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Many diseases are accompanied by changes in certain biochemical indicators called
biomarkers in cells or tissues. A variety of biomarkers, including proteins, nucleic acids,
antibodies, and peptides, have been identified. Tumor biomarkers have been widely used
in cancer risk assessment, early screening, diagnosis, prognosis, treatment, and
progression monitoring. For example, the number of circulating tumor cell (CTC) is a
prognostic indicator of breast cancer overall survival, and tumor mutation burden (TMB)
can be used to predict the efficacy of immune checkpoint inhibitors. Currently, clinical
methods such as polymerase chain reaction (PCR) and next generation sequencing (NGS)
are mainly adopted to evaluate these biomarkers, which are time-consuming and
expansive. Pathological image analysis is an essential tool in medical research, disease
diagnosis and treatment, functioning by extracting important physiological and
pathological information or knowledge from medical images. Recently, deep learning-
based analysis on pathological images and morphology to predict tumor biomarkers has
attracted great attention from both medical image and machine learning communities, as
this combination not only reduces the burden on pathologists but also saves high costs
and time. Therefore, it is necessary to summarize the current process of processing
pathological images and key steps and methods used in each process, including: (1) pre-
processing of pathological images, (2) image segmentation, (3) feature extraction, and
(4) feature model construction. This will help people choose better and more appropriate
medical image processing methods when predicting tumor biomarkers.

Keywords: histopathological image analysis, cancer biomarker, deep learning, color normalization,
feature extraction
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INTRODUCTION

Biomarkers are critical in cancer diagnosis, treatment, and
prognosis. They can be used for patient’s evaluation in a
variety of clinical settings, such as risk assessment, early
diagnosis, drug effect evaluation, and prognosis prediction (1–
3). With the development of immunology, molecular biology and
genomics, studies of cancer biomarkers have attracted a lot of
attention in recent years (4). Currently, biomarker identification
usually employs technologies such as PCR, NGS and gene
expression arrays (5). However, the data generated by these
technologies need to be analyzed and interpreted manually. In
addition, this kind of test usually costs a lot of money. For
example, the test of tumor mutation burden (TMB) usually costs
more than one thousand dollars. Thus, it will be of great value to
develop a more intelligent and economical method in tumor
biomarker identification (6).

Pathological image analysis is used to solve problems related to
medical images which were applied in biomedical research and
diagnosis. Its main objective is to extract clinically relevant
physiological and pathological information or knowledge from
images, and its main research direction is image segmentation,
classification, and retrieval (7). With the rapid development and
popularization of medical imaging technology, the amount of
medical image data is growing rapidly. It will provide important
and beneficial support for nursing and medical research to extract
useful knowledge and information automatically from massive
medical image data for clinical diagnosis and treatment (8).
Recently, researchers have paid much attention to the analysis
and study of tumor patients through pathological images and
morphology (9). Mobadersany (10) proposed that the
morphological characteristics of tumor tissue images could
reflect the genetic and molecular characteristics and predict the
degree of tumor deterioration, and the deep learning method
could be used to integrate the morphological characteristics of
tumor tissue images and genomics to predict the survival rate of
glioma patients. Xu (11) proposed a method based on deep tissue
network to automatically distinguish 10 tissue components in the
colorectal full-scan tissue image. Yu (12) for the first time
constructed the recurrence risk prediction model of LUAD and
LUSC by automatically extractingmorphological features from the
full-scan histopathological images of lung cancer to provide
prognostic information for patients. Vaidya (13) proposed to
combine radiology and pathology to predict the risk of early
lung cancer recurrence, with an accuracy rate of 70%. Wu (14)
and others constructed a deep convolutional neural network
framework to evaluate the risk of lung cancer recurrence and
metastasis from histopathology images, with the area under the
receiver operating characteristic (ROC) curve (AUC) in the test
dataset of 0.79. Jain and Massoud explored a machine learning
algorithm named Image2TMB to predict TMB from lung
adenocarcinoma histopathological images. Its average precision
was 0.89 and achieved predictive level of a panel of ~100 genes.
Microsatellite instability (MSI) was another immunotherapy
biomarker (15) which requires additional immunohistochemical
or genetic analyses in clinical practice (16). Kather et al. developed
a deep residual learning method that can predict MSI status
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directly from hematoxylin and eosin (H&E) stained histology
slides (17). These findings suggest that inferring genomic features
from histopathological images is possible and analyzing
histopathological images is important for studying cancer
treatments, mutated gene expression status, cancer prognosis
and risk of recurrence.

