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Abstract

Focused attention to spontaneous sensations is a dynamic process that demands interoceptive abilities. Failure to
control it has been linked to neuropsychiatric disorders like illness-anxiety disorder. Regulatory strategies, such as fo-
cused attention meditation (FAM), may enhance the ability to control focused attention particularly to body sensa-
tions, which can be reflected on functional neuroanatomy. The functional connectivity (FC) related to focused
attention has been described, however, the dynamic brain organization associated to this process and the differen-
ces to the resting state remains to be studied. To quantify the cerebral dynamic counterpart of focused attention to
interoception, we examined fifteen experienced meditators while performing a 20-min attentional task to spontaneous
sensations. Subjects underwent three scanning sessions obtaining a resting-state scan before and after the task.
Sliding window dynamic FC (DFC) and k-means clustering identified five recurrent FC patterns along the dorsal at-
tention network (DAN), default mode network (DMN), and frontoparietal network (FPN). Subjects remained longer in a
low connectivity brain pattern during the resting conditions. By contrast, subjects spent a higher proportion of time in
complex patterns during the task than rest. Moreover, a carry-over effect in FC was observed following the intero-
ceptive task performance, suggestive of an active role in the learning process linked to cognitive training. Our results
suggest that focused attention to interoceptive processes, demands a dynamic brain organization with specific fea-
tures that distinguishes it from the resting condition. This approach may provide new insights characterizing the neu-
ral basis of the focused attention, an essential component for human adaptability.
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Significance Statement

The dynamic brain connectivity related to focused attention to interoceptive processes remains to be explored.
Here, we estimated the dynamic connectivity within the dorsal attention network (DAN), default mode network
(DMN), and frontoparietal network (FPN) to characterize the focused attention to interoception and its differences
to resting state. Five recurrent FC patterns were found. At rest subjects remain longer in a low connectivity pattern.
In contrast to rest, the task showed an increase in the time spent in complex connectivity patterns. In addition, a
lasting effect in the dynamic functional connectivity (DFC) that extended to the rest was observed following the
task performance. Altogether, these results contribute to identify the dynamic brain organization supporting the fo-
cused attention.
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Introduction
In our everyday life, numerous stimuli surround us, re-

quiring the selection, processing, and monitoring through
focused attention (Posner, 2012; Farb et al., 2013). Once
the stimulus is attended, it will be more likely to influence
brain systems and to guide our behavior (Dehaene and
Changeux, 2005; Webb and Graziano, 2015). Attention
modulates the body representation in the somantosen-
sory cortex. It facilitates the conscious perception of the
external stimuli and also can increase or decrease the
perception of spontaneous sensations, occurring without
any external stimulus, as a response of the focused atten-
tion on the body (Boly et al., 2007; Ferentzi et al., 2018).
Spontaneous sensations are related to interoception, the
sensing of the body’s physiological condition, essential
for body awareness (Michael and Naveteur, 2011;
Michael et al., 2015). As a property of multiple cognitive
processes (Bartolomeo and Chokron, 2002; Chun et al.,
2011), the lack of regulation in the control of focused at-
tention has an adverse impact on the metal health. It has
been linked to psychiatric disorders (White and Shah,
2006; Donald et al., 2014), such as panic disorder, soma-
tization, and illness anxiety disorders, distinguished by an
excessive attention and increased concern in body sen-
sations (Stins et al., 2015; Stern et al., 2017).
The ability to control focused attention particularly to

body sensations may improve through regulatory strat-
egies, like focused attention meditation (FAM) practices,
considered a form of cognitive training (Tang et al., 2015).
FAM requires to focus the attention to an object and bring
the attention back to the object when it is lost (Manna et
al., 2010), resulting in a better identification of the atten-
tion/inattention states (Lutz et al., 2008; Fox et al.,
2016). Vipassana meditation is a practice characterized
by focusing the attention on present-moment sensory
awareness improving the attention control. In addition,
Vipassana meditation laid the basis for the development
of mindfulness techniques which have been used in
clinical settings (Cahn and Polich, 2009; Goyal et al.,
2014). Evidence suggests that such control of attention
leads to changes in the functional neuroanatomical or-
ganization measured by functional connectivity (FC;
Kilpatrick et al., 2011; Rabipour and Raz, 2012).
FC is an estimation of the communication across dis-

tant brain regions, which results in the integration of

information (Friston et al., 1993; van den Heuvel and
Hulshoff Pol, 2010), a fundamental principle for cognitive
processes. Various FC systems have been linked to fo-
cused attention tasks, including the focusing to spontane-
ous sensations (Bauer et al., 2014), primarily the
frontoparietal network (FPN; Bauer et al., 2019), the dorsal
attention network (DAN; Corbetta and Shulman, 2002;
Raz, 2004; Vossel et al., 2014), and the default mode net-
work (DMN; Hasenkamp and Barsalou, 2012). The evi-
dence of these studies suggests differences in the
activation of these network regions related to the focus of
attention, showing an increase activation of the FPN/DAN
regions related to sustained attention and an activation of
the DMN regions related to mind wandering (Hasenkamp
and Barsalou, 2012; Hasenkamp et al., 2012). However,
most of these fMRI studies have shown results which im-
plicitly considered FC as stationary, i.e., representing an
average of the FC from the scanning session (Hutchison
et al., 2013a; Preti et al., 2017).
Recent FC studies have shown the dynamic nature of

