp-Woods and

Wimley-Scott as hydrophobic (WFICM) are all more common in

sequences associated with transcripts from normal tissue.

Based on these findings, one could suggest an explanation for

the difference in epitope density between the normal and cancer

peptidome. The binding motifs for the 3 most frequent supertype

representatives are shown in Figure 3. Out of the four most

preferred amino acids at the HLA-A*02:01 anchor positions, three

amino acids (VMI) are enriched in normal transcripts, whereas

only one (L) is as common in normal as in cancer. This leads to the

conclusion that at least part of the observed differences in

percentage of predicted epitopes in normal versus cancer

transcripts are due to amino acid composition. The same tendency

is found for HLA-A*01:01. The two most frequent amino acids in

the motif (YT) are also more often found in normal tissue, whereas

S is neutral and the next common amino acid, D, is more common

in cancer. The most frequent amino acid for HLA-A*03:01(K) is

slightly more common in cancer, whereas the second-next

frequent (Y) is, due to a stronger preference to fit peptides from

normal tissues, shifting the bias towards amino acids more

common in splice variants associated with normal tissue. For all

three motifs, we further calculated average weighted biases, based

on N/C ratios and amino acid frequencies (see materials and

methods). The weighted biases were calculated for both the

respective 5 most frequent amino acids per motif as well as all 20

amino acids. For all three motifs we observed an overall preference

for amino acids found in our normal tissue set.

Discussion

Alternative splicing of mRNA transcripts is an important

mechanism for generating genomic complexity and has been

shown to differ between cancer and the corresponding normal

tissues [1,8,9]. In addition, cancers in some cases downregulate

HLA class I antigen-processing components and HLA class I

expression to avoid detection by the immune system. These

observations led us to investigate whether transcripts found in

cancer tissue share characteristics that would reduce immune

system recognition. Here, we have carried out a large-scale

analysis aiming at identifying immune system related imprints that

can differentiate cancer from normal transcripts. Based on ASTD

database, a database providing predicted splice forms, we

identified two peptide data sets; one associated with transcripts

over-represented in cancer and one associated with transcripts

over-represented in normal tissue. Using state-of-the-art immu-

noinformatics prediction tools, we next analyzed the two data sets

for differences in terms of likelihood of being presented on

prevalent HLA class I molecules, and hence potential for

activating the immune system.

We found that peptides, which due to alternative splicing are

expressed in cancer tissue, contain fewer predicted epitopes

restricted by the three most common HLA class I alleles than

peptides expressed in normal tissue. Using globally permuted data

sets we consistently, for the three most common HLA class I

alleles, found that the observed loss in epitope density in the cancer

peptidome is maintained also for the permuted data sets. This

strongly indicates that differences in amino acid composition

between peptides from alternatively spliced normal and cancer

transcripts are the driving force of the reduced predicted epitope

density.

The reason for the observed change in frequency of specific

amino acids in proteins associated with cancer as compared to

normal tissue is unknown, but the phenomenon has previously

been observed in studies aiming at identifying biomarkers for early

stage detection of cancer: In a recent study, the levels of alanine,

isoleucine, leucine and valanine were found to be increased in the

pancreases of rats with pancreatic cancer as compared to samples

from rats with chronic pancreatitis and healthy rats [20]. In

another study, the levels of N-methylalanine and lysine were found

to be significantly increased in the plasma from pancreatic cancer

patients, while the level of glutamine and phenylalanine was found

to be decreased [21]. These studies identified differences in amino

acid composition in a single cancer type based on blood plasma

and tissue samples. We, in contrast, analyze over-represented

cancer peptides in general. As to be expected, the findings

regarding amino acid concentration reported in this study are not

concurrent with those of the single cancer type studies.

