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Molecular orientation is one of the most crucial factors to boost the efficiency of organic

light-emitting devices. However, active control of molecular orientation of the emitter

molecule by the host molecule is rarely realized so far, and the underlying mechanism

is under discussion. Here, we systematically investigated the molecular orientations of

thermally activated delayed fluorescence (TADF) emitters in a series of carbazole-based

host materials. Enhanced horizontal orientation of the TADF emitters was achieved.

The degree of enhancement observed was dependent on the host material used.

Consequently, our results indicate that π-π stacking, CH/n (n = O, N) weak hydrogen

bonds, and multiple CH/π contacts greatly induce horizontal orientation of the TADF

emitters in addition to the molecular shape anisotropy. Finally, we fabricated TADF-based

organic light-emitting devices with an external quantum efficiency (ηext) of 26% using an

emission layer with horizontal orientation ratio (2) of 79%, which is higher than that of an

almost randomly oriented emission layer with 2 of 62% (ηext = 22%).

Keywords: delayed fluorescence, molecular orientation, light out-coupling efficiency, carbazoles, weak hydrogen

bonds

INTRODUCTION

A series of fluorescent emitters exhibiting significant delayed fluorescence, so-called thermally
activated delayed fluorescent (TADF) emitters, has attracted much attention due to its potential
usefulness in high-performance organic light-emitting devices (OLEDs) that can realize an internal
quantum efficiency (ηint) of 100% (Uoyama et al., 2012; Sasabe and Kido, 2013; Adachi, 2014; Kaji
et al., 2015; Lin et al., 2016; Im et al., 2017; Wong and Zysman-Colman, 2017; Yang et al., 2017;
Komatsu et al., 2018). In principle, TADF emitters consist of electron-donor (D) and electron-
acceptor (A) moieties realizing efficient intramolecular charge transfer (ICT). The connection
between D and A moieties is generally accompanied with a small overlap in the frontier molecular
orbital (FMO) between the highest occupiedmolecular orbital (HOMO) and the lowest unoccupied
molecular orbital (LUMO), in other words, a small energy difference between singlet and triplet
energies (1EST). Recent rapid development in TADF emitters enables OLEDs to achieve an external
quantum efficiency (ηext) over 30% (Kaji et al., 2015; Komino et al., 2016; Lin et al., 2016; Liu et al.,
2017; Rajamalli et al., 2017; Wu et al., 2018; Ahn et al., 2019; Kondo et al., 2019). To obtain such
a high-performance in OLEDs, horizontal orientation of the emission dipole moment (EDM) is
absolutely essential. Perfect horizontal orientation of the EDM has been reported to boost OLED
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efficiency up to 150% compared to random EDM orientation
(Frischeisen et al., 2011; Yokoyama, 2011; Schmidt et al., 2017;
Kim and Kim, 2018; Watanabe et al., 2019b). However, the
horizontal orientation ratio (2) of most TADF emitters used
in OLEDs realizing ηext over 30% is reportedly only around
80%, which is far behind perfect horizontal orientation (2 =

100%). In general, a guest TADF emitter is dispersed into a host
material to reduce concentration quenching, and to maintain
carrier balance in the emission layer (EML). The proportion of
guest molecule is commonly much smaller than that of host
molecule. Thus, the non-covalent interactions between host and
guest molecules should be one of the important factors that
controls the molecular orientation.

In an early stage of study on molecular orientation in OLEDs,
Yokoyama used variable-angle spectroscopic ellipsometry
(VASE) measurements to reveal the anisotropy of the molecular
shape, such as in planar and linear structures, is essential to
realize horizontal orientation of a series of triphenylamine
and carbazole based-fluorescent molecules, even in randomly
oriented host molecules (Yokoyama et al., 2009). However,
unlike first-generation fluorescent molecules, most TADF
molecules do not have a planar structure but instead a winding

FIGURE 1 | Chemical structures, dipole moments, and electronic surface potentials (ESP) of host molecules (top) and TADF emitters (bottom) used in this study.

chemical structure in needed to realize a small overlap of the
frontier molecular orbitals in order to achieve efficient reverse
intersystem crossing (RISC). Therefore, in addition to the
molecular shape anisotropy, advanced strategies to actively
use non-covalent interactions to realize enhanced horizontal
orientation are highly desired.