the brain activity, demonstrating connectivity patterns
that evolve in time and organize in a hierarchical way
(Vidaurre et al., 2017; Demertzi et al., 2019). However, the
dynamic FC (DFC) analysis has focused, for the most
part, on the investigation at rest. Therefore, although FC
related to focused attention has been described, the dy-
namic modulation associated to focused attention and its
differences with the resting state remains scarce (Fell et
al., 2010; Hairston et al., 2017). The limited existing evi-
dence about task DFC suggests a brain reorganization
during tasks, with differences between the DFC patterns
identified at rest versus motor tasks (Cheng et al., 2018),
as well as differences in the frequency of the identified
patterns during rest and during visually sustained atten-
tion tasks (Denkova et al., 2019), suggesting a response
in the brain adaptation to cognitive demands (Gonzalez-
Castillo and Bandettini, 2018).
Given these precedents, in this study, we aimed at

quantifying the dynamic variations of FC between DMN,
DAN, and FPN during three contiguous conditions; a rest-
ing state fMRI (rs-fMRI) session before a task, an sponta-
neous sensations attention task and during a rs-fMRI
session after the task in experienced meditators. The in-
clusion of meditators provided the opportunity to explore
the coordination of these networks during the interocep-
tive body focus in subjects with and advanced training in
the control of this process.
The approach of this study can help to understand the

dynamic brain organization underlying the focused atten-
tion to interoceptive processes, as well as the reorganiza-
tion of the networks when going from a focused attention
state to rest. This characterization offers an opportunity to
obtain essential insights about the brain adaptation sup-
porting this vital aspect of human adaptability and the
brain reorganization according to the cognitive demands.
Based on the previous evidence, we hypothesized that

this approach would allow to obtain the common DFC
patterns that characterizes the dynamics of these net-
works during the three conditions. In addition, differences
will be found in the frequency or time spent in these
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patterns as an effect of the ongoing experimental condi-
tion, with a higher time spent in patterns related to atten-
tion networks as DAN/FPN during the task.

Materials and Methods
Subjects
We included fifteen meditation practitioners in Vipassana

meditation with an average number of hours of meditation
practice at 1677 6 367 h, six females, with a mean age of
406 12years old. All participants were evaluated for exclu-
sion criteria: fMRI contraindications, history of psychiatric or
neurologic disorder, or medical illness. Subjects answered
digital versions of the Symptom Checklist 90 and Edinburgh
Inventory to exclude psychiatric symptoms and to evaluate
handedness, respectively. All participants signed an in-
formed consent from the experiment approved by the
Institutional Bioethics Committee, in accordance with the
Declaration of Helsinki. At the end of the fMRI session, we
applied an interview to assess the qualitative task experi-
ence of the subjects, to obtain information that ensured the
subjects were awake and had an accurate performance of
the instructions of the task.

Experimental design
Functional images were acquired in 1 d for each of the

15 subjects. Subjects underwent three functional scan-
ning acquisitions starting with 10min of rs-fMRI before
the task (pre-task rest) scan, followed by 20min of the fo-
cused attention task fMRI scan and finally 10min of rs-
fMRI after the task (post-task rest; Fig. 1). This implies
three conditions for the subjects, however, one of the
subjects did not conclude the post-task rs scan, therefore
we obtained 14 subjects post-task rest data. The data for
the pre-task rest and task condition was complete for the
15 subjects.
The task is a focus attention meditation technique,

based in a previous study (Hasenkamp et al., 2012),
which consisted of focusing the attention to spontaneous
sensations (e.g., numbness, pulsation, tingling, warming,
cooling, itching, tickle, vibration, flutter, skin stretch, stiff-
ness, etc.) in five specific anatomic regions: nostrils, right
thumb, left thumb, right great toe, left great toe, always in
the same order, cyclically, and counterbalanced. Once
participants started to feel a spontaneous sensation (i.e.,

pulsation) in the respective region, they were asked to
sharpen focus more and more until they had a clear, dis-
tinct and uninterrupted sensation. When this level of felt
sensation was reached, they were instructed to sustain it
for ;3–5 s and then press a button (Nordic Neurolab MR
compatible button system). This button press signaled
both the end of clear and distinct focus of felt sensation
and shift of attention to the next anatomic region (Fig. 1).
This was repeated at the participants own pace through-
out the scan until the end. During the MRI session the
subjects laid supine and remained relaxed with their eyes
closed and avoided any motion. The time and the number
of the responses were registered.

MRI acquisition
Images were obtained using a 3.0T GE Discovery

MR750 scanner (General Electric) with a 32-channel head
coil. We acquired three fMRI scans during one session
per subject: a resting state scan before the task (pre-task
rs), then, the task scan and finally a rest scan after the
task (post-task rest). The attention task scan was ob-
tained using a T2* EPI pulse sequence of 20min, with TR/
TE = 1500/27ms, 64� 64 matrix, spatial resolution 4 � 4
� 4 mm3, 35 slices/volume, obtaining 804 volumes. The
rs-fMRI scans consisted in an EPI pulse sequence of
10min in duration each one, with TR/TE = 2000/40ms,
obtaining 300 volumes in the pre-task rest and 300 vol-
umes in the post-task rest. During rest, subjects were
asked to remain awake with their eyes closed. The TR for
the attention task was selected according to the parame-
ters of a previous meditation study (Hasenkamp et al.,
2012) to adhere to the experiential sampling during medi-
tation which required a faster acquisition. The differences
in the TR as well as the differences in the length of the
fMRI data between conditions has been shown to not af-
fect the FC. The evidence of studies demonstrates that
the strength of FC is stable with 6min of fMRI data and is
minimally affected by differences in many acquisition pa-
rameters including TR (Wu et al., 2011), with reliable re-
sults when common preprocessing procedures are
applied (Van Dijk et al., 2010) . After the fMRI acquisition a
high-resolution 3D T1 SPGR structural sequence was ac-
quired (voxel size of 1 � 1 � 1 mm3, 256� 256 matrix, TR/
TE = 8.156/3.18ms).

