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ABSTRACT

Chromatin Interaction Analysis by Paired-End Tag
Sequencing (ChIA-PET) is a popular assay method
for studying genome-wide chromatin interactions
mediated by a protein of interest. The main goal of
ChIA-PET data analysis is to detect interactions be-
tween DNA regions. Here, we propose a new method
and the associated data analysis pipeline, ChIAPoP,
to detect chromatin interactions from ChIA-PET data.
We compared ChIAPoP with other popular methods,
including a hypergeometric model (used in ChIA-
PET tool), MICC (used in ChIA-PET2), ChiaSig and
mango. The results showed that ChIA-PoP performed
better than or at least as well as these top exist-
ing methods in detecting true chromatin interac-
tions. ChIAPoP is freely available to the public at
https://github.com/wh90999/ChIAPoP.

INTRODUCTION

Chromatin Interaction Analysis by Paired-End Tag Se-
quencing (1) (ChIA-PET), first introduced in 2009, is an
experimental assay for studying genome-wide chromatin in-
teractions mediated by a protein of interest. It has been
widely used to study different proteins in different genomes,
such as oestrogen receptor alpha in the human genome (2),
RNA polymerase II in the human genome (3), CCCTC-
binding factor (CTCF) in the mouse genome (4), etc. Re-
cently, an improved (long read) ChIA-PET protocol was in-
troduced (5) and has since been used in a study of genome-
wide chromatin interactions mediated by CTCF (6) in the
human genome.

A typical ChIA-PET experiment generates tens of mil-
lions of paired reads. Each read contains a tag (a piece of
DNA sequence from the related genome) and a linker se-
quence (barcode). The tags generated by the original pro-
tocol are short (usually 20 ± 1 base pairs), while the tags
generated by the improved protocol are typically longer (the
lengths vary and are up to 150 or 250 base pairs). By map-

ping the paired tags to the reference genome, potentially in-
teractive pairs of DNA regions, together with the counts of
paired tags mapped to the pairs, can be identified. For the
sake of simplicity, here we call such DNA regions and po-
tentially interactive pairs as anchor regions and potential
pairs, respectively. Among these potential pairs, some are
true interactive ones containing an interaction signal, while
the others are of no interactions and are random noise.
Thus, the main goal of ChIA-PET data analysis is to distin-
guish signal from noise using observed count data for po-
tential pairs.

To distinguish signal from noise, many tools have been
proposed (7–11). Among them, the ChIA-PET tool (7),
ChiaSig (8), mango (9) and ChIA-PET2 (12) are popular
ones. The ChIA-PET tool, which is the first tool for ChIA-
PET data analysis, uses a hypergeometric (HG) distribution
to model count data. The HG model accounts for the se-
quencing depth, also called sequencing bias, of individual
anchor regions. The underlying assumption is that the ran-
dom (i.e. no true interaction) pairing chance of two anchor
regions increases as the sequencing coverage depth of the
two anchor regions increases. ChiaSig improves the ChIA-
PET tool by using a more general non-central HG distribu-
tion to model count data. It takes an additional factor, the
genomic distance between two paired anchor regions within
a chromosome, into consideration. The underlying assump-
tion is that the random pairing chance of two anchor re-
gions decreases as the genomic distance between the two
anchor regions increases. Mango is similar to ChiaSig, but
uses a binomial model instead of a non-central HG model.
A limitation of Mango is that it does not model count data
for potential pairs of anchor regions from two different
chromosomes. While both ChiaSig and mango markedly re-
duce false positive hits, they also potentially eliminate many
true interactions when compared to the ChIA-PET tool
(9). ChIA-PET2 uses MICC (10), an R package based on
a Bayesian mixture model of count data, to identify chro-
matin interactions. For the same input data, MICC reports
a slightly different set of significant pairs at each run, as its
algorithm employs random number generators.
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Here, we present a new method and the associated
pipeline tool, Chromatin Interaction Analysis with Posi-
tive Poisson (ChIAPoP), to distinguish signal from noise
in ChIA-PET data of the original protocol. It is an inte-
grated pipeline that requires only two input sequencing read
data files to start analysis. ChIAPoP takes into considera-
tion the sequencing bias of anchor regions and the genomic
distances between two paired anchor regions. Tested on two
publicly available ChIA-PET datasets, the K562 RNA poly-
merase II and MCF7 RNA polymerase II data in (3), we
showed that ChIAPoP fitted count data well and that it per-
formed better than or at least as well as the top existing
methods including HG (ChIA-PET tool), ChiaSig, mango
and MICC (ChIA-PET2). ChIAPoP was implemented in
R and is freely available as a fully documented R pack-
age at GitHub. The R package depends on bowtie (13) (for
read alignment), MACS2 (14) (for peak calling) and a few
(mostly Bioconductor) R packages, e.g. ShortRead (15),
GenomicAlignments (16) and GenomeInfoDb (17).

