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1  | INTRODUC TION

DNA barcoding is a species identification method, using a short, 
standardized DNA region, so‐called DNA barcode (Hebert, 
Cywinska, Ball, & de Waard, 2003a). In principle, DNA barcodes con‐
tain variation that can be posed as a character to differentiate spe‐
cies. Although the utility of DNA barcoding for species identification 

has raised debates over its feasibility (Collins & Cruickshank, 2013; 
Krisnamurthy & Francis, 2012), the method has been increasingly ap‐
plied during the last decade, especially to facilitate biodiversity stud‐
ies of very diverse but taxonomically poorly known regions (Blaxter, 
2004; Hajibabaei et al., 2005), such as Sumatran tropical rainforests.

Sumatran tropical rainforests are very rich in flora and fauna 
(Davis, Heywood, & Hamilton, 1995; Laumonier, 1997; Whitten, 
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Abstract
The rapid conversion of Southeast Asian lowland rainforests into monocultures calls 
for the development of rapid methods for species identification to support ecological 
research and sustainable land‐use management. Here, we investigated the utilization 
of DNA barcodes for identifying flowering plants from Sumatra, Indonesia. A total of 
1,207 matK barcodes (441 species) and 2,376 rbcL barcodes (750 species) were suc‐
cessfully generated. The barcode effectiveness is assessed using four approaches: (a) 
comparison between morphological and molecular identification results, (b) best‐
close match analysis with TaxonDNA, (c) barcoding gap analysis, and (d) formation of 
monophyletic groups. Results show that rbcL has a much higher level of sequence 
recoverability than matK (95% and 66%). The comparison between morphological 
and molecular identifications revealed that matK and rbcL worked best assigning a 
plant specimen to the genus level. Estimates of identification success using best‐
close match analysis showed that >70% of the investigated species were correctly 
identified when using single barcode. The use of two‐loci barcodes was able to in‐
crease the identification success up to 80%. The barcoding gap analysis revealed that 
neither matK nor rbcL succeeded to create a clear gap between the intraspecific and 
interspecific divergences. However, these two barcodes were able to discriminate at 
least 70% of the species from each other. Fifteen genera and twenty‐one species 
were found to be nonmonophyletic with both markers. The two‐loci barcodes were 
sufficient to reconstruct evolutionary relationships among the plant taxa in the study 
area that are congruent with the broadly accepted APG III phylogeny.
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Damanik, Anwar, & Hisyam, 2000); nonetheless, they are only 
sparsely studied compared to other islands in the Malayan 
Archipelago (Laumonier, 1997). In terms of plant diversity, the 
Sumatran forests are comparable to the forests of Borneo and are 
richer than those found in Java and Sulawesi (Meijer, 1981). Sumatra 
is reported as one of the global centers of vascular plant diversity 
with a species density of 3,000 to 5,000 species per 10,000 km2 
(Barthlott, Mutke, Rafiqpoor, Kier, & Kreft, 2005). Roos, Keßler, 
Gradstein, and Baas (2004) estimated a total number of 10,600 plant 
species in Sumatra with more than 300 endemic species. Laumonier 
(1997) argued that many scientists mistakenly consider that the flora 
of Sumatra is sufficiently well known since it is similar to that of the 
Malaysian peninsula, but many parts, especially the center of the is‐
land, are floristically unexplored territories.

Despite the importance of conserving the ecosystem, the total 
forest area in Sumatra has decreased from over 23 million hectares 
to probably less than 16 million hectares between 1985 and 1997 
(World Bank, 2001). The southern provinces of Sumatra have lost 
most of their lowland forests, including those in protected areas 
(Lambert & Collar, 2002). Approximately 7.5 million hectares of pri‐
mary forest loss were recorded in Sumatra during 1990–2010 and 
an additional 2.3 million hectares of primary forest were degraded 
(Margono et al., 2012). Between 2000 and 2010, the deforestation 
rate was estimated to be above 5% per year in the eastern lowlands 
of Sumatra (Miettinen, Shi, & Liew, 2011). The total deforested areas 
in Sumatra within 2011 alone were recorded to be approximately 
2,200 hectares or as much as 3,520 soccer fields (BP‐REDD+, 2015). 
The causes of these massive deforestation and forest degradation 
are a large‐scale conversion into timber or estate crop plantations, 
illegal logging, and forest fires. By 2010, 3.9 million hectares of 
Sumatran lowland forests had been converted into oil palm (Elaeis 
guineensis) plantations (Koh, Miettinen, Liew, & Ghazoula, 2011).