Figure 1. Experimental design. The fMRI data were acquired in three scanning sessions, starting with the 10-min pre-task rs scan,
followed by 20-min task scan and the 10-min post-task rs. The task consisted in focusing attention to spontaneous sensations
starting in the nostrils. Once a clear spontaneous sensation was felt, subjects sustained the focus on it for 3–5 s. Then pressed a
button to signal the shift of attention to the next target.
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ROI selection
According to the literature, focused attention and FAM

practices are associated with changes in FC in the DAN,
DMN, and FPN (Hasenkamp and Barsalou, 2012;
Mooneyham et al., 2017; Bauer et al., 2019). Based on
this evidence, we investigated the FC of these three net-
works. For this, we decided to use an individual parcella-
tion approach, therefore, we created an individual mask in
each subject containing the ROIs of the three networks,
which would be used to make the FC analysis.
In order to create these individual masks, the pre-task

rest data of each subject and the FC Toolbox (CONN)
were used (Whitfield-Gabrieli and Nieto-Castanon, 2012).
The steps for the individual ROIs mask procedure were
taken as follows. First, the pre-task rest data subjects
were preprocessed with a default preprocessing of
CONN, which included motion correction, slice timing
correction, segmentation, corregistration to the MNI152
standard space, artifact detection, regression and spatial
smoothing of 6 mm. After this preprocessing, we per-
formed a first-level fMRI connectivity analysis, specifically
a voxel-to-voxel connectivity analysis in CONN for each
pre-task rest data subject. For this we used we used 4-
mm spheres, this size according to the spatial resolution
of our data (isotropic 4 mm voxel). The spheres were cre-
ated with SPM in MATLAB, centered for the DMN, DAN,
and executive control network (ECN) regions based on
the coordinates of Raichle (Raichle, 2011). This resulted in
a pFDR map for each network per subject. These maps
were thresholded with a p, 0.05 value and binarized,
then, to eliminate voxels out of our regions of interest that
could survived to the threshold, we used FSLtools to mul-
tiply the thresholded and binarized maps with the ROIs of
the DMN, FPN/CEN, and DAN of the network atlas imple-
mented in CONN. This last step allowed to obtain only the
surviving voxels specific for the maps of each subject
within our regions of interest and that overlapped with the
area of the CONN ROIs. This CONN network atlas
contains ROIs defined from CONNs ICA analysis in 497
subjects of the Human Connectome Project dataset
(Whitfield-Gabrieli and Nieto-Castanon, 2012).
After this analysis we observed that the number of ROIs

for the DAN mask differ between the subjects, given that
for some subjects there were no surviving voxels in one of
the frontal eye fields. However, the left and right intrapar-
ietal sulcus were present for the 15 subjects. Therefore, to
homogenize the number of ROIs for the DAN mask

between the subjects, we resolved to include only the left
and right intraparietal sulcus as the defining regions of
this network, given that the voxels in these two ROIs
where above the threshold and present in the 15 subjects.
The number of ROIs for the DMN and FPN did not differ
between the subjects, with the FPN including four regions
and the DMN four regions, for the 15 subjects.
The obtained three networks masks, per subject (Fig.

2), were combined into one mask with 10 ROIs, subject
specific. These consisted in the left and right intraparietal
sulcus, the medial prefrontal cortex (MPFC), posterior cin-
gulate cortex (PCC), left and right lateral parietal cortex
(LPl, LPr), the left and right lateral prefrontal cortex (LPFCl
and LPFCr), and the left and right posterior parietal cortex
(pPCl, pPCr; Fig. 2).
In regard to this individual masks procedure, we real-

ize that there is no gold standard for regional parcella-
tion (Fornito et al., 2010), with a variety of methods such
as individual parcellations initiated from a group level
scheme (Sohn et al., 2015) or group ROIs definition with
the leave one-subject technique (Esterman et al., 2010)
that could represent reasonable alternatives. However,
we consider that this procedure brings the advantage of
the ROIs identification directly from the individual data
and according to their individual functional variations
which may lead to a more accurate analysis of the FC
and therefore a better identification of the DFC state
(DFCS).

Preprocessing
After obtaining the individual ROI masks for every sub-

ject, the pre-task rs, task fMRI, and post-task rs fMRI raw
data, were preprocessed using FSL (Smith et al., 2004)
and for this the structural images were required. The
steps for this preprocessing were: extraction and discard-
ing of skull and other non-brain tissue from the structural
and functional image using BET of FSL (Smith, 2002) and
reorientation. Slice timing correction, motion correction
using MCFLIRT tool (Jenkinson et al., 2002), linear corre-
gistration with FLIRT tool and nonlinear with FNIRT to the
MNI152 standard space, segmentation of white matter
and cerebrospinal fluid, regression of the signal from
CSF, white matter and motion, artifact extraction with
aCompCor (Behzadi et al., 2007) and bandpass filtering of
0.01–0.08Hz. We did not perform the global signal regres-
sion since previous studies suggest that this may lead to
false anticorrelations (Chai et al., 2012).