MATERIALS AND METHODS

Overview

ChIAPoP takes two read files (paired, in the FASTQ for-
mat) from the original ChIA-PET protocol (1) as the input
and outputs the chromosome locations, count, P-value and
False Discovery Rate (FDR)-adjusted P-value for each po-
tentially interactive anchor region pair. The pipeline con-
sists of six steps. In step 1, the linkers are removed from the
raw reads and the resulting paired reads are separated into
two categories: regular read pairs (with both linkers of the
same type) and chimeric read pairs (with two linkers of dif-
ferent types). This step generates four read files, including
two read files for regular read pairs and two read files for
chimeric read pairs. In step 2, the four read files are aligned
to a reference genome using bowtie one by one. This step
generates four alignment files (in the SAM format). In step
3, the regular alignment files are processed to filter out align-
ment pairs with at least one unaligned read and duplicated
alignment pairs. In addition, the strand orientation of each
alignment pair is reversed to make it suitable for peak call-
ing in the next step. The two chimeric alignment files are
processed in the same way. This step generates four pro-
cessed alignment files. In step 4, the four processed align-
ment files are used for peak calling using MACS2. The four
files are treated as independent single-end alignment files
and the pairing information is ignored. This step generates a
file (in the BED format) of read peaks. In step 5, the anchor
regions are built using the detected peaks and the single-end
(processed) alignments are extended up to a typical frag-
ment length. Then, the number of regular fragment pairs
that connect (i.e. overlap) any two different anchor regions
are counted and a regular count table (for all anchor re-
gion pairs with non-zero counts) is generated. Similarly, the
number of chimeric fragment pairs that connect any two an-
chor regions (the two anchor regions can be identical) are
counted and a chimeric count table (for all anchor region
pairs with non-zero counts) is generated. In step 6, pairs
of anchor regions in the regular count table, i.e. potential
pairs, are divided into two groups: inter-chromosomal pairs
and intra-chromosomal pairs. In each group, each pair is

assigned a P-value using a positive Poisson (i.e. zero trun-
cated Poisson) distribution with a pair-specific parameter
(λ). Benjamini–Hochberg procedure (18) is then applied to
the two groups (as a whole) to calculate the FDR adjusted
P-values. Please see Supplementary Figure S1 in the Sup-
plementary Data for the flow chart of ChIAPoP pipeline.

Positive Poisson model

For a given potential pair, we assume that the observed
count, under the null hypothesis that there is no interaction
between the two anchor regions, follows a pair-specific pos-
itive Poisson distribution. Because of that, under the null
hypothesis, random pairing of two anchor regions from dif-
ferent chromosomes is affected only by the sequencing bias
of the two regions, while that of two anchor regions from the
same chromosome is affected by both their sequencing bias
and the genomic distance, we model inter-chromosomal
and intra-chromosomal count data separately. Here, the se-
quencing bias of an anchor region pair (either a potential
pair, or a chimeric pair with two different anchor regions)
is defined as the product of sequencing bias of the two an-
chor regions, where the sequencing bias of an anchor region
is the number of fragments that overlap with the anchor re-
gion (excluding the fragments from those regular fragment
pairs with both fragments overlap with the anchor region).
If a pair consists of two identical anchors (only possible in
a chimeric pair), then the sequencing bias of the pair is de-
fined as a half of the square of sequencing bias of the anchor
region. It can be shown that, if observed counts follow a
HG model (which is the null model of the ChIA-PET tool),
the expected count of a pair of anchor regions is propor-
tional to the sequencing bias of the pair. For convenience in
the following discussion, we use nc, ninter and nintra to rep-
resent the number of chimeric pairs, the number of inter-
chromosomal pairs and the number of intra-chromosomal
pairs, respectively.