A possible explanation as to why we observed fewer predicted

epitopes in peptides, which due to alternative splicing are

expressed in cancer, could be that the host’s immune system

restricts the cancer exome. In that case, pressure from the immune

system disfavors cancer cells that present new epitopes at the cell

surface. An alternative explanation – which does not exclude the

previous explanation – takes as starting point the observed change

Figure 2. Hydrophilic amino acids are enriched in cancer. N/C
ratios in relation to Hopp-Woods hydrophilicity scale (A), Wimley-White
hydrophobicity scale (B) and to the mean ranking of amino acids based
on 38 hydrophobicity scales (C). N/C ratio is the ratio of observed
frequencies of the respective amino acids in polypeptides of over-
represented transcripts from normal and cancer tissues. If the N/C value
.1, the amino acid is more common in normal tissue; If the N/C value
,1, the amino acid is more common in cancer. Green bars refer to more
hydrophobic amino acids, whereas black bars refer to more hydrophilic
amino acids. All N/C ratios larger or smaller than 1 are significant
(p,0.001, calculated using the Wilson score [45] and Bonferroni
corrected).
doi:10.1371/journal.pone.0038670.g002

Epitope Density in the Alternative Cancer Exome
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in amino acid frequency, especially the increase in hydrophilic

amino acids in cancer proteins.

It has previously been shown that missense mutations in the

BRCA domain of high-risk breast and ovarian cancer patients

frequently target strongly hydrophobic amino acids [22]. Further,

it has been suggested that the stabilization of a protein structure is

to a large part due to the hydrophobic effect [23]. Accordingly, the

increase in hydrophilic amino acids has a destabilizing effect on

protein structure, which is in concordance with the protein loss-of-

function that is correlated with cancer progression. This is

exemplified by a study concerning inherited missense mutations

of the tumor suppressor gene, BRCA-1, which may predispose to

breast or ovarian cancer [24]. In this study, it was found that the

mutations predominately target conserved hydrophobic amino

acids that are responsible for folding and stability. Since, in

particular, the most common HLA class I allele, A*02:01, prefers

hydrophobic amino acids at the anchor positions, an increase in

hydrophilic amino acids will inevitably lead to fewer predicted

epitopes. The reduction in epitope density in peptides associated

with cancer might therefore be an intrinsic property of proteins

that are destabilized by a decrease of hydrophobic amino acids as

part of the progression to cancer. We are, however, not aware of

studies that show a general increase of hydrophobic amino acids

throughout different forms of cancer.

A bias of fewer potential epitopes due to cancer was previously

shown by Wiedenfeld et al [25]. Peptides caused by missense

mutations of p53 were shown to have a decreased fit to the HLA-

A*02:01 motif. All predicted variants of the peptides were either

from patients with other alleles or the allele was lost during

tumorigenesis. The decreased fit to the HLA motif due to

mutations is in coherence with our study investigating differences

in epitope density due to alternative splicing. To our knowledge,

this is the first study indicating that alternatively spliced cancer

transcripts tend to express fewer potential epitopes than alterna-

tively spliced transcripts found in normal tissue. The identified

difference in amino acid composition towards hydrophilic amino

acids in the alternative spliced cancer exome is a possible

explanation for the bias in potential HLA class I epitopes. The

preference for hydrophilic amino acids at the step of alternative

mRNA splicing could support the development of cancer by

providing it with the possibility of evading the host’s immune

system. In this case by leading to fewer potential HLA class I

epitopes presented at the cell surface.

Materials and Methods

Data extraction from the ASTD database
The Alternative Splicing and Transcript Diversity database

(ASTD) provides access to a collection of alternative splice events

and transcripts of genes from human, mouse and rat [26]. The aim

of the database is to analyze the mechanisms of alternative splicing

on a genome-wide scale. It integrates a computational pipeline for

detection and characterization of isoform splice patterns as well as

alternative introns and exons. The database contains predicted

transcripts, generated by mapping expressed sequence tags (ESTs)

to genome sequences. Our study is based on ASTD version v1.1

build 9 (accessible at ftp://ftp.ebi.ac.uk/pub/databases/astd/).

The database covers 14,194 human genes and lists 50,581 unique

transcripts not covered by Ensembl genes. Based on related

evidences from cDNA libraries, many of these transcripts are

tagged with pathology information. The pathology information is

given as eVOC ontologies, which is a controlled vocabulary for

unifying gene expression data [27]. As an alternative to the ASTD

database, we would have liked to use RNA sequence data, but

could not identify any usable database, providing genome-wide

coverage of potential transcripts, together with pathology

information.