Figure 2. ROI masks obtained from a subject. The ROI masks of this subject included the DAN (A), DMN (B), and FPN (C) regions.
These were combined into a single 10 ROIs mask which was used for the DFC analysis for this single subject.
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DFC analysis
Sliding windows is a strategy applied to explore the

time dynamic nature of the FC and in conjunction with a
clustering approach as k-means, allows to identify pat-
terns of FC that may reoccur in time across subjects, de-
fined as DFCSs (Chang and Glover, 2010; Damaraju et al.,
2014).
Applying a similar approach of previous studies

(Damaraju et al., 2014; Mooneyham et al., 2017), we
used sliding windows to determine the time varying FC
(Sakoğlu et al., 2010) between the 10 ROIs of DAN,
DMN, and FPN in the preprocessed data (pre-task rs,
task, and post-task rs). Then, to estimate the DFCSs,
we used the k-means algorithm for clustering (Chang
and Glover, 2010; Allen et al., 2014; Fig. 3). For this
DFC analysis, we used FSL tools, R software (3.4 ver-
sion; R Foundation for Statistical Computing, 2016)
and different R packages.

Sliding windows and clustering approach
Sliding windows
For the sliding windows approach we established 30-s

windows width and 15-s steps using fslsplit and fslmerge
tools in the preprocessed data. The selected window size
is according to previous studies describing a minimum
windows size of 30 s recommended to capture the FC
fluctuations (Hutchison et al., 2013b; Tagliazucchi and
Laufs, 2015). Therefore, in the task data we obtained 79
windows of 30 s (20 TR) width and 15-s (10 TR) steps per
subject, representing the 20min of the subject task scan.
This results in 1185 windows for the task group data. For
the rest data, using 30-s (15 TR) windows width and 15-s
(7 TR) steps, we obtained 39 windows for the 10min of
the pre-task rest and 39 windows for the 10min of the
post-task rest per subject. Therefore, in the pre-task rest
group data we obtained 585 windows of the 15 subjects
and in the post-task group data 546 windows of 14 sub-
jects were obtained, since one subject did not conclude
the post-task rest scan. The group windowed data,

including the pre-task, task and post-task, consisted in
2316 windows. In each window we calculated the FC be-
tween the ten regions of the three networks using the ROI
mask estimated for each subject. For the FC estimation
we computed the Pearson’s R for each pair of ROIs, ob-
taining a 10� 10 matrix of connectivity for each window,
then these correlation values were transformed to z
values.

Clustering
The 2316 FC matrices containing z values were

grouped into a dataset that would be used to apply the k-
means clustering. To determine the ideal number of clus-
ters for the grouped dataset, we made an independent
analysis. This consisted in determine the best number of
clusters individually to the rest condition (pre and post-
task rest) and to the task condition FC matrices using the
NbClust package (Charrad et al., 2014) from R software.
NbClust is a package that determines the optimal number
of clusters in a dataset using 30 indexes. This determina-
tion is based on the majority rule in this package, which
selects the optimal number of clusters based on the num-
ber of clusters proposed by most of the indices in the par-
titioning. We acknowledge that the selection of the
optimal number of clusters is a difficult problem in cluster-
ing analysis, however, we considered that its definition
using the majority rule was a reasonable solution for our
study. The resulting best number of clusters for the rest
data were three clusters according to 14 indices and for
the task data were five clusters according to 10 indices.
Then we applied k-means clustering independently to rest
and task data with the three clusters solution for rest and
five clusters for the task. We observed that the three cent-
roids obtained for the resting condition shared similar val-
ues with three of the five centroids obtained for the task
data. Therefore, we decided to use the five-cluster solu-
tion as the optimal number of clusters for the grouped da-
taset (pre-task rest, task, and post-task rest), allowing to
fairly compare the dynamics between conditions and per-
form statistical testing on their differences.

Figure 3. DFC analysis. A, The time courses of the three conditions in each subject where used for the sliding windows analysis. B,
In each 30-s window the FC of the 10 ROIS was calculated. C, The data from all subjects and conditions were joined into a group
dataset. D, The cluster solution of 5 was applied and k-means clustering was used to obtain the centroids of each cluster, which
represented the DFCS. E, Each window, which represented 30 s of time, was classified to one of the states, allowing to estimate
the transitions and the time spent in the states for each subject and condition.
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After this estimation, we applied the k-means clustering
in the grouped data, using the k = 5 solution, Euclidean
distance, and 25 iterations for the algorithm, we obtained
the five centroids of the five clusters; these centroids rep-
resented the five DFCSs. The clustering analysis also al-
lowed us to classify each FC matrix from the dataset to
one of these five states. Given that each matrix represents
30 s of time, we estimated the proportion of time spent on
each state for each condition per subject. For this, in each
subject we determined the number of matrices classified
to a DFCS during a condition, this number was divided by
the total number of matrices of the condition; this resulted
in a time proportion for each state and for condition per
subject, which then allowed us to estimate differences in
the proportion of time spent on a state between the
conditions.
In order to define whether the experimental condition

had an effect over the proportion of time spent in the FC
states, we applied the mixed effects linear model using
the lme function from the nlme package in R (Pinheiro et
al., 2017). This test was preferred since one of the sub-
jects did not complete the 10min of the post-task rs scan,
therefore, we had a non-balanced sample. In the model
fitting we used the proportion of time spent in each state
by condition as the dependent variable and the condition
and state interaction as the independent variable, with the
subject by condition as the random effect. Then we tested
the significance of the model effects with ANOVA. The
post hoc comparisons were performed using the em-
means package from R software (Lenth et al., 2020) which
obtains the estimated marginal means for the model and
allows to compute the contrasts. The p values of the con-
trasts were then corrected for multiple group compari-
sons using the Bonferroni test with a significant level
p, 0.05.