To estimate the positive Poisson parameter λi for the
inter-chromosomal pair i (1 ≤ i ≤ ninter), we first fit a posi-
tive Poisson regression

log
(
λ j

) = β0 + β1 · log
(
seq.bias j

)
to the chimeric data, where j = 1, 2, · · · , nc is the index
for the chimeric pairs, λ j is the positive Poisson parame-
ter for chimeric pair j and seq.bias j is the sequencing bias
for chimeric pair j. Then we use the estimated parameters
(β̂0 and β̂1) to estimate λi , i.e. λ̂i = eβ̂0+β̂1·log(seq.biasi ), where
seq.biasi is the sequencing bias for inter-chromosomal
pair i .

In the above model, we use chimeric data to estimate the
noise level, i.e. random pairing, of inter-chromosomal pairs.
The reason is that we can assume that the noise level of inter-
chromosomal pairs is the same as that of chimeric pairs (see
ChIA-PET workflow in (1)). In addition, we fit a positive
Poisson regression to chimeric data, and this is based on our
observation that log(λ) of chimeric pair data increases with
log(seq.bias) almost linearly in the two real datasets (See
Supplementary Figure S2 in the Supplementary Data).

To estimate the positive Poisson parameter λk for the
intra-chromosomal pair k (1 ≤ k ≤ nintra), we first create an
auxiliary count table that consists of counts for two sets of
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pairs of anchor regions. The first set of pairs are those intra-
chromosomal pairs with observed count being 1. The sec-
ond set is of all pairs of two anchor regions that satisfy: (i)
both anchor regions are on the same chromosome; (ii) both
anchor regions appear in at least one intra-chromosomal
pair; and (iii) the observed count for the pair is zero. Then,
we fit a logistic regression

log
(

pl

1 − pl

)
= α0 + α1 · log (seq.biasl )

+α2 · log (distancel )

to the auxiliary counts, where l = 1, 2, · · · , nauxiliary is
the index for the pairs in the auxiliary count table (nauxiliary
is the number of pairs in the auxiliary count table), pl is the
probability of observing count 1 for pair l, seq.biasl is the
sequencing bias of the pair l and distancel is the genomic
distance between the two anchor regions. Finally, we use
the estimated values of parameters α̂0, α̂1 and α̂2 to esti-
mate the λk, i.e. λ̂k = eα̂0+α̂1·log(seq.biask)+α̂2·log(distancek), where
seq.biask and distancek are the sequencing bias and the ge-
nomic distance between two anchor regions of the intra-
chromosomal pair k.

The nauxiliary pairs in the auxiliary count table serve as the
noise in intra-chromosomal pairs. We assume that the pairs
with count being 0 or 1 are very likely to be noise pairs (i.e.
pairs of anchor regions with no interaction). Such an as-
sumption is common to the existing tools, e.g. the ChIA-
PET tool, which filter out potential pairs with count being
1 as noise by default. Given this assumption, each of the
nauxiliary pairs, under our null model, then follows a pair-
specific Poisson distribution (not a positive Poisson distri-
bution, as we allow zero counts here). For the auxiliary pair
l, we have

log
(

pl

1 − pl

)
= log

(
P (count of pair l = 1)
P (count of pair l = 0)

)

= log
(

λl eλl

eλl

)
= log (λl )

Because of that, we observed that log( p
1−p ) increases al-

most linearly with both of log(seq.bias) and log(distance)
in both real datasets for testing (See Supplementary Figure
S3 in the Supplementary Data), we fit a logistic regression
to the auxiliary count data to estimate λk using seq.biask
and distancek. Note that we use the anchor regions that ap-
pear in at least one intra-chromosomal pair to construct the
auxiliary table. This is because those pairs are more relevant
to estimate the pair-specific positive Poisson parameter for
intra-chromosomal pairs.