Two data sets were generated based on annotated pathology

information. All transcripts tagged with the information of being

expressed in normal tissue were assigned to subset N. This subset

consisted of 30,739 transcripts derived from 11,980 genes. A

second subset, C, with transcripts related to cancer, consisted of

27,967 transcripts derived from 10,730 genes.

The cancer subset consists of all transcripts tagged with eVOC

terms related to cancer; that is being a subgroup of tumor in the

eVOC ontology hierarchy (Table 3). Several eVOC terms can be

associated to the same transcript.

For our analysis, we were interested in transcripts uniquely

associated to normal tissue or to one or more of the cancer eVOC

terms. Two new subsets consisting of transcripts only associated to

either normal or cancer eVOC terms were created. Out of 30,739

transcripts associated to normal, 16,566 were uniquely associated

Figure 3. Human HLA motifs. The three most common HLA types in the European population. The height of a column of letters is equal to the
information content at that position, whereas the height of each letter within a column is proportional to the frequency of the corresponding amino
acid at that position [44].
doi:10.1371/journal.pone.0038670.g003

Epitope Density in the Alternative Cancer Exome
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with normal tissue, due to ASTD database, and not with cancer

(unique N set). The subset of transcripts uniquely associated with

cancer (unique C set) consists of 13,794 transcripts (see Table 4).

Transcripts covered by each data set are unique for either normal

tissue or cancer as defined by the ASTD database. The ASTD

database does not provide pathology information for all transcripts

nor lists all potential tissue types or pathologies. Accordingly, we

refer to our sets of transcripts uniquely associated to either normal

or cancer as over-represented in either normal or cancer tissue.

Translation to proteins
All transcripts assigned to either normal or cancer pathology

were translated to their respective protein sequence using Virtual

Ribosome [28]. The longest ORF among all three reading frames

was chosen as the translated protein sequence. The protein

sequence and corresponding transcript were discarded if no ORF

was found or if the resulting protein sequence was shorter than 9

amino acids. The threshold of 9 amino acids was chosen as we

subsequently apply the epitope prediction on 9-meric peptides,

although we are aware that proteins this small might not be

functional. Applying this filter resulted in a normal set of 16,490

transcripts and a cancer set of 13,721 transcripts.

Generation of unique 9-mers
All proteins assigned to either normal or cancer pathology states

were divided into overlapping 9-meric peptide sequences. Peptide

sequences that were found in both groups were removed, leading

to the creation of two sets of unique 9-mer peptides. There are

1,856,231 unique 9-mers in the normal group (N-peptidome) and

1,684,028 unique 9-mers in the cancer group (C-peptidome). Note

that normal and cancer sets do not consist of complete proteins;

they only consist of unique 9-meric peptides not found in the other

set. Permutated sets of both the unique N and unique C set were

created. For each set, one locally permutated and one globally

permutated set of 9-meric peptides was generated. The local

permutated sets were constructed by permuting each 9-mer, thus

keeping the amino acid composition within each 9-mer fixed. The

global permutated sets were made by randomly constructing new

9-mers out of all amino acids within each set. This preserves the

overall amino acid composition within the unique N and C sets,

local properties within each 9-mer are, however, destroyed.

Prediction of potential HLA class I epitopes
The prediction method NetMHCpan-2.4 [29,30] was used for

predicting potential epitopes for the 12 HLA class I supertypes

[31]. The NetMHCpan-2.4 method was trained on an experi-

mentally validated data set of more than 100,000 quantitative

peptide – HLA class I interactions covering more than 100 HLA

molecules and has been evaluated as the best pan-specific method

for HLA peptide binding in a large benchmark study [32]. A

general accepted threshold for binding is a rank score of 1%

[33,34] (binding strength falling within the top 1% compared to a

large set of random natural peptides), which is also the threshold,

used throughout this study.