Results
Behavioral data
The button presses during the task which signaled

the attention shift were registered for each subject. This
resulted in an average number of responses of
20.56 8.8. The 15 subjects indicated that they re-
mained awake and performed the task as was in-
structed according to the information given by the
subjects. In addition, one of the researchers supervised
the absence of movement in the subjects during the
performance of the task.

DFCSs
Five DFCSs were identified, which are described here

as states 1–5 and represent the pre-task rest, task and
the post-task rest conditions (Fig. 4B). Each state charac-
terizes a distinct FC between the 10 ROIs of three net-
works, DAN, FPN, and DMN, implicated in focused
attention.
State 1 is characterized by a high connectivity between

the regions of the three networks, except for the MPFC in
the DMN, which shows low correlation values, near to 0,
with the DAN and FPN regions. This state is also

characterized by a preserved intranetwork connectivity.
The state 2 shows a high connectivity between the
DMN and FPN regions whereas, the regions from these
two networks are anticorrelated with the DAN regions.
Although the DAN is segregated from the two other
networks, this shows a high intranetwork connectivity
in this state. The state 3 demonstrates the lowest FC
between the regions of the three networks in compari-
son with the other states. While this distinctive low in-
ternetwork connectivity points out a remarkable
difference with the other states, it is also characterized
by a preservation of the intranetwork FC. The state 4 is
marked by the right FPN regions showing positive cor-
relation values with the DMN regions, whereas the left
FPN regions show positive correlation with the DAN re-
gions. This distinctive finding was associated to a de-
coupling between the left and right regions in the FPN,
showing extremely low connectivity values between
them. The state 5 shows a high connectivity between
the DAN and the FPN regions, whereas these two net-
works show anticorrelations with the DMN regions.
Although this state shows a segregated DMN, this net-
work exhibits the highest intranetwork connectivity in
comparison with the other states.
The individual parcellations used for this study aimed to

obtain the functional network regions specific for each
subject that allows a more accurate analysis of FC and a
better identification of the DFCS. However, given that the
use of a common anatomic atlas to study group FC is an
approach widely used in fMRI (Salehi et al., 2018), we
decided to compare and quantify the degree of conver-
gence between the resulting DFCS using ROIs of a
standardized group atlas as the CONN network atlas
with the DFCS using the individual parcellations. The
CONN network atlas contains 32 ROIS defined from
CONNs ICA analysis in 497 subjects of the Human
Connectome Project dataset and has been used for
previous FC studies (Whitfield-Gabrieli and Nieto-
Castanon, 2012). We selected 10 ROIs from the DAN,
FPN, and DMN of this atlas. These 10 ROIs which de-
fined our group atlas consisted in the MPFC, PCC, LPl
and LPr for the DMN, LPFCl and LPFCr, left and right
posterior parietal cortex for the FPN, and the left and
right intraparietal sulcus for the DAN.
Using this group atlas, we applied the clustering ap-

proach with the five-cluster solution. We obtained the
five DFCS and visually compare these correlation mat-
rices with the obtained using the individual masks and
it was observed that each of these five states had a
matched state with one of the DFCS of the individual
mask (Fig. 5). A correlation Pearson’s test was per-
formed between the z-values of the paired matching
states, observing a significant high positive correlation
between the five pairs of matching states. The results
were for the state 1 r = 0.96, p � 2.2e-16, 95% confi-
dence interval (CI) [0.93, 0.97], state 2 r = 0.98, p �
2.2e-16, 95% CI [0.97, 0.99], state 3 r = 0.93, p � 2.2e-16,

95% CI [0.88, 0.96], state 4 r = 0.97, p � 2.2e-16, 95% CI
[0.95, 0.98], state 5 r = 0.99, p � 2.2e-16, 95% CI [0.98,
0.99]]. These results demonstrate a high degree of
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convergence between the FC states obtained using indi-
vidual parcellations and using a group atlas. This suggests
that the individual approach used in our study shows a
high consistency with the use of alternative parcellation ap-
proaches. However, it should be emphasized that for the

individual parcellations procedure, the 10 ROIs from the
CONN network atlas were also used, during the last
step of their elaboration. This could partly explain the
high degree of convergence between the results using
both parcellations.

Figure 5. Strong correlation between the DFCS using individual parcellations and using a common group atlas. A, The 10 ROIs
mask obtained from a subject is depicted. B, These individual parcellations were used to obtain the five DFCSs. C, To assess the
differences with a group common atlas, the 10 ROIS including DAN, DMN, and FPN ROIS of the CONN network atlas was used. D,
Obtaining the five states of the common atlas. The correlation (r) and significancy between the visually matched states is shown.

Figure 4. DFCSs A, The individual masks where used for the analysis. B, Five DFCS were obtained each one with a characteristic
FC pattern and presented across the three conditions. C, Boxplots of the proportion of time spent in each state shows differences
between the three conditions. After being corrected, a significant decrease (*) in the time spent in the state 3 during the task per-
formance in contrast with the pre-task rest was revealed. D, An analysis contrasting between both rest conditions and task showed
similar results, with a decrease in the time spent in the state 3 and an increase in the time spent in the state 4 during the task, after
the correction did not show significancy.
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Condition differences in DFC
The application of the DFC analysis to the grouped data

not only allowed us to characterize the states that de-
scribe the brain dynamics of the three conditions, but also
enabled us to investigate significant differences between
them. These differences were investigated in relation to
the proportion of time spent in each of the five states for
each condition.
The pre-task rs condition consisted in 585 FC matrices