Anchor regions and single-end alignment extension

To build anchor regions from peaks detected by MACS2
(i.e. to extend small peaks and to merge peaks next closely
to each other) in step 5, we first estimate the minimum an-
chor length lma from input data (see Supplementary Data
for details). Next, we extend all small peaks (i.e. peaks with
length less than lma) into regions with length equal to lma
(the extension is done to both ends of a peak with an equal
extension). Then, we merge any (possibly extended) peaks

with gap (i.e. number of base pairs between the peaks) less
than lma. The resulted regions are anchor regions.

To extend single-end alignments to typical length of se-
quencing fragments in step 5, we first estimate the typical
fragment length lfragment (should be < lma) from the data (see
Supplementary Data for details). Then we extend single-end
alignments to the length lfragment in a 5′ to 3′ manner. Note
that these single-end alignments are processed alignments,
i.e. the orientations of these alignments have been reversed
in step 3.

RESULTS

We used two real datasets: the K562 RNA polymerase II
data and MCF7 RNA polymerase II data in (3), to evaluate
and compare ChIAPoP with the four existing methods: HG,
MICC, ChiaSig and mango.

By default, all methods, except ChIAPoP, impose a cut-
off on the count of potential pairs of anchor regions, so that
only potential pairs with counts no less than the cutoff can
be reported as significant pairs. The count cutoff is usually
set to be 2 and 3 for small and large datasets, respectively.
Because both our testing datasets are large (>75 million
read pairs), we used the count cutoff 3 for all methods. Since
ChIAPoP does not use the count cutoff by itself, the cutoff
was imposed to the potential pairs after the P-values were
obtained, and the FDR-adjustment (Benjamini–Hochberg
Procedure) was then applied to the filtered pairs.

In all data analyses, we used the human genome hg19 as
the reference genome to facilitate later evaluation with Hi-
C and ChIP-Seq data, and the FDR cutoff 0.05 was used
to call significant pairs. For more details of data analyses,
please see the Supplementary Data.

Goodness of fit for ChIAPoP

As shown in Figure 1, ChIAPoP achieved a good fit of the
data for both datasets. The top two plots are the rootograms
(19) for the positive Poisson regressions that were applied on
the chimeric count data from the two datasets. A rootogram
is a bar plot of observed frequencies that is overlaid with
a curve of expected frequencies, both in square root scale.
The two rootograms indicate that positive Poisson model
fits both data well. The bottom two plots are the scatterplots
for the logistic regressions of the auxiliary count data for the
two datasets. Each scatterplot plots the ratios of observed
and expected proportions of 1s, subtracted by 1, against the
expected proportions of 1s, for the 100 bins of observations
in the corresponding logistic regression. The 100 bins of ob-
servations were obtained by the 100-quantiles of their fitted
probabilities of 1. For each bin, the expected proportion of
1s is calculated as the average fitted probability of count be-
ing 1 for all observations in the bin. Again, the two scatter
plots indicate that logistic model fits both data well.

Comparison of numbers of significant pairs detected by dif-
ferent methods

Using the same FDR cutoff, ChIAPoP, on average, detected
more significant pairs than MICC, ChiaSig and mango.
ChIAPoP detected 13224 significant pairs in the K562
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Figure 1. Goodness of fit for ChIAPoP in the K562 and MCF7 ChIA-PET datasets. Top: rootograms for the positive Poisson regressions that were applied
on the chimeric count data for the two ChIA-PET datasets. A rootogram is a bar plot of observed frequencies overlaid with a curve of expected frequencies,
both in square root scale. Bottom: scatter plots for the logistic regressions that were applied to the auxiliary count data for the two datasets. Each scatter
plot shows the ratios of the observed proportions of 1s to the expected proportions of 1s, subtracted by 1 (y-axis), and the expected proportions of 1s
(x-axis), for 100 bins of observations in the corresponding logistic regression. The 100 bins of observations were obtained by the 100-quantiles of their
fitted probabilities of 1.