In 2016, Lin and Wong reported three types of sky-
blue TADF emitters using triphenyltriazine as an acceptor
and substituted acridines as a donor unit (Lin et al., 2016).
Among these, SpiroAc-TRZ with spirobiphenyl unit showed a
photoluminescent quantum yield (ηPL) of 100%, and a high 2

value of 83% in mCPCN host. They indicated that this high
2 value of SpiroAc-TRZ is attributed to the overall planar
and balanced/symmetrical structure. The corresponding OLED
exhibited an extremely high ηext of nearly 37%. In the same
year, Komino and Adachi reported the complete horizontal
orientation of a linear-shaped TADF emitter named Cis-BOX2

in a randomly oriented host matrix at the temperature of 200K
(Komino et al., 2016). The horizontal orientation ratio of Cis-
BOX2 depended on the deposition temperature and the type of
host matrix. A Cis-BOX2-based OLED showed a very high ηext

of 33%.
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As mentioned above, although a high 2 value of up to
100% at 200K has been reported, the underlying mechanism
to realize horizontal orientation is still under discussion at
this stage (Yokoyama, 2011; Mayr and Brütting, 2015; Moon
et al., 2015; Shibata et al., 2015; Friederich et al., 2017; Schmidt
et al., 2017; Gujral et al., 2018; Kim and Kim, 2018; Lee
et al., 2018; Pal et al., 2018; Watanabe et al., 2019b). In
order to deepen insights into the underlying mechanism, we
wish to report a systematic investigation on the molecular
orientations of TADF molecules in a series of carbazole-based
host materials. To reveal the structure–property relationship for
horizontal orientation, a series of TADF emitters, which we can
systematically change the parameters one by one, should be
necessary. In this context, we have already developed a series of
pyrimidine-based TADF emitters with different donor group(s)
(Figure 1) (Komatsu et al., 2016a,b; Nakao et al., 2017). By
comparing these three molecules, we can obtain insight into
the effects of two factors: (i) donor number, which reflects
the molecular shape anisotropy in these comparisons, and (ii)
donor structure. Consequently, we achieved enhanced 2 values
of TADF emitters and the degree of enhancement depended
on the host material used. Consequently, our results indicate
that increased π-π stacking, CH/n (n = O, N) weak hydrogen
bond (H-bond) interaction, and multiple CH/π contacts greatly
induce horizontal orientation of TADF emitters in addition to
the molecular shape anisotropy. Finally, we fabricated a TADF-
based OLED with ηext of 26% using an emission layer (EML)
with a 2 value of 79%, which is greater than that of an
almost randomly oriented EML with a 2 value of 62% (ηext

= 22%).

RESULTS AND DISCUSSION

Selection of Carbazole-Based Host
Molecules and Phosphine-Oxide Host
Molecules
Carbazole derivatives are one of the most popular host
materials in OLEDs. Therefore, insights into carbazole-based
host materials are considered to be highly valuable. To identify
the underlyingmechanisms of horizontal orientation, we selected
four types of host materials to study and sequentially changed
their chemical structures (Figure 1 and Table 1). mCP was
used as the benchmark material. Extending its π-conjugation,
results in CBP, which can be used to evaluate the effect of
π-conjugation or π-π stacking when compared to mCP. The
introduction of CN substituent into mCP forms mCPCN (Lin
et al., 2012). Using this molecule, we can validate the effect
of CN substituent, such as the dipole/dipole interaction and
CH/N weak H-bonds. A phosphine-oxide host material,DPEPO

(Han et al., 2011) was used to investigate the effect of the
dipole moment and CH/O weak H-bonds of P=O substituents
(Figure 2). Note that all the host materials used in this study
showed random orientation. DFT calculations were performed
at B3LYP 6-31G(d) level to evaluate the dipole moment and
visualize the electronic surface potential (ESP), as shown in

TABLE 1 | Thermal and optical properties of the host molecules.

