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Abstract: In recent years, Au-based nanomaterials are widely used in nanomedicine and 
biosensors due to their excellent physical and chemical properties. However, these applica-
tions require Au NPs to have excellent stability in different environments, such as 
extreme pH, high temperature, high concentration ions, and various biomatrix. To meet the 
requirement of multiple applications, many synthetic substances and natural products are 
used to prepare highly stable Au NPs. Because of this, we aim at offering an update 
comprehensive summary of preparation high stability Au NPs. In addition, we discuss its 
application in nanomedicine. The contents of this review are based on a balanced combina-
tion of our studies and selected research studies done by worldwide academic groups. First, 
we address some critical methods for preparing highly stable Au NPs using polymers, 
including heterocyclic substances, polyethylene glycols, amines, and thiol, then pay attention 
to natural product progress Au NPs. Then, we sum up the stability of various Au NPs in 
different stored times, ions solution, pH, temperature, and biomatrix. Finally, the application 
of Au NPs in nanomedicine, such as drug delivery, bioimaging, photothermal therapy (PTT), 
clinical diagnosis, nanozyme, and radiotherapy (RT), was addressed concentratedly. 
Keywords: high stability Au NPs, polymer, natural product, resistance, nanomedicine

Introduction
As the most stable noble nanomaterials, Au NPs have been researched and applied for 
thousands of years. Compared with other nanomaterials, Au NPs exhibit many 
different properties. These unique physical properties of Au NPs are mainly attrib-
uted to the quantum size effect when the size of Au NPs decreases to a specific value 
(about 20nm), the magnetic, optical, acoustic, thermal, electrical, and superconduct-
ing properties of Au NPs are significantly different from those of conventional 
materials.1 Because of these unique physical properties and excellent biocompat-
ibility, Au NPs have great potential in biomedical fields such as drug delivery, 
biological imaging, photothermal therapy, and clinical diagnosis.2 For example, it 
could be combined with DNA or proteins through electrostatic interactions. Because 
of their magnetic properties at the nanometer scale, Au NPs can achieve targeted 
delivery of biomolecules under the control of an external magnetic field.3,4 Likewise, 
the excellent biocompatibility, easy-to-control size, shape, and functionalization of 
Au NPs make them an ideal drug delivery vehicle.5 What’s more, the large specific 
surface area of the Au NPs can cause the free electrons in them to resonate locally and 
exhibit a unique local surface plasmon resonance (LSPR) effect.6 Surface plasmons 
(SPs) refer to the electron density waves propagating along the metal surface (cross- 
section) generated by the interaction of freely vibrating electrons and photons on the 
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metal surface. More importantly, it can be excited by elec-
trons or light waves, enhancing peripheral fluorescence 
emission and producing light-to-heat conversion, thereby 
validly improving light absorption efficiency, making the 
Au NPs have photothermal conversion capabilities.7 At 
present, the application of photothermal therapy for Au 
NPs is concentrated in the near-infrared region (NIR). 
Moreover, two NIR (NIR-I 650–900nm, NIR-II 1000– 
1200nm) wavelength light has a strong penetrating ability 
in biological tissues, can obtain better light absorption and 
light-to-heat conversion efficiency in the NIR by adjusting 
the size and structure of Au NPs.8 Among them, the rod- 
shaped Au NPs have the strongest light-to-heat conversion 
efficiency due to their excellent dispersibility and adjustable 
ratio. Many works have confirmed that its maximum heat-
ing efficiency can exceed 90% under near-infrared light 
irradiation.9 These factors make Au NPs considered as an 
ideal candidate for photothermal therapy. On the other hand, 
the surface plasmon effect of nanomaterials makes Au NPs 
have excellent fluorescence quenching ability and become 
a quencher in fluorescence resonance energy transfer 
(FRET) based biosensor materials.10 Furthermore, the 
easy-to-controllable size and functionalization of Au NPs 
can enable some fluorescent groups, quantum dots, antibo-
dies to be modified on their surface to construct nanoprobes 
to achieve a rapid and accurate clinical diagnosis.11–15 

However, Au NPs applied in nanomedicine require it 
should keep high stability in various conditions, like the 
concentration and type of salt ions, pH, and biomolecules.16 