dataset and 13425 significant pairs in the MCF7 dataset,
both of which are close to those detected by MICC (13701
and 8755), and are more than those detected by ChiaSig
(1980 and 2101) and mango (1847 and 1487). HG found the
highest numbers of significant pairs (24472 for K562 data
and 16890 for MCF7 data). However, those significant pairs
include almost all potential pairs with count ≥ 3 (the pro-
portions are 99.2 and 97.1% for K562 and MCF7, respec-
tively). The number of significant pairs detected by both
ChIAPoP and ChiaSig (or mango) is substantially higher
than that detected by both MICC and ChiaSig (or mango)
in both datasets, as shown in Table 1. Such a higher degree
of consistency with the conservative ChiaSig and mango in-
directly indicates that ChIAPoP is likely more accurate than
MICC. To show intersections of sets of significant pairs de-
tected by different methods and their sizes, we plotted the
UpSet plots (20) for the two datasets in Figure 2. In each
plot, the horizontal bars represent the sizes of the sets of

significant pairs detected by different methods; and the ver-
tical bars represent the sizes of different intersections of sig-
nificant pair sets. For each vertical bar, the corresponding
intersection is specified by the vertical black line with black
filled circles under the bar.

Comparison of pair rankings by Aggregate Peak Analysis
(APA)

It is hard if not impossible, without knowing the underly-
ing truth, to get good estimates of detection sensitivity and
specificity or other direct accuracy measures, so we evalu-
ated the rankings of potential pairs by related validation
data for comparison and assessment of different methods.
Using related Hi-C data, we created Aggregate Peak Anal-
ysis (APA) plots and found that the ranking of potential
pairs by ChIAPoP is better than those by other methods.
We used FDR-adjusted P-values to rank the pairs for each
method, except for ChiaSig which only outputs P-values.
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Figure 2. UpSet plots of significant pairs in the K562 and MCF7 ChIA-PET datasets. In each plot, the bottom left horizontal bars represent the numbers
of significant pairs detected by different methods; and the vertical bars represent the sizes of different intersections of significant pair sets. The intersection
that corresponds to a vertical bar is specified by the vertical black line with black filled circles under the bar. The UpSet plots are created by R package
UpSetR.

Table 1. Comparison of numbers of significant pairs detected by two methods (one method is either ChIAPoP or MICC, and the other method is either
ChiaSig or mango) in the K562 and MCF7 ChIA-PET datasets

ChiaSig mango

ChIAPoP MICC ChIAPoP MICC

K562 1904 (0.962) 1167 (0.589) 1812 (0.981) 1117 (0.605)
MCF7 2081 (0.990) 977 (0.465) 1468 (0.987) 832 (0.560)

In a parenthesis is the proportion of the corresponding significant pairs in all significant pairs detected by the more conservative method (either ChiaSig
or mango).

For HG and ChIAPoP, we also used P-values to break the
ties among the rankings of adjusted P-values. Because these
two methods use Benjamini–Hochberg procedure to adjust
the P-values, the final rankings are equivalent to the rank-
ings of P-values.

The APA plots were created by juicer tools (21) in 10 kb
resolution, as shown in Figure 3. For each cell line, we cre-
ated eight APA plots: four plots for existing methods, i.e.
HG, MICC, ChiaSig and mango, and four corresponding
comparison plots for ChIAPoP. Each such APA plot aggre-
gates the Hi-C signal surrounding anchor regions (±100 kb)
across all pairs in the corresponding set. The Hi-C signal
used for the K562 cell line is from a high resolution Hi-
C dataset in (22) and the Hi-C signal for the MCF7 cell
line is from a Hi-C dataset in (23). For each cell line, as
the juicer tools only uses intra-chromosomal pairs with dis-
tance greater than 300 kb to create APA plots by default,
the set of pairs that was used to create the APA plot for an
existing method is the set of significant intra-chromosomal
pairs reported by the method with distance >300 kb; and
the set of pairs that was used to create the APA plot for the
corresponding comparison with ChIAPoP is the set of same
(with respect to the method) number of intra-chromosomal
pairs (filtered, i.e. with count ≥ 3) with distance >300 kb,
which were selected according to their ranks of ChIAPoP P-