Compound Mw (g/mol) Tag/T
a
m/T

b
d5 (◦C) Iep/Eg

f /Ea
g/ET

h (eV) Si

mCP 408 60/n.d./280 −6.01/3.49/−2.63/3.00 0.08

CBP 485 62/283/413 −5.91/3.44/−2.67/2.60 −0.07

mCPCN 434 97/222/313 −6.08/3.44/−2.64/3.03 0.08

DPEPO 571 n.d./280/322 −6.70/4.00/−2.70/3.30 0.00

aTg and Tm were determined using DSC. bTd5 was determined using TGA. e Ip was

determined using PYS. fEg was taken as the point where the normalized absorption

spectra intersected. gEa was calculated using Ip and Eg.
hET was estimated from the

onset of the phosphorescent spectra at 5K. iVASE derived order parameter.

TABLE 2 | Thermal and optical properties of the TADF emitters.

Compound Mw (g/mol) Tag/T
a
m/T

b
d5 (◦C) Iep/Eg

f /Ea
g/ET

h (eV)

Ac-26DPPM 516 90/210/383 −5.67/2.90/−2.77/2.80

Ac-PPM 723 n.d./388/442 −5.65/2.80/−2.85/2.65

PXZ-PPM 671 n.d./290/473 −5.65/2.56/−3.09/2.56

aTg and Tm were determined using DSC. bTd5 was determined using TGA. e Ip was

determined using PYS. fEg was taken as the point where the normalized absorption

spectra intersected. gEa was calculated using Ip and Eg.
hET was estimated from the

onset of the phosphorescent spectra at 5 K.

Figure 1 and Figure S1 (in supporting information). Among the
host materials,mCP and CBP had small dipole moment <1.5 D,
while mCPCN with a cyano group and DPEPO with phosphine
oxide groups possessed a large dipole moment >6.0 D. ESP
exhibited strong negative charge (red color) on the π-plane of
the carbazole and on the electron-withdrawing groups of CN and
P=O. The hydrogen (H) atoms on the aromatic rings had positive
charge (blue color).

Selection of TADF Emitters
We selected three types of pyrimidine-based TADF emitters
named Ac26DPPM (Nakao et al., 2017), AcPPM (Komatsu
et al., 2016a), and PXZPPM (Komatsu et al., 2016b) with
different donor group(s) such as dimethylacridine (Ac) and
phenoxiazine (PXZ) (Figure 1 and Table 2). By comparing these
three molecules, we can obtain insight into the effects of two
factors: (i) donor number, which reflects the molecular shape
anisotropy in these comparisons, and (ii) donor structure. Note
that all the emitter molecules showed random orientation in
neat film (Figure S2). Similar to the host molecules, DFT
calculations were performed to evaluate the dipole moment
and visualize the ESP and the results are shown in Figure 1

and Figure S1. All the emitters have a small dipole moment
<2.0 D, especially AcPPM (µ = 0.38 D) and PXZPPM
(µ = 0.65 D). The ESP indicates strong negative charge
on the π-plane of position 2 of pyrimidine and on the
electron-donating end-cap unit(s) of Ac and PXZ. Similar
to the host molecules, H atoms on the aromatic rings had
positive charge.