However, full-scan histopathological images are highly
complex, with large image size and about 2 GB of storage space
after compression. It is a big challenge for hardware and image
analysis algorithm to use computer to process image directly in
this kind of high resolution and large size image. At the same time,
the histopathological structure types in the images are disordered,
and the histological morphology is very different, so it is difficult to
describe with fixed features. All these factors bring great difficulty
to the processing of full scan histopathological images. Based on
the above problems, this paper summarizes the whole process and
key steps of current pathological image processing, including
image preprocessing, image segmentation, feature extraction and
model construction, to help researchers choose more suitable
medical image processing methods and predict biomarkers more
accurately. We summarized the overall flow of pathological image
processing in Figure 1.
IMAGE PREPROCESSING

The biggest obstacle to histopathological image analysis is the
difference in image morphology due to high heterogeneity of the
disease itself. At the same time, improper tissue treatment or
staining during the slice preparation will result in morphological
changes of cells and tissues, making it difficult to identify its
original structure. In addition, the background noise and the lack
of contrast caused by the different light source conditions were
also important factors. Proper preprocessing method can correct
images by eliminating irrelevant information, and filter out
interference and noise, which can improve the detectability of
target information and simplify the calculation to the
maximum extent.

Common preprocessing methods such as using spatial
filtering techniques to enhance the main structure in the
image, image enhancement can improve the contrast between
the region of interest and the background, and color
normalization can reduce the effect of staining batches (18,
19). Among these, color normalization is the most commonly
used image preprocessing methods for evaluating cancer-related
biomarkers based on histopathological images.

Color Normalization
In response to the problem of color change, Reinhard (20) and
others proposed a method of color normalization, that is, in the
lab color space, the mean and standard deviation of each
channel in the image are compared with the target by a set of
linear transformations. Then, match the mean and standard
deviation. However, if multiple patches are used, the
assumption of a unimodal distribution of pixels in each
channel of the lab color space is not valid. Therefore, this may
cause the background area to be mapped as a colored area and
November 2021 | Volume 11 | Article 763527
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the foreground to be incorrectly mapped. As shown in Table 1
below, some methods of color normalization were summarized.
IMAGE SEGMENTATION

Medical image segmentation is a complex and critical step in the
field of medical image processing and analysis. The purpose of
this process is to segment certain parts of the medical image with
specific meaning, extract relevant features, and then provide
reliable information for clinical diagnosis and pathological
research. The two most common types of medical image
segmentation are tissue segmentation and cell segmentation.
Frontiers in Oncology | www.frontiersin.org 3
Tissue Segmentation
Pathologists have identified that degree of structural
differentiation of the tissue is one of the earliest prognostic
factors for breast cancer patients. Cancer destroys the ability of
the nucleus to communicate with each other and causes it to
organize itself into structures such as tubules, thereby making the
tubules lack of indicators of advanced malignant tumors.
Tubules are usually round or oval in structure and consist of a
lumen surrounded by a layer of epithelial cells. The main
challenge of tubule segmentation is that it has a similar
appearance to other structures, such as the tearing of adipose
tissue formed during tissue preparation, and the outer layer of
well-arranged epithelial cell with nuclei missing.
TABLE 1 | A summary of color normalization methods.

Authors Methods Characteristics References

Magee A method based on supervised pixel
classification

Estimate the color of the coloring. (21)

Macenko A method based on singular value
decomposition (SVD)

Direct estimation matrix. (22)

Niethammer An improved method based on singular
value decomposition (SVD)

By expanding (22), a priori estimation of staining matrix is used to improve the stability of
each staining.

(23)

Khan Nonlinear mapping based on source image
to target image

An improvement is proposed on the method of (21), using the representation method of
color deconvolution.