values, that is, the ones with the smallest P-values. As rec-
ommended in (22), we used the APA score P2LL, the ra-
tio of the central pixel (a pixel represents a 10 kb × 10 kb
square) to the mean of the mean of the pixels in the lower left
corner (a 6 pixel × 6 pixel region), to summarize the APA
plots. A higher P2LL indicates a better validation. Based
on P2LL, we found that ChIAPoP pair ranking is better
than those by other methods in both datasets, except for
ChiaSig in K562 data, where P2LL for ChiaSig is 1.645 and
P2LL for ChIAPoP is 1.628. However, we found that, in the
APA plot for ChiaSig in K562 data, the left-most pixel right
above the lower left corner has a strong aggregated Hi-C sig-
nal (which is comparable to the signal of the central pixel)
compared to nearby pixels. This indicates a potential prob-
lem with the ChiaSig result, as one would usually expect a
weak signal for this pixel.

We also compared the pair rankings of the five meth-
ods for the two ChIA-PET datasets using the cumulative
APA plots (9), at the resolution 10 and 5 kb. The results
are shown in the Supplementary Figure S4 in the Supple-
mentary Data. In each cumulative APA plot, the five curves
represent the five methods. Each curve demonstrates how
the P2LL changes as the number of top pairs reported by
the corresponding method increases. For resolution 10 kb
(5 kb), the P2LL values were calculated in a cumulative way
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Figure 3. APA plots for the comparison of significant pairs detected by each existing method, and the corresponding ‘significant’ pairs detected by ChI-
APoP. Each plot can be summarized by the APA score P2LL, the ratio of the central pixel to the mean of the mean of the pixels in the lower left corner. A
higher P2LL indicates a better validation by the corresponding Hi-C data.

by adding 50 (100) distance-filtered pairs at a time, starting
at the top 200 distance-filtered pairs. The P2LL values were
calculated by the juicer tools using the default settings for
each resolution. From the plots, we found that ChIAPoP is
always one of the best performing methods for both datasets
when evaluated at both resolutions, and that it is the only
such method.

Comparison of pair rankings by CTCF enrichment and
CTCF motif orientation analyses

The DNA interactions are mostly related to CTCF bind-
ing and a pair of CTCF motifs involved in an intra-
chromosomal DNA interaction is typically in a convergent
orientation, that is, the two motifs are on different strands
with the one with a smaller genomic coordinate on the refer-



PAGE 7 OF 9 Nucleic Acids Research, 2019, Vol. 47, No. 7 e37

ence strand (22). We performed CTCF enrichment analyses
and CTCF motif orientation analyses to compare the rank-
ings of potential pairs by ChIAPoP and the other methods.
We found that ChIAPoP is as good as, if not better than,
the other methods.