The extensive loss of natural habitat puts a great number of 
species at risk and may lead to the loss of tropical fauna including 
forest‐dwelling birds (Koh et al., 2011), mammals (Maddox, Priatna, 
Gemita, & Salampessy, 2007), and orangutan (Gaveau et al., 2009). 
Undoubtedly, the destruction also affects the plant diversity (Brook, 
Sodhi, & Ng, 2003; Corlett, 1992; Rembold, Mangopo, Tjitrosoedirdjo, 
& Kreft, 2017; Turner et al., 1994). The rate of species loss in tropical 
forests seems to be higher than the species exploration due to lack 
of resources and sound species conservation management such as 
limited number of taxonomists working in this region, inadequate 
herbarium collections, and inaccessible taxonomic literature (Kiew, 
2002; Meyer & Paulay, 2005; Tautz, Arctander, Minelli, Thomas, & 
Vogler, 2003). Species explorations become more challenging when 
the species cannot be identified morphologically. Identification keys 
based upon morphological characteristics can be difficult to use if 
features are not present (e.g., in sterile or juvenile specimens) or not 
well developed.

The use of DNA barcoding might help to overcome the lim‐
itations of morphological characters and might help to speed up 
species identification. This has been made possible because DNA 
barcoding can identify organisms at any stage of development (e.g., 

Barber & Boyce, 2006; Hausmann et al., 2011; Heimeier, Lavery, & 
Sewell, 2010; Ko et al., 2013), or at particular gender (e.g., Elsasser, 
Floyd, Herbert, & Schulte‐Hostedde, 2009), or specimens isolated 
from small and incomplete tissue, whether it is fresh, broken, or old 
(e.g., Hajibabaei et al., 2006; Valentini, Pompanon, & Taberlet, 2008). 
DNA barcoding may also help to discover new species and to identify 
cryptic species (e.g., Hebert, Penton, Burns, Janzen, & Hallwachs, 
2004; Pauls, Blahnik, Zhou, Wardwell, & Holzenthal, 2010; Ward, 
Costa, Holmes, & Steinke, 2008).

DNA barcoding is now well established for animals (Crawford 
et al., 2013; Hebert, Cywinska, Ball, & deWaard, 2003a; Hebert, 
Ratnasingham, & de Waard, 2003b; Hebert et al., 2004; Lim, 2012; 
Nagy, Sonet, Glaw, & Vences, 2012; Ward, Zemlak, Innes, Lasr, & 
Hebert, 2005) by using the mitochondrial DNA CO1 (cytochrome 
c oxidase subunit 1) as a standard region. However, this region is 
ineffective for plant identification due to generally low nucleotide 
substitution rates in plant mitochondria (Chase et al., 2005; Fazekas, 
Kesanakurti, & Burgess, 2009).

A number of candidate gene regions were suggested as po‐
tential barcodes for plants including coding genes and noncoding 
genes in the nuclear and plastid genomes (e.g., Chase, Cowan, & 
Hollingsworth, 2007; Kress & Erickson, 2007; Kress, Wurdack, 
Zimmer, Weigt, & Janzen, 2005; Taberlet et al., 2007). Some stud‐
ies suggested DNA barcoding based on a single chloroplast region 
(e.g., Lahaye et al., 2008) or a combination of different regions (e.g., 
Chase et al., 2007; Hollingsworth et al., 2009a; Kress & Erickson, 
2007). A study by Kress and Erickson (2007) showed that the var‐
ious combinations of two loci were all more powerful at differen‐
tiating between species than either locus individually. In 2009, the 
Plant Working Group under The Consortium for Barcode of Life 
(CBOL) suggested that there were no other two‐loci or multi‐loci 
barcode provided appreciably greater species resolution than the 
matK+rbcL combination. However, in some complex groups, such 
as in the genus Berberis (Roy et al., 2010), the combination of matK 
with rbcL is not sufficient to distinguish all species. The investiga‐
tion of these markers will contribute to the development of useful 
barcode information for plant identification and to document plant 
species globally.