of the grouped data, which were classified each one to a
DFCS. The analysis of the proportion of time spent in
each state for this condition resulted in a mean proportion
of 0.172 in the state 1, 0.140 in the state 2, 0.381 in the
state 3, 0.138 in the state 4 and 0.167 in the state 5. The
task condition consisted in 1185 FC matrices that were
classified to one of the five states. The calculation of the
mean proportion of time resulted in a mean proportion of
0.172 spent in the state 1, 0.188 in the state 2, 0.251 in
the state 3, 0.221 in the state 4 and 0.165 in the state 5
during the task condition. For the post-task rs condition
there were 546 FC matrices used to the analysis of the
mean proportion of time spent on the states. This resulted
in a mean proportion of 0.168 in the state 1, 0.188 in the
state 2, 0.294 in the state 3, 0.153 in the state 4, and
0.194 in the state 5 for this condition (Fig. 4C).
These results demonstrate differences in the proportion

of time spent in each of the DFCS in relation to the condi-
tion, however, the differences were remarkable between
the task and the rest conditions in relation to the states 3
and 4. In the case of the state 3, there is an evident de-
crease in the time spent in this low FC state during the
performance of the focused attention task in comparison
to the pre-task and the post-task rs conditions. On the
other hand, during the task performance, there is a pro-
nounced increase in the time spent on the state 4 char-
acterized by a divided coupling of the FPN with the DAN
and DMN, in comparison with the time spent in this
same state during the pre-task rs and post-task rs con-
ditions. Differences between the rest conditions were
less pronounced, however, there is a decrease in the
time spent in the state 3 and an increase in the time
spent in the state 5 during the post-task rs in compari-
son with the pre-task rs.
The statistical analysis using the linear mixed effect

model and anova to the fitted model shows a significant
effect of the condition and state interaction over the time
proportion (F(8,191) = 2.1473, p = 0.03a), indicating that as
predicted in our hypothesis, the proportion of time spent
in these states is influenced by the ongoing attention con-
dition. The post hoc comparisons shows that there is a
significant difference in the proportion of time spent in the
state 3 between the pre-task rs and the task condition
(p=0.005b, 95% CI, d=1.146). After the correction for
multiple group comparisons with Bonferroni test, we ob-
tained a p=0.029b for this contrast. This indicates that
there is a significant decrease in the time spent on the
state 3, the low connectivity state, during the performance
of the task in comparison to the pre-task rs condition.
There were no significant findings for the time spent in the
other states in relation to the condition.

As is shown in Figure 4C differences are predominantly
and significant between the task and the rest conditions,
for this reason, we compared both rest conditions as a
single rest condition with the task, to assess whether the
differences were more pronounced. The results show for
the state 1 a mean proportion of time of 0.170 during rest
and 0.172 during the task condition, for the state 2 a
mean of 0.160 in rest and 0.188 during the task, the state
3 shows a mean of 0.341 in rest and 0.251 in task, the
state 4 shows a 0.146 in rest and 0.221 during the task
and the state 5 0.182 during rest and 0.165 in task. The
Figure 4D illustrate these differences, which reflects once
again a remarkable difference for the state 3 and state 4
between task and the rest condition. During the perform-
ance of the task there is a decrease in the time spent on
the state 3, while during this same condition an evident
higher proportion of time spent in the state 4 is presented
in comparison with the rest condition. The statistical anal-
ysis with the linear mixed effects model again demon-
strates a significant effect for the state and condition
interaction (F(4,126) = 2.8486, p=0.026c), indicating that
the proportion of time spent in the states is affected by
the experimental condition. The post hoc comparisons
between that rest-task contrast of the time for the state 3
resulted in p=0.014d, d=0.907 and for the state 4 re-
sulted in p=0.037e, d = �0.767 using a 95% CI. However,
after the Bonferroni correction for multiple groups com-
parisons we obtained a p=0.07d and p = 0.18e for the
state 3 and state 4, respectively. There were no significant
findings for the time in the other states in relation to these
two conditions.
Given that the button press signaled the attention shift,

we analyzed the correlation between the number of re-
sponses and the time proportion spent in the five DFCSs
during the task condition. However, we did not find a sig-
nificant correlation (state 1 r = �0.05, p=0.83, state 2 r =
0.09, p=0.73, state 3 r = �0.27 p=0.32, state 4 r =0.24,
p=0.38, state 5=0.01, p=0.96) (Table 1).

Discussion
In this study, we estimated the DFCSs of the DMN,

DAN, and FPN during three different contiguous condi-
tions, a pre-task resting state, a focused attention to
spontaneous sensations task and a post-task resting
state. The objective was to determine the dynamics of
these three networks during the focused attention to inter-
oceptive processes and to compare it with the brain dy-
namics of the resting state. We also aim to explore the
effects of this task performance over the subsequent rest
FC.
Our main finding was that there are five different pat-

terns of FC characterizing the conditions, each state with
a specific connectivity between the three networks. A dy-
namic transition between the states was presented over
the course of the three conditions, consistent with previ-
ous work stating that a varying brain FC configuration is
essential for changes in behavior and cognitive demands
(Tagliazucchi and Laufs, 2015). Moreover the proportion
of time spent in each state was significatively related to
the ongoing experimental condition confirming our
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hypothesis and in line with previous evidence that suggest
that the time spent in these states is not random and that
it might be associated with behavior (Vidaurre et al.,
2017). These differences were more evident between the
task and the resting conditions, with the task showing a
more complex organization in agreement with studies
suggesting that task FC represents a combination of
spontaneous activity and the task-related responses
(Fransson, 2006; Fox and Raichle, 2007).
During the pre-task rest condition, these five states