The percentages of potential epitopes per 9-mer for all 6 sets

(normal 9-mers, normal globally permutated 9-mers, normal

locally permutated 9-mers, cancer 9-mers, cancer globally

permutated 9-mers and cancer locally permutated 9-mers) were

calculated. P-values for difference in percentage of predicted

epitopes between normal and cancer 9-mers for non-permutated

and permutated subsets were calculated by a 2-sample test for

equality of proportions and adjusted for multiple testing

(Bonferroni correction).

Amino acid scales
The amino acid abundance for normal tissue compared to

cancer tissue was determined based on all unique 9-mers in the

two data sets. The relative frequencies for all amino acids in both

the normal and cancer sets were calculated. Observed ratio of

frequencies (N/C) of amino acids among normal and cancer

tissues was correlated with Hopp-Woods hydrophilicity [35] and

Wimley-White hydrophobicity scale [36] values. The ratio was

further correlated with a mean ranking scale per amino acid as

published by Simpso]. According to Simpson [37], the scale is

based on the mean ranking of amino acids according to the

frequency of their occurrence at each sequence rank for 38

published hydrophobicity scales [38]. Other investigated scales are

average volume of buried residues [39,40], van der Waals volume

[41] and total accessible surface area [42].

Bootstrapping was applied to test if an amino acid property

scale is correlated with enriched expression of residues in either

unique normal or cancer 9-mers. For each scale, the Spearman

rank correlation coefficient was calculated and the significance of

the correlation was estimated using exact permutation test.

Table 3. eVOC terms used for cancer subset.

Burkitts lymphoma Glioblastoma Myeloid leukemia

Ewings sarcoma Glioma Myeloma

T-cell leukemia Hypertrophic
cardiomyopathy

Neoplasia

Wilms tumor Insulinoma Neuroblastoma

Adenocarcinoma Leiomyosarcoma Oligodendroglioma

Adenoma Leukaemia Osteosarcoma

Astrocytoma Liposarcoma Papillary serous
carcinoma

Carcinoid Lymphoblastic
leukemia

Phaeochromocytoma

Carcinoma Lymphocytic Polyp

Carcinoma in situ Lymphoma Retinoblastoma

Chondrosarcoma Aalignant tumour Rhabdomyosarcoma

Choriocarcinoma Medulloblastoma Sarcoma

Enchondroma Melanoma Seminoma

Fibrosarcoma Meningioma Teratocarcinoma

Fibrothecoma Monocytic
leukemia

Tumour

doi:10.1371/journal.pone.0038670.t003

Table 4. Number of transcripts and genes per set.

Normal Cancer

Number of transcripts 30,739 27,967

Number of genes 11,980 10,730

Number of uniquely associated transcripts 16,566 13,794

Number of uniquely associated genes 8,741 7,128

Average number of unique transcripts/gene 1.90 1.94

Transcripts were extracted from the ASTD database. Number of transcripts and
genes associated with normal and cancer pathology terms are given.
doi:10.1371/journal.pone.0038670.t004
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HLA motif bias
HLA binding motifs were generated from NetMHCpan-2.4

training data. Position specific weight-matrices were calculated

using sequence weighting and correction for low counts [43].

Sequence logos were visualized as described by Schneider and

Stephens [44], where each letter represents its proportional

frequency of the corresponding amino acid at that position. Based

on amino acid frequencies and observed ratio of frequencies (N/C)

of amino acids among normal and cancer tissues, we calculated for

the HLA-A*A02:01, HLA-A*A01:01 and HLA-A*A03:01 motifs

their respective overall bias towards either our defined normal or

cancer peptide set. This was done for all 20 amino acids and for

the 5 most frequent amino acid occurrences per motif. Per

position, the tendency to fit preferably to either the normal or the

cancer peptidome was calculated by summation of the respective

amino acid frequencies multiplied with the related N/C values for

all 20 amino acids. Likewise the calculation for the 5 most frequent

amino acid occurrences per motif, where only the subset of the

motifs 5 most frequent amino acid occurrences at this position is

considered. Similar to the N/C ratio, a motifs bias to preferably fit

to our normal set is given, if the average over all position for a

motif is larger than 1.
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