This study aims to generate DNA barcodes of flowering plant 
species in four land‐use systems in Jambi Province (Sumatra) using 
two DNA chloroplast markers (matK and rbcL) and to evaluate the 
effectiveness of these two markers as DNA barcodes for flowering 
plants. Crucial characteristics for evaluating the performance of 
DNA barcodes include universal applicability, ease of data retrieval, 
and sufficient variability of the used marker (Fazekas et al., 2008; 
Kress & Erickson, 2007).

2  | METHODS

2.1 | Study sites

This study was carried out in the EFForTS project sites (https://www.
uni-goettingen.de/efforts) in Jambi Province (Sumatra, Indonesia) 

https://www.uni-goettingen.de/efforts
https://www.uni-goettingen.de/efforts
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comprises of 32 core plots sized 50 m × 50 m. Details about the EFForTS 
project sites and plot design are described in Drescher et al. (2016).

2.2 | Specimen collection and identification

Herbarium specimens were collected from three individuals of as 
many as possible vascular plant species within the 32 core plots. 
The plant survey included all trees with a diameter at breast height 
(DBH) ≥10 cm within the entire plot and all vascular plants within 
five 5 m × 5 m subplots nested within each core plot. Leaf tissue (ap‐
proximately 2 cm2) was collected from each fresh herbarium speci‐
men and dried in silica gel for DNA barcoding analysis. Herbarium 
vouchers were prepared, morphologically identified, and deposited 
at the herbarium of the Southeast Asian Regional Centre for Tropical 
Biology (SEAMEO‐BIOTROP), the Herbarium Bogoriense—Research 
Center for Biology, LIPI, and herbarium of the University of Jambi. 
The results of the morphological identification were then compared 
to the molecular identification results. Molecular identification was 
conducted for all samples that were successfully barcoded, but only 
samples that have been morphologically identified were included in 
the further analysis.

2.3 | DNA analysis

Based on the result of morphological species identification, two 
specimens per species were selected for genetic analysis. DNA 
extractions were performed on healthy dried leaf tissues from all 
selected samples using the DNeasy 96 Plant Kit (Qiagen, Hilden, 
Germany) following the manufacturer's protocols. The concentra‐
tion and quality of the extracted DNA were checked by 0.8%–1% 
agarose gel electrophoresis with Lambda DNA as standard (Roche), 
visualized by UV illumination and saved using a polaroid camera.

Each extracted DNA was amplified by performing polymerase 
chain reaction (PCR) using universal primers listed in Table 1. For 
rbcL, the amplification was straightforward, while for matK, two 
different amplification reactions were performed. First, the DNA 
of all investigated samples were amplified using the universal 
primer pair 1RKIM_f and 3FKIM_r (Table 1). The second ampli‐
fication reaction, using the primer pair 390f and 990r (Table 1), 
included only those samples which showed no amplification prod‐
uct or produced multiple PCR products in the first amplification 
reaction.

The sequencing reactions were performed using the ABI 
PrismTM Big DyeTM Terminator Cycle Sequencing Ready Reaction 
Kit v1.1 (Applied Biosystems), based on the principles described 
by Sanger, Nicklen, and Coulson (1977). Data were collected from 
capillary electrophoresis on an ABI Prism 3100® Genetic Analyzer 
with the Sequence Analysis Software v3.1 (Applied Biosystems). The 
sequencing was performed with the same primers used for amplifi‐
cation in both directions. The amplification and sequencing reaction 
mixtures are shown in Supporting Information Appendix 1, while the 
temperature profiles of the PCR for amplification and sequencing 
are shown in Supporting Information Appendix 2.

2.4 | Sequence analysis

To ensure the generated DNA barcodes were as accurate as pos‐
sible, sequence editing was performed using CodonCode Aligner 
software (CodonCode Corporation, Dedham, USA). Furthermore, 
each of these edited barcodes was assigned to a particular taxon by 
comparing it with the nucleotide sequences in GenBank database 
and Barcode of Life Database (BOLD).

Moreover, the results of sequence identification were cross‐
checked with the morphological identification results. The match 
between morphological and molecular identification results was 
counted into three levels: species, genus, and family. The following 
decisions were made for correct identification assignments, namely: 
(a) when the species name from the molecular identification matched 
the species name from the morphological identification, then it was 
counted as a correct species identification, (b) when the identification 
result only matched the genus or family, then it was counted as correct 
genus or family identification, and (c) when the result between mor‐
phological and molecular identification did not match, it was counted 
as incorrect identification if matK and rbcL both showed similar results 
at least at family level, or it was counted as mislabeling/contamination 
if the results of matK and rbcL were different. Herbarium specimens 
were double‐checked in cases of incorrect identification.