Frontiers in Chemistry | www.frontiersin.org 3 May 2020 | Volume 8 | Article 427

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Sasabe et al. Molecular Orientations of Delayed Fluorescent Emitters

Molecular Orientation of TADF Emitters
First, we investigated the molecular orientations of 10 wt%
Ac26DPPM-doped host films by using angle dependent PL
measurements. Here, a 2 value of 67% indicates random
orientation while a value of 100% indicates perfect horizontal
orientation. Ac26DPPM-doped mCP film showed moderate
vertical orientation with 2 = 53%. When Ac26DPPM was
doped into other host materials (CBP, mCPCN, and DPEPO),
all the doped films exhibited almost random orientation
with 2 of 62–66% (Figure 3 and Figure S3). Although these
films showed random orientation due to the small anisotropy
of Ac26DPPM, the differences of orientation ratio in the
different host materials (12) were 9–13%. These differences
are not small but meaningfully significant. Similar results were
obtained in the case of AcPPM (Figure 4 and Figure S4).
When host material was changed from mCP to one of the
other host materials, a significant enhancement of 2 values
up to 22% was observed. Since AcPPM has larger molecular
shape anisotropy than that of Ac26PMM, AcPPM showed
increased horizontal orientation with 2 of 75–80%. Surprisingly,
PXZPPM also exhibited similar tendencies as the Ac-end-capped
emitters (Figure 5 and Figure S5). When mCP was used, the
PXZPPM/mCP film showed almost random orientation with 2

of 62%, while when PXZPPM was doped into the other host
materials, all the doped films exhibited significant horizontal
orientation with 2 of 74–81%. Among these emitters, it was
determined that bulky methyl groups on Ac end-capping groups
do not cause a negative effect toward horizontal orientation
as the emitter without methyl groups showed very similar
2 values.

Underlying Mechanism for Horizontal
Orientation
To validate the underlying mechanisms for horizontal
orientation, we compared the chemical structures of the
host materials. When host was changed from mCP to CBP,
π-conjugation is expanded from phenyl to a biphenyl linker.
Therefore, enhanced π-π stacking can be considered as an
additional interaction. Note that the dipole moment of CBP is
calculated to be 0 D, while that of mCP is 1.35 D. Further, the
dipole moments of the emitters are smaller than 2.0 D. Thus,
dipole/dipole interaction can be ruled out as a major interaction.
In the case of mCPCN, the difference of chemical structure is
only a CN group on the carbazole plane. Since the CN group is
a strong electron-withdrawing group, the resulting mCPCN has
a large dipole moment of 6.19 D. However, as mentioned in the
case of CBP, the contributions from dipole/dipole interaction
can be considered to be small because the emitters used in this
study have very small dipole moment <2 D. In fact, the 12

of Ac26DPPM (12 = 9%) with a larger dipole moment (µ
= 1.89 D) was smaller than that of AcPPM (12 = 17%) with
a smaller dipole moment (µ = 0.38 D). Therefore, it is only
CH/N weak H-bond of CN group plays a key role. The binding
energy of CH/N weak H-bond is 10–20 kJ/mol (Desiraju and
Steiner, 1999). This interaction has been reported to be a key to
controlling horizontal orientation of oligopyridine-containing

electron transporters (Sasabe et al., 2011; Yokoyama et al.,
2011; Watanabe et al., 2019a,b). DPEPO is a frequently used
host material in high efficiency TADF OLEDs, and the films
using it as the host showed the largest 2 values among the
four host materials. DPEPO has a large dipole moment of
8.06 D, and therefore the contributions from dipole/dipole
interaction are considered to be large. However, similar to
the case of mCPCN, the contributions from dipole/dipole
interaction can be considered to be small because the emitters
used in this study have very small dipole moment <2 D. In
fact, the 12 of Ac26DPPM (12 = 13%) with a larger dipole
moment (µ = 1.89 D) was smaller than that of AcPPM (12 =

22%) with a smaller dipole moment (µ = 0.38 D). Given that
DPEPO has short conjugation lengths with steric hindrance,
π-π interaction is relatively small. Thus, it can be considered
that CH/O weak H-bond from P=O and ether linker plays a key
role in determining the horizontal orientation when DPEPO is
used as the host material. Recently, Samuel and Zysman-Colman
proposed that the significant number of electronegative sites
from P=O and ether linker on the surface of DPEPO vacuum-
deposited film plays an important role for horizontal molecular
orientation (Pal et al., 2018). Further, it has also been reported
that the strong acceptor property of P=O forms shorter CH···O
H-bond, and the bond length of the CH···O H-bond is relatively
shorter than that of CH···N H-bond (Desiraju and Steiner,
1999).