(18)

Vahadane A technique of dye separation and color
normalization (SPCN)

It does a good job of maintaining the quality of biological structure and the number of
stains.

(24)

Ramakrishnan The improved SPCN In the SPCN technology, some improvements are proposed for the occasional errors in
estimating color bases, which lead to artifacts.

(25)
November 2021 | Volume 11 | A
FIGURE 1 | The flow chart for predicting cancer-related biomarkers based on digital pathological images. Firstly, H&E stained histology slides of patients were
obtained and whole slide images (WSIs) was obtained after scanning. Secondly, tumor regions were annotated by pathologists or through CNN model. Then, the
regions were segmented to patches and color-normalized. Thirdly, feature extraction and model training were carried out according to biomarker labels. Finally,
biomarker prediction was implemented in test dataset.
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For glandular segmentation, most of the early attempts used
hand-made features for segmentation. Wu (26) identified the
initial seed region based on large cavity regions and extended the
seed to the surrounding epithelial nuclear chain. Farjam (27)
proposed using a variance filter to compute cluster texture
features for segmentation. However, robust segmentation
requires more domain knowledge, and calculating texture
features only using the variance filter may not provide
sufficient information for the local structure of the
organization. Naik (28) used a Bayesian classifier to detect the
lumen region, and then used the kernel-based level set to stop
the curve and refine it. Although this method has been reported
to work well in benign cases, it may fail in malignant cases with
fairly complex glands. Nguyen (29) used color space analysis to
group the nucleus, cytoplasm, and lumen, and increased the
lumen area to achieve segmentation under constraints. Gunduz-
Demir (30) represented each tissue component as a disc and
connected nearby discs with an edge to construct a graph. They
performed area growth on a cavity disc bounded by a line
connected to the nuclear disc. Nosrati, Hamarneh (31) and
Cohen (32) first divided the tissue area into different
components, and then used a constrained level set algorithm to
segment the glands. Sirinukunwattana (33) identified epithelial
superpixels and used the epithelial region as the vertex of a
polygon, which approximated the boundary of a gland. Most of
the methods discussed above first distinguish tissue regions and
then use region growth or level sets to segment glandular regions.
Recently, a slightly different approach that first used background
information to identify potential epithelial regions, and then
used multi-resolution cell localization descriptors to identify
connected epithelial cells to segment glands was proposed by
Li (34).

Cell Segmentation
The morphology of cells in histopathological images provides
important information for the diagnosis and prognosis of cancer.
Researchers at home and abroad have tried a variety of
algorithms to solve the problem of cell segmentation in H&E
images (34–36). The algorithms generally divided into two
categories, one is to detect single cells accurately and the other
is to segment cells. The algorithms in Table 2 is commonly used
to detect the appropriate seed point or contour of the nucleus.

The other type detects the candidate area of the cell and then
divides it into individual nuclei. The first step in morphological
analysis of a cell is the segmentation of individual nuclei, which is
Frontiers in Oncology | www.frontiersin.org 4
usually performed manually in current clinical practice.
However, due to the large volume of histopathological images
and complex cell structures, manual examination is a time-
consuming and labor-intensive task. It is necessary to study
computerized methods to reduce the workload of pathologists
and improve the analysis efficiency (45). Nuclear segmentation
tasks still have some major challenges. First, different types of
organs or cells are highly heterogeneous in appearance.
Therefore, the method based on prior knowledge of geometric
features cannot be directly applied to different images. Second,
some other structures, such as the cytoplasm and cell matrix,
may have similar characteristics to the nucleus, making it difficult
to distinguish the nucleus from the background. Third, the cells
are often stacked together. In order to find the exact location and
boundary of each nucleus, it is usually necessary to perform the
next step to separate the clustered or overlapped nuclei.