Sequence alignment was carried out independently for each 
marker in two stages. First, multiple sequences were aligned accord‐
ing to their families using the ClustalW program (Thompson, Higgins, 
& Gibson, 1994) embedded in MEGA6 (Tamura, Stecher, Peterson, 
Filipski, & Kumar, 2013). Reference sequences were downloaded from 
GenBank/BOLD and included in the alignment for those species repre‐
sented with only one sample. The alignment results were subsequently 

TA B L E  1   Universal primers of matK and rbcL used in DNA amplification and sequencing

No. Region Name of primer Primer sequence (5′ → 3′) References

1 matK 3F_KIM_f CGTACAGTACTTTTGTGTTTACGAG Ki‐Joong Kim (unpublished)

1R_KIM_r ACCCAGTCCATCTGGAAATCTTGGTTC Ki‐Joong Kim (unpublished)

390f CGATCTATTCATTCAATATTTC Cuenoud et al. (2002)

990r GGACAATGATCCAATCAAGGC Dayananda, Ashton, Williams, & Primack (1999)

2 rbcL rbcLa_f ATGTCACCACAAACAGAGACTAAAGC Krees and Erickson (2007)

rbcLa_r GAAACGGTCTCTCCAACGCAT Fazekas et al. (2008)
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checked for the occurrence of ambiguities caused by the presence of 
indels and/or substitutions and edited if necessary. In the second stage, 
all aligned sequences from each family were manually aligned with se‐
quences from other families. Gaps were added if necessary, and the 
final alignment was trimmed at both ends. The aligned sequences of 
rbcL and matK were combined to obtain two‐loci DNA barcodes using 
SequenceMatrix software (Vaidya, Lohman, & Meier, 2011).

Identification success was also calculated with best‐close match 
analysis as implemented in TaxonDNA (Meier, Kwong, Vaidya, & Ng, 
2006). This analysis only included the species with at least two repre‐
sentatives. A threshold value T was determined for each dataset as a 
divergence percentage in which 95% of all intraspecific distances were 
found. In this method, all recovered barcodes were formatted as both 
database and query. A query can only be identified if the correspond‐
ing sequence has a match in the dataset that falls into the 0% to T% 
interval. If the species name was identical, the query was considered to 
be successfully identified. A query was considered ambiguously identi‐
fied when it matched more than one sequence of different species be‐
sides the correct species. On the other hand, a query was considered 
incorrectly identified when it matched to sequences belonging to other 
species. All queries without such a match would remain unidentified.

Pairwise distance matrices were created to calculate the genetic 
distance using MEGA6 (Tamura et al., 2013) based on the Tamura‐Nei 
model (1993) assuming the differences in substitution rate between 
nucleotides and the inequality of nucleotide frequencies with gamma‐
distributed rates between sites and the pattern between lineages 
were assumed to be heterogeneous. The calculation results of intra‐ 
and interspecific divergences in these matrices were separated using 
ExcaliBAR (Aliabadian et al., 2014) to facilitate the measures of dis‐
tance range and distance mean of each type of divergence. Frequency 
(%) distribution of intra‐ and interspecific divergences of each marker 
was calculated and depicted in graphics using Excel to find possible 
“gap” between these two divergences. This so‐called barcoding gap 
illustrates the effectiveness of DNA barcodes in discriminating query 
species from one to another. An ideal barcode can be determined by 
the presence of a barcoding gap, which occurs when the minimum 
value of the interspecific divergence is higher than the maximum level 
of intraspecific divergence (Meyer & Paulay, 2005).

Based on the aligned sequences, phylogenetic trees were re‐
constructed using MEGA6 (Tamura et al., 2013) with three differ‐
ent algorithms: maximum parsimony (MP), maximum likelihood (ML), 
and neighbor joining (NJ). Percentages of species, genus, and family 
monophyletic clades were calculated from each reconstructed tree. 
Furthermore, ordinal‐level phylogenies were reconstructed based 
on maximum likelihood trees of each used marker and were com‐
pared to APG III (APG III 2009) phylogenies to see if there were in‐
consistencies between these two topologies.