Among the three emitters, PXZPPM and AcPPM showed
similar tendencies for horizontal orientation, even though
AcPPM has four bulky methyl groups on the acridine
end-capping units. One possible reason for this is the
contributions from multiple CH/π contacts between the
methyl groups and the π planes. CH/π contact is a very
small interaction, and the binding energy is only 2–3 kJ/mol
(Nishio et al., 1998). However, when the molecule has a
large number of methyl groups, the contributions would
not be negligible in the solid state. In fact, very recently,
enhanced horizontal orientation is realized in a series
of iridium complexes by introduction of methyl or alkyl
groups (Shin et al., 2019). Therefore, we propose that the
contributions from multiple CH/π contacts can collaborate with
other strong intermolecular interactions to realize significant
horizontal orientation.

OLED Performances
Finally, we fabricated OLEDs using PXZPPM/hosts as an
emission layer to show the effect of horizontal orientation on
the OLED efficiency. Here, we used two types of hosts, mCP

(2 = 62%) and mCPCN (2 = 79%). Note that we did not
use DPEPO as a host material because the chemical structure
is totally different from mCP. The structure of the OLED
was [indium tin oxide (ITO) anode (130 nm)/triphenylamine-
containing polymer: 4-isopropyl-4′-methyldiphenyliodonium
tetrakis(pentafluorophenyl)borate (PPBI) (20 nm) (Kido
et al., 1997)/di-[4-(N,N-ditolyl-amino)-phenyl]cyclohexane
(TAPC) (25 nm)/4,4′,4′′-tris(N-carbazolyl)triphenylamine
(TCTA) (5 nm)/10 wt% PXZPPM-doped mCP, or mCPCN

(10 nm)/3,3′′,5,5′-tetra(3-pyridyl)-1,1′;3′,1′′-terphenyl (B3PyPB)
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FIGURE 2 | Intermolecular interactions introduced when comparing the host materials to the mCP benchmark.

FIGURE 3 | PL intensity of Ac26DPPM-doped host films at different angles. The experimental data are in comparison with the fitting curve for different horizontal

dipole ratios for Ac26DPPM doped in a host film of (A) mCP, (B) CBP, (C) mCPCN, and (D) DPEPO.
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FIGURE 4 | PL intensity of AcPPM-doped in (A) mCP, (B) CBP, (C) mCPCN, and (D) DPEPO host films at different angles. The experimental data are in

comparison with the fitting curve for different horizontal dipole ratios.

FIGURE 5 | PL intensity of PXZPPM-doped in (A) mCP, (B) CBP, (C) mCPCN, and (D) DPEPO host films at different angles. The experimental data are in

comparison with the fitting curve for different horizontal dipole ratios.
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FIGURE 6 | Device performance of PXZPPM-based OLEDs; (A) EL spectra; (B) current density–voltage–luminance characteristics; (C) power efficiency–luminance

characteristics; (D) external quantum efficiency–luminance characteristics.

TABLE 3 | Summary of PXZPPM-based OLED performance.