In view of the importance of nuclear distribution and
morphology, the task of using computer algorithms for
accurate nuclear segmentation provides a logical starting point
for computer-aided tissue image analysis. The precise
segmentation of the nucleus can not only perform deeper level
feature extraction and classification in the nucleus, but also serve
as a relatively simple distribution of basal cells and acellular cells.
Many techniques have been applied to the task of nuclear
segmentation, but in some cases they have only achieved
partial success. For example, the intensity threshold method
usually fails due to image noise and nucleus clustering. Label-
based watershed segmentation requires accurate parameter
selection, while the computational cost of active contours and
deformable models is too high (24, 42, 46–50). Machine
learning-based kernel segmentation methods are generally
better at meeting these challenges because they can learn to
recognize changes in nuclear morphology and staining patterns.
More precisely, convolutional neural networks (CNNs) have
recently demonstrated their latest performance in kernel
segmentation (51, 52). Ciregan (53) applied deep CNN to the
automatic detection of mitotic cells in breast cancer histological
images. Using the original intensity of the test image, CNN
provides a probability map where each pixel value is the
probability of the mitotic cell centroid. Then using the disk to
check the probability map for smoothing, and non-maximum
suppression to get the final centroid detection. Xing (54) and
others respectively learned three different CNN models
corresponding to pathological images of brain tumors,
pancreatic neuroendocrine tumors, and breast cancer, and
TABLE 2 | A summary of methods on segmentation after detection of individual cells.

Methods Characteristics References

Based on different voting rules Simple and suitable for segmentation of most images (11, 37–39)
Based on Laplace operator and gaussian filter Accurately detect the edge of the cell (40)
Based on H-minima transformation Effectively restrain oversegmentation and reduce undersegmentation (41)
Based on Morphologic manipulation Could output an image by acting a structure element on the input image (42, 43)
Based on back propagation with MRF Good at dealing with the problems of image local volume and artifacts (34)
Based on the active contour model Could convert pixels to a distance field (43)
Based on the level set A numerical method based on the theory of geometric active contour model (37, 44)
November 2021 | Volume 11 | A
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applied them to automatic nuclear detection. Liu and Yang (55)
did not use simple non-maximum suppression to refine the
detection, but converted the detection problems of pancreatic
neuroendocrine and lung cancer cell nuclear into optimization
problems. Xing (47), Sirinukunwattana (51) and Song (55) have
proposed some advanced techniques in nuclear detection and
segmentation, which estimate the probability of nuclear and
non-nuclear regions (both types) based on the learned nuclear
phenomena graphs and rely on complex post-processing
methods to obtain the final core shape and the separation
between contacting nuclei. Song et al. used a graph
partitioning method (55) and Xing et al. used a kernel
mapping distance transformation, followed by H-minima
thresholding and region growth (47). Although different
methods have been developed for the problem of overlapping
and clustering nuclei in many literatures, and have achieved
varying degrees of success, this problem has not been completely
solved, as there is a large amount of overlap contact specimens
of nuclei.

In addition, a special type of nucleus, mitosis, has attracted
much attention in the field of image analysis. Mainly because the
mitotic index is used to evaluate the cell proliferation rate of
cancer cells, it could predict the prognosis of invasive breast
cancer well, but its evaluation process is extremely time-
consuming (56). On the H&E image, mitosis has specific
morphological features: dense nuclear staining, enlarged nuclei,
less clear nuclear membrane, and burr-like edges. Researchers
such as Belien (57) proposed image processing technology for
semi-automatic segmentation of mitotic images in the 1990s.
Due to the limitations of the image quality and machine learning
algorithms at the time, the algorithm proposed by Belien et al.
(57) required fourgen staining to display chromosomes, and the
false positive rate is 19-42%. With the digitization of pathological
images, two H&E tissue datasets of breast cancer have been
published internationally, and pathological experts have
annotated mitotic images in the images, which has greatly
promoted the development of algorithms in mitotic image
segmentation. Then, the International Conference on Pattern
Recognition (ICPR) (58) held a competition for mitotic detection
in breast cancer tissue images in 2012, providing different types
of images, allowing participants to analyze classic images of H&E
stained sections, and use 10 bands multispectral microscope
images, which may be more discriminatory for detecting
mitosis. Deep learning maximizing CNN significantly
outperforms other manual feature-based methods and paves
the way for future use of CNNs (53).