3  | RESULTS

From all 5,328 samples collected from the field, only 2,590 samples 
were included in the study due to time restriction. The selection of 

studied samples was based on the consideration to involve as much 
species as possible, and each of these species should be represented 
at least by two samples. Species with only one sample were still 
included, but the barcodes generated from single‐sampled species 
were excluded from the pairwise analysis.

We extracted DNA from dried leaf specimens without no‐
ticeable difficulties. The amplification and sequencing, however, 
turned out to be more problematic especially when using matK 
primers. Recoverability of DNA sequences for rbcL was over‐
all high (amplification and sequencing success were 96.9% and 
94.7%, respectively). The amplification and sequencing results 
using the primer of matK were only moderately successful (79.1% 
and 65.8%, respectively). A total of 1,207 matK barcodes repre‐
senting 441 species of 97 families of 40 orders, and 2,376 rbcL 
barcodes representing 750 species of 126 families of 44 orders, 
were generated in this study.

For both markers, the highest match between morphological and 
molecular identification was at genus level (46.6% with matK and 
51.3% with rbcL). The matched identification at species level was 
higher with matK than with rbcL (30.2% and 22.4%, respectively). 
Meanwhile, incorrect identification was relatively low for both re‐
gions (3.5%). To maintain the accuracy of the analysis, we excluded 
all misidentified or presumably mislabeled barcodes from the data‐
set. Since the study aims at comparing the performance of matK and 
rbcL and to generate two‐loci barcodes, only samples from which 
both matK and rbcL barcodes were successfully recovered were in‐
cluded in the further analysis. Consequently, only 322 samples from 
161 species (two samples per species) were included in best‐close 
match and barcode‐gap analysis and 334 samples from 334 species 
(one sample per species) were included in phylogenetic analysis.

According to the best‐close match analysis, matK has higher 
overall species identification success compared to rbcL (78.3% and 
71.4%, respectively), and the highest correct species identification 
was obtained by the combination of both markers (81.1%). There 
were 22 species which remained unidentified by each marker and 
the two‐loci marker.

Furthermore, this study showed that the mean value of  
intraspecific divergences (0.0008–0.0014) was very low and the 
mean value of the interspecific divergences (0.1–0.3) was signifi‐
cantly higher (unpaired t‐test, p < 0.01). The frequency (%) distribu‐
tion of intraspecific and interspecific divergence using three markers 
(Figure 1) showed that no barcode gaps existed as the intraspecific 
divergences overlapped with interspecific divergences.

As expected, matK had a higher discrimination level than rbcL 
(80% and 73%, respectively) but the difference was not significant 
(one‐way ANOVA, p > 0.05). The combination of matK and rbcL im‐
proved the discrimination up to 89%. Forty‐four out of 161 species 
could not be discriminated by rbcL and eleven of them were not 
discriminated by any of the markers including the two‐loci bar‐
code. These species were mostly from species‐rich genera, such 
as Ficus (Moraceae), Santiria (Burseraceae), and Litsea (Lauraceae).

Nine phylogenetic trees (Supporting information Appendix 3–11) 
were constructed based on multiple sequence alignments of matK, 
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rbcL, and matK+rbcL using three different methods: maximum par‐
simony (MP), neighbor joining (NJ), and maximum likelihood (MP). 
Each tree was observed and similar topologies were found amongst 
these trees (Table 2).

Seventeen families were not included in the calculation of 
family‐level monophyletic percentage as these families were pre‐
sented with only one taxon. The two‐loci marker provided 100% 
taxonomic resolution at family level with all three different meth‐
ods. Twenty‐two species were nonmonophyletic in all phylogenetic 
trees (Supporting information Appendix 12). The nonmonophy‐
letic species mostly originated from species‐rich families, such as 
Burseraceae, Myristicaceae, Moraceae, Phyllanthaceae, Lauraceae, 
Sapindaceae, and Annonaceae.

The ordinal‐level phylogeny of flowering plants shows the re‐
lationship between orders of flowering plants and the grouping 
of these orders (Figure 2). The matK marker misplaced Myrtales 
and failed to separate Laurales from Magnoliales. Meanwhile, the 
rbcL marker misplaced Aquifoliales and grouped Malpighiales and 
Brassicales into one monophyletic clade. This marker also failed to 
make Santalales a monophyletic clade. However, this marker suc‐
cessfully separated Laurales from Magnoliales. Finally, the combi‐
nation of matK and rbcL improved the topologies of the tree and 
put nearly all orders into the right position compared to APG III 
phylogeny.