were present, consistent with previous studies showing
that brain activity during resting conditions is not abol-
ished, instead, it was characterized by a varied set of FC
patterns. However, the subjects spent a significant higher
proportion of time in the state 3 in comparison with the
task condition. This demonstrate that although a dynamic
interaction between the networks was present, the tend-
ency was to remain longer in a low internetwork connec-
tivity brain pattern at rest. This is in line with previous
evidence revealing a higher frequency of a pattern charac-
terized by a lower connectivity between DMN, salience
network (SN) and CEN during rest compared with a visu-
ally focused attention task (Denkova et al., 2019).
This low connectivity state was the more prevalent

across the three conditions, however, during the task,
there was a significant decrease in the time spent in this
state. Considering these findings and the evidence that
demonstrates that the time spent in these states is asso-
ciated with the information processing (Vidaurre et al.,
2017), we suggest that this low connectivity state is a
basal and a transitioning state that allows the response to
processes. This conclusion is also supported by a previ-
ous study that determined the DFCS of the SN, CEN, and
DMN during a breathing attention task, finding a state
characterized by low correlations between the regions of
the three networks and a preservation of the intranetwork
arguing that this could represent a state that enables the
transition from a state to another (Mooneyham et al.,
2017).
In addition, the task condition was associated to a high-

er proportion of time spent in the state 4, in comparison to
both rest conditions, with a trend toward significance.
This state showed the right FPN regions interacting with
the DMN and the left FPN regions with the DAN and a de-
coupling of the left and right regions in the FPN. The flexi-
ble interaction of the FPN with DAN and DMN of this state
is consistent with evidence showing that this sequential
interaction is fundamental for the control and adaptation
in task demands (Cole et al., 2013; Harding et al., 2015).
Although the FPN has been often viewed as a unitary sys-
tem, the decoupling between its left and right regions is
consistent with recent works showing two subsystems as
an internal organization for this the network, one con-
nected with the DMN and the other with DAN, which con-
tributes to the ability to deliberately guide actions based
on goals (Dixon et al., 2018). Moreover, the characteristics
of this state agrees with previous FAM studies demon-
strating that activity in FPN regions effects on the connec-
tivity of the DMN (Bauer et al., 2019). This led us to
suggest that this is a fundamental pattern of connectivity

for the focused attention performance, conducted in a
group of meditators. Although not significant, the task
performance was associated to an increase in the average
time spent in the state 2, distinctive by a strong connectiv-
ity between DMN and FPN regions with segregation of the
DAN. While the FPN and DMN are usually assumed to
work in opposition (Hsu et al., 2014; Crockett et al., 2017),
evidence suggest that their interaction may be involved in
the regulation of introspective processes independent
from sensory input and spontaneous thoughts (Christoff
et al., 2009; Fox et al., 2015). The regulation of this intro-
spective processes is a key characteristic of the FAM
practices which would be consistent with the higher pro-
portion found for this state during the sustained attention
to spontaneous sensations. In addition to these task esti-
mations, we evaluated the correlation between the num-
ber of responses of the subjects and the time spent in the
states during the task. However, our results showed no
significant correlation. The responses signaled the end of
the focus and the shift of attention, performed at the own
pace of the subject. While the number of responses were
not considered as a measure of accuracy for our task,
they did reflect the reorienting of attention. Therefore, a
correlation between the DFC measures and the number of
responses was expected. Previous work has shown a
correlation between attention task performance and the
DFC metrics (Madhyastha et al., 2015), in contrast, other
authors have shown no significant correlation between
the task outcomes and the DFC results (Denkova et al.,
2019). We consider that the lack of correlation in our re-
sults could be associated to the small sample size. In ad-
dition, the time spent in the states was the only DFC
metric evaluated in our study, with other aspects of the
DFC such as transition variability or shifts in graph proper-
ties (Gonzalez-Castillo and Bandettini, 2018) and their re-
lation with the task responses not explored in our work,
which could be an interesting line for future research.
The post-task rest condition showed small differences

with the pre-task rest in relation with the proportions of
time spent in the states. These differences consisted in a
decrease time in the low connectivity state 3 and an in-
crease in the average time spent in the state 5 (Fig. 4).
Although not significant, the differences of the dynamic
connectivity between the rest conditions are relevant
since both shared the same cognitive instructions during
the scan, except for the previous task performance in the
post-task rest condition. The state 5 is a pattern that
showed a strong connectivity between DAN and FPN,
networks that have been associated to focused attention
states (Tang and Posner, 2009; Madhyastha et al., 2015;
Mooneyham et al., 2017). Our results showed an increase
in the time spent in this state in the case of the task
against rest comparison. The state 3, which showed low
interaction between the networks decrease during the
task performance. Therefore, the findings during the
post-task condition in contrast to the pre-task rest,
suggest a task-mediation effect extending to the post-
task connectivity. Previous studies have already shown
that the rest FC succeeding a task, is affected by the
prior cognitive state (Waites et al., 2005). However,
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these results showing that the prior cognition also mod-
ulates the succeeding rest DFC, suggests that the dy-
namics might be influenced by repetitive tasks or
interventions such as cognitive training. The lasting ef-
fect that extends into the non-attentive period leads us
to question whether the time these effect lasts after the
task supports the learning process of cognitive training
techniques.
Over the three conditions, the state 1 characterized by