The biggest challenge for mitosis detection is that apoptosis,
necrosis or squeezed nuclei and lymphocyte nuclei have similar
morphology to mitosis, which is difficult for even experienced
pathologists to identify. In addition, pathologists need to observe
suspicious split images on multiple focal planes, while currently
digital images are single focal plane imaging. Although some
scanners can acquire multifocal plane images, their storage
capacity is large and cannot be widely used. We expect that in
the future, as storage costs decrease and new image compression
technologies emerge, this limitation will be eliminated (59).
Therefore, the automatic segmentation of mitotic images in
Frontiers in Oncology | www.frontiersin.org 5
H&E images at this stage is more challenging than general
nuclear segmentation and is far from being applicable to
pathological work.
MODEL CONSTRUCTION

After the ideal segmentation results were obtained from the
tissue segmentation and nuclear segmentation modules, the
morphological features of histopathological images were
extracted, and the correlation between the morphological
features and biomarkers of the full-scan histopathological
images was found and the feature model was established.

Beck et al. constructed a computer pathologist system to
extract 6,642 dimensional features from H&E histopathological
images of breast cancer (60). Some of the features are based on
the existing knowledge system, such as the formation degree of
counting glandular tube after automatic segmentation (61) and
automatic grading (62), but most of the features go beyond the
existing descriptive semantics of pathology. Computer-aided
diagnosis is also based on the prognosis of characteristic
models, modeling based on object characteristics, and then
estimating the prognosis of model parameters. Tutac (63)
proposed a semi-automatic grading system based on
knowledge model for the first time, which automatically
detected and measured the three components of histological
grading, namely nucleus, adenotuine and mitosis, through
semantic retrieval. The consistency of the scoring results of
this model was higher than that of manual evaluation. Dalle
(64) further improved the above work based on multi-resolution
method and Gaussian model function, realized automatic
histological classification, and the automatic classification
results were highly consistent with the manual evaluation results.

Pathology is morphology-based, but the classification and
assessment of disease is not limited to morphology, and requires
reference to immunological, molecular, and clinical
characteristics of patients. Based on the genome, Wang (65)
mined prognostic features in H&E histopathological images of
triple negative breast cancer (TNBC), and selected 48 pairs of
significantly correlated image features and gene clusters through
the TNBC genome map and H&E images of 44 cases, among
which 4 pairs were significantly correlated with prognosis.
Basavanhally (66) showed that H&E morphological
characteristics and IHC molecular characteristics can replace
expensive Oncotype DX risk assessment for the invasiveness of
ER negative breast cancer. Yuan (67) proposed a mathematical
statistical model to evaluate the proportion of lymphocytes in
TNBC tumors, and the results showed that lymphocytes were
related to the survival of TNBC, and the image-based evaluation
results were similar to the results of gene expression spectrum
detection. According to the prognostic model theory of
Steyerberg (61), we can further utilize the results of image
characteristics and molecular characteristics, and construct a
prediction model by integrating complementary prognostic
factors, which can be used to comprehensively and accurately
predict the prognosis of breast cancer. Currently, integrating
information from different dimensions to construct multimodal
November 2021 | Volume 11 | Article 763527
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fusion models for predicting cancer biomarkers or prognosis of
patients have been studied in several laboratories. The main
process of building multimodal fusion models is shown in
Figure 2. Making full use of multidimensional information for
fusion modeling is of great help to improve the prediction
accuracy, which will also be a direction of the development of
digital pathology. Chen et al. used CNNs and GCNs to extract
morphological features from digital histology images and SNNs
to extract genomic signatures (68). Then they employed the
Kronecker Product and a gating-based attention mechanism to
fuse these deep features and further validated the approach on
glioma and clear cell renal cell carcinoma (CCRCC) data from
TCGA. Mobadersany et al. presented a novel method to predict
outcomes of patients from histopathological images and proved
that the accuracy was comparable to the traditional manual
histological grading. To further improve performance, they
combined histopathological images and genomic data to
develop a comprehensive model called GSCNN. And its
performance was significantly better than that of SCNN model
and WHO paradigm based on genomic subtype and histological
grading (69).
LIMITATIONS AND FUTURE WORK

Cancer histology contains rich phenotypic information
and can reflect underlying molecular mechanisms and
disease progression. A large number of studies have shown
that deep learning of digital pathological images of tumor
tissue samples can be used for cancer diagnosis, classification,
drug efficacy evaluation and prognosis prediction. This
method has the advantage of fast and low cost. In this work,
we summarized the overall process and key steps of processing
full-scan section images to help people choose better and
Frontiers in Oncology | www.frontiersin.org 6
more appropriate medical image processing methods when
predicting tumor biomarkers.