4  | DISCUSSION

4.1 | Recoverability and quality of matK and rbcL 
barcodes

The rbcL universality as DNA barcode observed in this study con‐
firms that DNA sequences could be easily obtained with rbcL prim‐
ers from a wide range of tropical plant species (e.g., Gonzales et al., 
2009; Lahaye et al., 2008; Parmentier et al., 2013). In contrast to 
rbcL, matK seems to be less suitable for tropical floras compared to 
temperate one (e.g., Bruni et al., 2012; de Vere et al., 2012; Gonzales 
et al., 2009). This might be due to higher evolutionary rates in tropi‐
cal compared to temperate plants (Gillman, Keeling, Gardner, & 
Wright, 2010). The PCR of matK performed in this study was using 
two pairs of primers which were found to be effective to generate 

DNA barcodes from specific taxa, such as Tetrastigma (Fu, Jiang, & 
Fu, 2011), Hedyotis (Guo, Simmons, But, Shaw, & Wang, 2011), or 
Asteraceae (Gao et al., 2010). These primers, however, became less 
effective when they were used for a wide range of species (Gonzales 
et al., 2009; Kress et al., 2010). A certain primer pair did not always 
yield a PCR product in all members of a group of seemingly closely re‐
lated taxa, indicating that the primers themselves are not conserved.

The use of matK as a barcode has been criticized mainly because 
universal primers are not available (e.g., Bafeel et al., 2011; Dong 
et al., 2015). A study by Fazekas et al. (2008) showed a relatively 
high rate of sequencing success for this marker after using up to 
10 primer pairs. The usefulness of matK primers is proven when 
they are used in specific species or taxa, such as Camellia sinensis 
(Stoeckle et al., 2011), Lamiaceae (De Mattia et al., 2011), or palms 
(Jeanson, Labat, & Little, 2011). In a review of the best barcode for 
plants, Hollingsworth, Graham, and Little (2011) indicated that matK 
still needs optimization in regard to primer combinations and needs 
to be adapted to specific taxonomic groups.

4.2 | Plant species identification success using 
matK and rbcL

As one way to evaluate the success rate of species identification, 
we compared the results from morphological identification with the 
results from molecular identification. Some authors suggested a su‐
periority of molecular identification in comparison with morphologi‐
cal identification (Newmaster, Ragupathy, & Janovec, 2009; Stace, 
2005). However, this study showed that DNA barcoding alone is not 
sufficient to assign all DNA sequences to a correct species name. 
Only 22%–30% of the samples were correctly assigned to the cor‐
rect species, while the majority of correct identifications was limited 
to genus level (46%–51%).

Approximately three percent of mismatch between morphologi‐
cal identification results and DNA identification results were found 
in this study that could be due to several reasons. A specimen could 
be misidentified when it was found to have the highest similarity 
to a reference sequence that was falsely identified. The mismatch 
between morphological and molecular identification could also hap‐
pen when the taxonomist misidentified the voucher. Morphological 
identification is difficult in the absence of certain features, such as 

F I G U R E  1   Frequency (%) distribution 
of intraspecific and interspecific 
divergences of pairwise sequences of 
matK (a), rbcL (b), and matK+rbcL(c)

(a) (b) (c)
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flowers or fruits, especially when dealing with species‐rich groups. 
A high percentage of nonfertile material is particularly common in 
ecological projects such as ours. In the case of incorrect morpholog‐
ical identification, the herbarium vouchers of corresponding samples 
should be verified morphologically once again.

The success of species identification using DNA barcoding de‐
pends very much on the taxa in question, as much as the utilized 
marker. For example, in this study, the family Piperaceae resulted in 
high species‐matched identification when using matK (60%) but no 
success at all when using rbcL. Meanwhile, for the family Asteraceae, 
the species‐matched identification was higher with rbcL (50%) than 
with matK (30%).