In the CTCF enrichment analyses, we investigated CTCF
enrichment in anchor regions of the two groups: those
that involve significant pairs and those that do not. If
the significant pairs are more likely of true interactions
than those not significant, the CTCF enrichment of an-
chor regions that involve significant pairs is expected to
be higher. For the CTCF enrichment analyses, we used
the CTCF-peak regions from the ENCODE ChIP-Seq
datasets ENCFF681OMH and ENCFF559HEE for K562,
and ENCFF720OXG and ENCFF990LUT for MCF7. For
each cell line and an existing method, i.e. HG, MICC,
ChiaSig or mango, we divided anchor regions into two
groups: those that involve the significant pairs reported by
the method (interacting group) and those that do not (non-
interacting group). Then we calculated the percentage of
anchor regions that overlap with the CTCF-peak regions
in each of the two groups. To make a fair comparison be-
tween the method and ChIAPoP, we created a correspond-
ing set of ChIAPoP ‘significant’ pairs by selecting the same
(with respect to the method) number of potential pairs (fil-
tered, i.e. with count ≥3) according to their ranks of ChI-
APoP P-values, i.e. those with smallest P-values, and then
repeated the above CTCF enrichment analysis with this set
of ‘significant’ pairs. Notice that mango only reports intra-
chromosomal pairs, so we only selected intra-chromosomal
pairs to construct the corresponding set of ChIAPoP ‘sig-
nificant’ pairs when we compared between mango and ChI-
APoP. In total, we performed eight enrichment analyses for
each cell line and the results are summarized as bar plots
in Figure 4. From the figure, we found that ChIAPoP was
better than or comparable to the other methods in both
datasets in pair ranking. Here ‘better’ means a higher per-
centage of anchor regions that overlap with the CTCF-peak
regions in the interacting group and lower percentage of
anchor regions that overlap with the CTCF-peak regions
in the non-interacting group. Also, we found the ChiaSig
and mango results are better than MICC and HG results,
as these two methods only reported the strongest signals.

In CTCF motif orientation analyses, we investigated
the CTCF motif orientation for the significant intra-
chromosomal pairs for different methods. If the detected
significant intra-chromosomal pairs are true signals, we
would expect to see the associated CTCF motifs in conver-
gent orientation more often than in other orientations. For
the analyses, we determined the CTCF motifs in each cell
line as the following. First, we obtained the predicted CTCF
motifs from PWMScan (24), a web server (https://ccg.vital-
it.ch/pwmscan/) for scanning of a reference genome for
high-scoring matches to a given position weight matrix
(PWM). In the scan, we used the hg19 as the reference
genome and a PWM that is derived from the CTCF-binding
profile (ID: MA0139.1) in the database JASPAR CORE
2018 vertebrates (25). The parameters used in the PWM-
Scan are the default values. Second, for each cell line, we
filtered the predicted CTCF motifs using the CTCF-peak
regions from the corresponding ENCODE ChIP-Seq data

(the same datasets that we used in the CTCF enrichment
analyses). That is, we only kept those that overlap with the
CTCF-peak regions. These predicted CTCF motifs were
used for the motif orientation analyses for the correspond-
ing cell line. After obtaining the CTCF motifs in each cell
line, for an existing method we then counted the number of
significant intra-chromosomal pairs with each of two an-
chor regions overlaps with a unique CTCF motif and the
number of such significant pairs with the corresponding
CTCF motif orientation being convergent. To make a fair
comparison between the method and ChIAPoP, we again
created a corresponding set of ChIAPoP ‘significant’ intra-
chromosomal pairs by selecting the same (w.r.t the method)
number of intra-chromosomal pairs (filtered, i.e. with count
≥ 3) according to their ranks of ChIAPoP P-values, i.e.
those with smallest P-values, and then repeated the above
CTCF motif orientation analysis with this set of ‘signifi-
cant’ intra-chromosomal pairs. In total, we performed eight
CTCF motif orientation analysis for each cell line and the
results are summarized as bar plots in Figure 4. Again, we
found that ChIAPoP pair ranking is as good as the ranking
by other methods, if not better, in both datasets. Fisher ex-
act tests (shown in the figure) on the proportions show that
ChIAPoP rankings are better than MICC rankings, and are
not significantly different from other rankings.

DISCUSSION

ChIA-PET is a widely used assay method to study genome-
wide chromatin interactions mediated by a protein of inter-
est. Here we proposed a new approach and developed a new
analysis pipeline, ChIAPoP, to identify real chromatin inter-
actions from ChIA-PET data of the original protocol. It is
a complete analysis pipeline that includes linker removal,
read alignment, alignment processing, anchor region detec-
tion and DNA interaction detection. Using two real ChIA-
PET datasets, we demonstrated that our new models were
effective in fitting data, and ChIAPoP performed better
than or at least comparable to the top existing methods in
identifying real chromatin interactions.