Host Von
a

(V)

V100/ηc,100/ηp,100/ηext,100
b

(V/cd A−1/lm W−1/%)

V1000/ηc,1000/ηp,1000/ηext,1000
c

(V/cd A−1/lm W−1/%)

ηc,max/ηp,max/ηext,max
d

(cd A−1/lm W−1/%)

mCP 2.85 3.46/65.7/59.7/20.0 4.07/53.5/41.4/16.3 73.1/82.1/22.3

mCPCN 3.05 3.89/64.8/52.4/19.4 4.74/48.9/32.5/14.6 87.2/91.4/26.1

aTurn-on voltage at 1 cd m−2. bVoltage (V), current efficiency (ηc ), power efficiency (ηp ), and external quantum efficiency (ηext ) at 100 cd m
−2. cV, ηc, ηp, and ηext at 1,000 cd m

−2. dηc,

ηp, and ηext at maximum.

(50 nm) (Sasabe et al., 2008)/LiF (0.5 nm)/Al cathode (100 nm)].
TAPC and TCTA were used as the hole transport layers, B3PyPB
as the electron transport layer, and LiF as the electron injection
layer. The chemical structures of these materials are shown
in Figure S6. Figure 6 shows the electroluminescence (EL)
spectra, the current density (J)–voltage (V)–luminance (L), and
ηext-L characteristics. The electroluminescent characteristics
are summarized in Table 3. The EL spectra of both devices
showed similar emission with peaks at 529 nm for mCP and
at 531 nm for mCPCN host materials. The maximum ηext

values were recorded to be 22.3% for mCP and 26.1% for
mCPCN. Moreover, the light distribution patterns evaluated by
Lambertian factor of these devices were similar, and recorded to
be 0.99 for mCP, and 0.97 for mCPCN, as shown in Figure S6.
The photoluminescent quantum yields (ηPL) of PXZPPM/host
films were similar for mCP (71%) and mCPCN (69%) hosts.
Given that the carrier balance factor is similar at the peak
efficiency, the differences in the maximum ηext values can be
attributed to the differences in 2 values of the different host

materials. Note that we also fabricated the devices usingCBP and
DPEPO as a host material. As a result, higher ηPL and 2 values
gave superior device performances (Figure S7 and Table S1).
Enhancing the horizontal orientation of the emitter apparently
increases the light coupling efficiency, thus resulting in a higher
ηext value.

CONCLUSION

We performed a systematic investigation on the molecular
orientations of TADF emitters in a series of carbazole-based
host materials. TADF emitters used in this study have a small
dipole moment <2 D. To validate the underlying mechanisms
for horizontal orientation, we changed the chemical structure
of mCP by: (i) extending the π-conjugation to form CBP, and
(ii) the introduction of a CN substituent to form mCPCN. In
addition, a phosphine-oxide host material, DPEPO, was used.
Although all the emitters and the host materials had random
orientation as a neat film, the emitters with larger molecular
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shape anisotropy, AcPPM and PXZPPM, showed enhanced
horizontal orientation up to 2 ∼ 81% in all host films except
mCP. The third emitter, Ac26DPPM, has a smaller molecular
shape anisotropy, and subsequently showed vertical orientation
in the mCP host film (2 = 53%). However, when doped into
the other host material, Ac26DPPM showed random orientation
(2 ∼ 66%). From these results, it can be considered that (i) an
increase in the π-conjugation leads to stronger π-π stacking, (ii)
the introduction of CN group induces CH/N weak H-bonds, and
(iii) the introduction of a strong acceptor P=O and ether groups
induces CH/O H-bonds, and all these interactions enhance
the horizontal orientation of TADF emitters. In addition, we
propose that the contributions from multiple CH/π contacts
can collaborate with other strong intermolecular interactions
such as π-π stacking, CH/N and CH/O H-bonds to realize
significant horizontal orientation. Finally, we fabricated an
PXZPPM-based OLED that achieved an ηext of 26% using
an EML with 2 of 79%, which is higher than that of an
almost randomly oriented EML with 2 of 62% (ηext = 22%).
We believe that our results will be beneficial in revealing the
underlying mechanism for horizontal orientation leading to
superior OLED performances.
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