Another factor affecting the success of species identification 
using DNA barcoding is the availability of nucleotide data of the cor‐
responding taxa in the DNA sequences database such as GenBank 
and BOLD. Through this study, 303 newly barcoded tropical plant 
species have been uploaded to BOLD. Forty‐one percent of the 772 
species investigated in this study still had no nucleotide data in BOLD 
and Genbank. Thus, a significant proportion of samples belonging 
to species which were not yet recorded in the reference databases 
lead to increased rates of unassigned samples. Incorrect specimen 
assignment is more often due to the incompleteness of molecular 
datasets rather than the data analysis (Bruni et al., 2010; Burgess et 
al., 2011; Cowan & Fay, 2012). An accurate and complete molecular 

TA B L E  2   Percentage of monophyletic clades recovered in nine reconstructed phylogenetic trees

Barcode

Monophyletic with support value >70%

Maximum Parsimony (MP) Neighbor Joining (NJ) Maximum Likelihood (ML)

Family Genus Species Family Genus Species Family Genus Species

matK 95.9 68.4 73.9 93.9 66.7 69.6 98.0 64.9 68.9

rbcL 95.9 63.2 60.3 93.9 63.2 64.0 89.9 63.2 55.9

matK+rbcL 100.0 71.9 73.3 100.0 64.9 73.9 100.0 70.2 75.2

F I G U R E  2   Comparison between ordinal‐level phylogeny of flowering plants based on DNA barcodes and APG III (2009). The dash lines 
indicate that the two orders are not clearly separated. *Santalales in rbcL phylogeny tree is a nonmonophyletic clade
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database, especially for plant species, is still far from being achieved 
in the present state. Such a database will hopefully be developed 
in the future as many studies and projects of plant DNA barcoding 
are going on (e.g., http://botany.si.edu/projects/DNAbarcode/intro.
htm; http://xmalesia.info/index.html).

4.3 | Discriminatory power of matK and rbcL

None of the markers used in this study successfully obtained a DNA 
barcoding gap. All of the minimum values of interspecific divergence 
obtained from three different markers were lower than the maxi‐
mum values of intraspecific divergence. In studies of DNA barcod‐
ing of specific plant taxa, for example, Ludwigia (Ghahramanzadeh et 
al., 2013), Abies, Cupressus (Armenise, Simeone, Piredda, & Schirone, 
2012), and Tetrastigma (Fu, Jiang, & Fu, 2011), the distribution of 
intra‐ versus interspecific distances was relatively well separated. 
Meanwhile, large‐scale plant diversity inventories (Lahaye et al., 
2008; Parmentier et al., 2013) reported the absence of barcoding 
gaps by using a combination of potential markers. The richness of 
the dataset might have contributed to the wider distribution of the 
intra‐ and interspecific divergences which then increase the possibil‐
ity of them to overlap. This implies that the sampling intensity and 
variety would influence the distribution of the intra‐ and interspe‐
cific variation within the dataset.

Despite the absence of barcoding gaps, the barcodes generated 
in this study have relatively high discriminatory power. According 
to Hollingsworth et al. (2011), most of the plant barcodes would 
have discriminatory power of more than 70%. Studies by Kress et al. 
(2009) and Burgess et al. (2011) showed that barcoding of distantly 
related taxa typically results in high levels of discriminatory power.

The matK+rbcL marker has the highest number of discriminated 
species compared to matK or rbcL alone. This is because the use of 
two‐loci barcodes maximized the genetic variation, thus minimiz‐
ing the number of identical barcodes between different species. All 
species that could not be discriminated have barcodes identical to 
other species from the same family. Identical barcodes across differ‐
ent genera of the same family were uncommon with matK but more 
common with rbcL. However, matK and rbcL mostly failed to discrimi‐
nate different species from the same genus. These two plastid mark‐
ers are therefore not variable enough to be effective barcodes for 
closely related species in certain taxa.

To improve the analysis of closely related taxa, noncoding plas‐
tid genes, such as trnH‐psbA, could be used as an additional marker 
(Hollingsworth et al., 2011). A study by Kress and Erickson (2007) 
showed that trnH‐psbA has dramatically higher sequence variability 
than the coding genes because it has a higher number of single‐nu‐
cleotide polymorphisms (SNPs). Hence, trnH‐psbA can be a suitable 
marker to discriminate among closely related species. Moreover, nu‐
clear genomic regions, such as the internal transcribed spacer (ITS) 
region, were suggested as potential DNA barcodes by Kress et al. 
(2005). ITS sequences generally show high levels of interspecific se‐
quence variability (Cowan & Fay, 2012) and has been used success‐
fully to classify angiosperms (Li et al., 2011).