ChIAPoP is able to take the full advantage of ChIA-PET
chimeric data. Although some of the existing tools also
use chimeric data, they do no fully use the information in
the data. For example, the ChIA-PET tool uses chimeric
data only for determining the count cutoff for data filter-
ing. In contrast, ChIAPoP directly fits the chimeric data
with its positive Poisson model for estimating noise level for
inter-chromosomal pairs, and fits with the logistic model for
intra-chromosomal pairs.

Mango is a relatively conservative method, which is likely
to be the main reason that it detected fewer significant pairs
than other methods in our comparisons. Mango considers
only intra-chromosomal pairs, and it may be also part of the
reason. Among all significant pairs, the portion of signifi-
cant inter-chromosomal pairs detected by the other meth-
ods, however, is small in both datasets (mostly ranging be-
tween 1.4 and 7.2% except ChiaSig with 12.1% in K562). So,
even if mango were able to detect inter-chromosomal pairs,
the comparison results would not change much. In all com-
parisons, ChiaSig tool was applied to the two groups of po-
tential pairs (inter-chromosomal and intra-chromosomal)

https://ccg.vital-it.ch/pwmscan/
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Figure 4. CTCF enrichment and CTCF motif orientation analyses in the K562 and MCF7 ChIA-PET datasets. Top: bar plots for CTCF enrichment
analyses for the two ChIA-PET datasets. For each bar, the red part and the blue part represent the percentage of anchor regions that overlap with CTCF
peaks in the interacting group and the percentage of anchor regions that overlap with CTCF peaks in the non-interacting group, respectively. Here the
two groups were determined by the significant pairs reported by an existing method (HG, MICC, ChiaSig or mango), or by the corresponding set of
ChIAPoP ‘significant’ pairs. Bottom: bar plots for CTCF motif orientation analyses for the two ChIA-PET datasets. For each bar, the red part and the
blue part represent the number of significant intra-chromosomal pairs with two unique motifs in convergent orientation and the number of significant
intra-chromosomal pairs with two unique motifs in other orientations, respectively. Here the significant pairs were reported by an existing method (HG,
MICC, ChiaSig or mango), or were the corresponding ChIAPoP ‘significant’ pairs. The Fisher exact P-values shown in the figures are for the tests of
proportions of motifs with convergent orientation between an existing method and ChIAPoP.

separately in order to be consistent with (8). We also ap-
plied ChiaSig tool to all potential pairs, however, we only
got a few hundred significant pairs in each dataset.

For both datasets, the comparisons between ChIAPoP
and HG by APA and CTCF analyses did not fully reflect the
advantage of ChIAPoP over HG, as HG was used as the ref-
erence method and almost the full data (all potential pairs
with count ≥3) were selected by HG including many non-
significant ones in ChIAPoP. Therefore, we performed sim-
ilar comparisons between the two methods, but used ChI-
APoP as the reference method. The results show that the
pair ranking of ChIAPoP is better than that of HG. Please
see Supplementary Figures S5 and S6 in the Supplementary
Data for more details.

The current version of ChIAPoP main analysis pipeline
only supports reads data from the original ChIA-PET pro-
tocol, which is still widely used. Nevertheless, we do in-
clude a separate function in our ChIAPoP R package to
support data from the new ChIA-PET protocol. This func-
tion requires a count table for potential pairs and a ta-
ble of sequencing bias of anchor regions as the input. For

intra-chromosomal pairs, this function is identical to the
step 6 in the ChIAPoP pipeline (estimating the pair spe-
cific positive Poisson parameters by a logistic regression).
For inter-chromosomal pairs, this function estimates pair-
specific positive Poisson parameters by another logistic re-
gression (with a single independent variable log(seq.bias)),
instead of a positive Poisson regression because there is
no chimeric data for the improved protocol. The auxiliary
count table is created in the similar way as creating the aux-
iliary count table for testing intra-chromosomal pairs. The
two input tables for the function can be easily generated by
using the output from other tools, e.g. ChIA-PET2.
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