a high connectivity between all the regions and a decou-
pling of the MPFC from the DAN and from the FPN was
present in a similar mean proportion. MPFC supports self-
related processing, emotional adaptive responses (Jang
et al., 2011; Euston et al., 2012), and its connectivity is as-
sociated with conscious awareness (Luo et al., 2017). The
MPFC is a DMN region, a network that has been consis-
tently linked to mind wandering (Kucyi, 2018). The study
of the role of this specific region related to mind wander-
ing have suggested that the MPFC is a crucial region for
mind wandering (Bertossi et al., 2017). With regards to
meditation, studies have found MPFC activity linked to
mind wandering during focused attention to breath
(Hasenkamp and Barsalou, 2012; Hasenkamp et al.,
2012). This previous evidence and the comparable distri-
bution of this state across the conditions lead us to con-
sider that it could represent a mind wandering state,
where subjects experience non-directed thoughts.
In light of the findings and the previous evidence, we

consider that the states found in our study represents the
dynamic functional organization related to the cyclical at-
tention states presented across the rest and the task
performance.
Beyond the description of the focused attention FC, our

results could represent the dynamic integration of these
networks in relation to interoception and body processing
because of the task characteristics, with the permanence
in each of the states as a fundamental way to efficiently
fulfill the cognitive demands. The association of the inter-
oception processing to a wide coordination between cog-
nitive control networks showed in our results, suggest a
top-down control from these networks probably to

primary cortical regions linked to interoception, such as
the insula and somatosensory cortex (Bauer et al., 2014;
García-Cordero et al., 2017). This conclusion is sup-
ported by anatomic findings indicating inputs from pari-
etal and occipital cortices to the insula which in turn
integrates somatosensory information (Namkung et al.,
2017). Considering that we were particularly interested
in quantifying the dynamic variations of three cognitive
control networks we did not include the insula in our
analysis; However, we consider that for future direc-
tions it would be interesting to study the dynamic coor-
dination between these networks and the insula
associated with focused attention.
Our findings also have significance in the field of medi-

tation practices since the task we used consisted in a
meditation technique. Meditation practices in particular
focused attention techniques have been related to a bet-
ter identification and control of attention (Lutz et al., 2008;
Tang et al., 2015). These benefits has attracted the inter-
est in their study (Lutz et al., 2014) and in their application,
including the use of meditation techniques in clinical set-
tings (Black et al., 2015; Wielgosz et al., 2019). Our results
suggest that this practice engages a dynamic set of con-
figurations of cognitive control networks, with a higher
prevalence of more complex patterns that enables the re-
quired focus for this practice as well as an extending ef-
fect to the postmeditation rest period. This could explain
the persistent changes associated to the expertise in this
practice as the control of attention, emotion regulation,
and less mindlessness.
The motor response of the button press could raise

concerns over the effects of it on the resulting FC.
Therefore, given that the sensory motor network (SMN) is
particularly active in motor task, we decided not to include
this network, to avoid its confounding effects on our re-
sults, although it has been also associated to spontane-
ous sensations in the absence of motor processes.
Limitations of the study included a small sample size;
However, this encouraged to use an individual parcella-
tion approach, additionally, using the sliding windows
analysis we were able to obtain a large amount of data

Table 1: Statistical table

Data structure Type of test Statistic CI Effect Size
I Condition differences in DFCS
a Effects of condition � state interaction on the

time spent in the states
ANOVA of LME F(8,191) = 2.1473, p = 0.03

Post hoc comparisons
b State 3 pre-task rs task EMM df = 191, t = 3.139

p=0.005 (0.029)
0.95 d=1.146

II Condition differences in DFCS
c Effects of condition � state interaction on the

time spent in the states
ANOVA of LME F(4,126) = 2.8486, p=0.026

Post hoc comparisons
d State 3 rest task EMM df = 126, t = 2.484

p=0.014 (0.071)
0.95 d=0.907

e State 4 rest task EMM df = 126, t = �2.103
p=0.037 (0.187)

0.95 d = �0.767

Statistical analysis to test the differences in the DFCS between the pre-task, task and pos-task rs condition (I) and between the rest and task condition (II).
Letters refer to the p values reported in the results. The Bonferroni adjustment for the comparisons is indicated next to the p values. LME linear mixed effects
model, EMM estimated marginal means for linear mixed effects model.
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points for the FC in each subject, that was included for
the statistical analysis. The lack of a control group difficult
the generalization of the results, this motivated the design
and the comparison to the resting condition. We realize
the control group would enable the conclusions in a
standard population, therefore, for future directions we
propose to address these implications and additionally to
include primary regions associated to interoception for
characterize the brain coordination related to this intero-
ceptive attention process. The characteristics of the slid-
ing windows analysis were chosen for the comparison
between the task and rest conditions, without considering
the moment of the button press to define cognitive inter-
vals for the task (Hasenkamp et al., 2012). Further analysis
could take this implication into consideration. This could
provide a better understanding of the relation between
the task outcomes and the DFC measures during the
task. Additionally, we did not explore the interindividual
variability of the FC; however, we consider that the ad-
dress of this issue in future research would offer further in-
sights into the interindividual variability of the dynamic
connectivity.
Altogether, the FC states found in our study and the

time spent on them characterizes the brain connectivity
modulation of the focused attention to interoception, as
well as the FC modulation of the changing cognitive de-
mands of going from a resting condition to a focused at-
tention state. The impact of this task performance over
the subsequent rest brain dynamics helps to understand
that the dynamic brain organization might be influenced
through external demands and that this effect extends for
a period. This raises as a possible underlying mechanism
of the functional changes associated to repetitive focused
attention interventions. Future research should aim to
study the modulation on the brain dynamics through
these forms of attention interventions in health and for
clinical settings.
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