4.4 | The phylogeny of flowering plants of Jambi 
based on matK and rbcL

Both matK and rbcL showed high family‐level resolution, and the 
combination of matK and rbcL succeeded to resolve all of the families 
into monophyletic clades with high bootstrap value. Furthermore, 
the taxonomic resolution at the genus level was much lower com‐
pared to the family level which was expected. Surprisingly, the 
genus‐level monophyletic percentages were found slightly lower 
compared to the species level in all trees, except for MP and ML 
trees using rbcL. A similar study by Gonzalez et al. (2009) reported 
larger numbers of monophyletic genera compared to monophyletic 
species. This difference can be explained by the fact that the pro‐
portion of distantly related species included in the dataset in this 
study was higher than the proportion of closely related species. 
Thus, the probability of resolving monophyletic‐species clades was 
higher than to resolve the monophyletic‐genus clade. Finally, the 
species‐level resolution in this study is comparable to similar studies 
(Gonzalez et al., 2009; de Vere et al., 2012). However, the two‐loci 
barcode did not improve the species‐level resolution significantly. 
Combining these two chloroplast markers was not sufficient to pro‐
vide 100% of species monophyly.

Of 76 families included in the phylogenetic tree reconstruction, 
Burseraceae and Phyllanthaceae were the families with the highest 
number of unresolved genera. Most of the species in these gen‐
era were found to have identical sequences, so they could not be 
separated from each other. Identical sequences between species 
of different genera could be common if the marker was not vari‐
able enough, such as matK and rbcL. In this study, it was revealed 
that matK and rbcL were not sufficiently variable for species‐rich 
groups.

The phylogenetic trees based on the rbcL marker resulted in 
larger numbers of unresolved species than matK. At least eighteen 
species were nonmonophyletic according to rbcL but monophyletic 
according to matK. The unresolved species found in this study could 
be explained by two reasons. First, these species might have iden‐
tical genetic information with other species belonging to the same 
genera/family. Second, these species might have higher intraspecific 
than interspecific divergence; thus, they were grouped with the allo‐
species but not with the conspecies.

A number of constraints are limiting DNA barcoding of plant 
species including slow evolution rates (Palmer et al., 2000) and high 
incidence of hybridization (Knobloch, 1972). The genetic variation 
caused by hybridization cannot be simply detected by plastid mark‐
ers (Fazekas et al., 2008, 2009). Nevertheless, none of the plant 
DNA markers are perfect in every case (Hollingsworth et al., 2011). 
Indeed, one of the future challenges for plant DNA barcoding is to 
find the most suitable marker to tackle these problems. As the DNA 
sequencing technology and bioinformatic tools are progressively ad‐
vancing, the development of new primers will be much easier and 
at the end will increase the success of DNA barcoding. The applica‐
tion of next‐generation sequencing (NGS) technology will enhance 
the capability of DNA barcoding as a powerful tool in the studies of 

://botany.si.edu/projects/DNAbarcode/intro.htm
://botany.si.edu/projects/DNAbarcode/intro.htm
http://xmalesia.info/index.html
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ecology, evolution, and conservation biology (Kress, Garcia‐Robledo, 
Uriarte, & Erickson, 2014).

5  | CONCLUSION

We conclude that the two plastid markers matK and rbcL as plant 
barcodes work reasonably well in identifying flowering plant spe‐
cies in Sumatran lowland rainforest and surrounding agricultural 
systems, at least up to genus level. However, there are taxa that are 
difficult to be distinguished using matK and rbcL. These taxa mostly 
belong to species‐rich clades with low interspecific divergences. 
DNA barcoding of closely related species results in low success, es‐
pecially when using coding plastid markers, such as matK and rbcL.

The success of species identification strongly depends on the 
availability of an accurate and complete molecular database. Such 
database should include sufficient barcodes for each species dis‐
tributed over its entire distribution range to cover the full range 
of its intraspecific variability. Thus, future studies ideally include 
all congeneric species from a geographic region and maximize the 
geographic diversity of samples for each species. Moreover, utili‐
zation of supplement markers, such as psbA‐trnH or ITS, is highly 
recommended in combination with matK and rbcL.

All of DNA barcodes generated in this study, comprises more 
than 500 species of flowering plants, are uploaded to BOLD. This, 
coupled with the collection of herbarium vouchers, will improve the 
usability of DNA barcodes for plant identification.
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