However, the application of artificial intelligence (AI)
technology in precision medicine has some limitations
currently. Firstly, the diagnosis process of deep learning model
is fuzzy and the interpretability is limited, and the lack of
interpretability is unacceptable to the Medical Association (70–
72). So this problem is an important obstacle to its verification
and application in clinical practice. Heat map analysis provides
an in-depth understanding of the histological patterns related to
the prediction target, which is helpful for the interpretation of the
deep learning model. Chen et al. had used this method to locate
and interpret features in the study of multimodal fusion for
predicting survival outcome of cancer patients (68). It can also be
used as a practical tool to lead pathologists to discover the tissue
regions related to biomarkers. For example, the presence of
edema in glioma was not previously considered as an adverse
marker by pathologists, but was detected as a recognition feature
in the model of predicting cancer prognosis (69). Associated with
this finding, the degree of edema may be correlated to the growth
rate of cancer in previous study (73). Cao et al. verified the
reliability of the deep learning model in two independent cohorts
when predicting MSI with pathological images, and explained
the interpretability of the model by exploring the correlation
between pathological features and multi-omics signatures. This is
also a method to promote clinicians to accept the application of
AI in digital pathological images (74). It can be predicted that
improving the interpretability of the model or establishing
interpretable machine learning methods will be an important
topic to be explored in the future.

Secondly, a substantive problem limiting its clinical
application is the frequent workflow switching due to the
limited integration of computer-aided pathological diagnosis in
the current pathological workflow (70–72). Currently, the
FIGURE 2 | Main process of constructing a compound framework by combining pathological images with genomic data or clinical information. Convolutional neural
networks are commonly used to extract image features, and then genomic features or clinical information are integrated into the full connection layer. Support vector
machine (a), logistic regression (b), convolutional neural network (c) or random forest (d) can be used to establish the final multimodal fusion model.
November 2021 | Volume 11 | Article 763527
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research on diagnosis and subtyping of cancer through digital
pathological images is relatively mature. Some latest studies on
predicting cancer prognosis, treatment response and disease
progress monitoring through pathological images have been
reported. Kather et al. developed a deep learning model that
can directly predict microsatellite instability from H&E
histological images of stomach and colorectal cancer and the
AUC values ranged from 0.69 to 0.84 in independent validation
datasets (17). Cao et al. explored an EPLA model with AUC of
0.8504 (95% CI: 0.7591-0.9323) in the external validation set
(74). However, more histological images of patients are needed to
optimize the model and improve accuracy. If a complete
pathological diagnosis and prediction process through
extensive analysis of various data can be established and
verified clinically, it will contribute to the application of AI in
precision medicine (71, 75).

Thirdly, it is difficult to unify the staining and imaging process of
tissue section in different laboratories, which leads to a large number
of variables in pathological images and further makes it difficult to
establish models with high stability and good generalization
performance. Just as molecular diagnosis relies on qualified
samples and sequencing data, digital image analysis also requires
strict control of sample quality, clear quality requirements for input
files, and adequate training for pathologists. These requirements of
digital pathological image analysis will also drive to improve the
volume and accuracy of histomorphological evaluation. On the
Frontiers in Oncology | www.frontiersin.org 7
other hand, in order to promote clinical transformation, a roadmap
and regulatory framework for the routine use of AI in pathology
have been published (76).

Other literatures also list possible practical problems: slow
implementation time of computer-aided pathology, insufficient
clinical validation of computer-aided pathology, and limited
impact on health economics (9, 71). The ability to overcome
these limitations will determine the future of digital pathology.
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