Increasing the concentration of salt ions in the solution will 
reduce the electrostatic repulsive force on the surface of the 
nanoparticles, thus causing them to shift like an unstable 
state and finally leading to the aggregation of Au NPs. 
Kӧper et al found that the stability of Au NPs decreased 
significantly with the increasing concentration of NaCl 
solution.17 Liu et al found that some high-affinity halogen 
anions, such as Br−, promote aggregation of Au NPs to 
some extent. And the cations of elements with larger atomic 
numbers induce the aggregation of Au NPs compared to 
small ones, which is due to the reduction of nanoparticle 
surface potential.18 Besides, pH is another critical factor 
affecting the stability of Au NPs. Au NPs can maintain good 
stability in pH 5–9.19 And aggregation of Au NPs is induced 
by over acid or over basic conditions.20,21 In physiological 
systems, some biomolecules can significantly affect the 
stability of Au NPs. Proteins in the biological matrix can 
change the stability of Au NPs through electrostatic adsorp-
tion. For example, bovine serum albumin (BSA) can adsorb 

on the surface of nanoparticles and decrease their stability 
in the biological system. Similarly, amino acids can alter the 
surface charge of Au NPs, causing aggregation.22–24 Larson 
et al reported that the interaction of cysteine with Au NPs 
also destabilized the Au NPs.25 Kimling et al found that 
excessive Vc adsorption on the surface of Au NPs causes 
aggregation.26

Nowadays, except requiring the excellent stability of 
Au NPs during synthesis, the colloid’s final stability must 
also be considered, which is very important for the storage 
and application of Au NPs, such as bioimaging and cancer 
therapy.19,20,27–29 For those issues, the primary method at 
this stage is to prepare or modify Au NPs to improve their 
stability through different materials or synthetic methods. 
Some polymers and natural products have recently been 
employed to synthesize different structures and particle 
size Au NPs. These Au NPs have been evaluated against 
harsh conditions such as extreme pH, high concentration 
ions, various biomatrix, etc. The overall goal of this 
review is to provide a critical overview of our current 
understanding of Au NPs and their applications against 
various conditions. We will discuss how to prepare high 
stability Au NPs and then focus on Au NPs against long- 
time storage, extreme pH, various biomatrix, etc. Finally, 
we introduce the latest research progress in biomedicine 
based on Au NPs. Figure 1 outlines the interest and focus 
of the present review.

Preparation of High Stability Au 
NPs
At present, Au NPs could be synthesized via chemical 
reduction methods, including the Turkevich method, 
Brust-Schiffrin method, and seed growth method.30–33 

The Turkevich (or citrate) method is designed in 
a straightforward, single-phase, and simple route to obtain 
spherical Au NPs to use trisodium citrate as an Au salt 
reducing agent.34 Through this method, we can quickly 
and easily get Au NPs with controllable size. Turkevich 
method was usually synthesized spherical Au NPs, so it 
has limitations.35 Beyond that, the Brust-Schiffrin method 
is also a commonly used chemical synthesis method.36 As 
a two-phase synthesis and stabilization method, the pre-
paration process is rapid and straightforward. It mainly 
stabilizes and modifies Au NPs through thiol functionali-
zation and ligand exchange. Moreover, the seed-mediated 
method can synthesize Au NPs of different shapes but put 
forward higher requirements for various reaction factors.37 
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Therefore, we urgently need some strategies to prepare 
highly stable Au NPs with excellent biocompatibility that 
can be widely used in the biomedical field and have con-
vincing examples, such as antibody binding.38 The subse-
quent modification of the surface chemistry of Au NPs can 
be accomplished through ligand exchange to adjust colloi-
dal properties further, improve stability and expand applic-
ability. For example, some polymers and biologically 
active substances are used as the capping agents or redu-
cing agents to synthesis high stable Au NPs, particularly in 
natural product green synthesis Au NPs. This method has 
significant advantages compared with other methods, 
which are reliable, clean, and bio-friendly.39,40 Besides, 
due to the smaller size, the ultra-small Au NPs have better 
stability.41 To date, many natural products have been 
reported to successfully synthesize highly stable Au NPs, 
ranging from plants, bacteria to fungi. Herein, for chemi-
cal methods, we mainly introduce some recent advances in 
the preparation of Au NPs from polymers and organics; for 

biosynthesis methods, we mainly introduce the aspects of 
plants, microbes, proteins, genetic materials (DNA, RNA). 
Finally, we discuss the preparation of ultra-small Au NPs 
with controllable size. The various synthesis methods are 
summarized in Figure 2.

Polymer Functionalized Au NPs
Nowadays, polymers as protective groups to synthesize 
high stability Au NPs have been attracted more and more 
attention. There are three main approaches for preparing 
Au NPs from polymers: direct synthesis, “grafting from,” 
and “grafting to” strategy.42 The direct method is to 
obtain Au NPs by reducing tetrachloroauric acid with 
a reducing agent under the protection of the thiol group, 
such as poly (N-isopropyl acrylamide) (PNIPAM) and 
polystyrene (PS).43–46 “Grafting from” technology refers 
to attaching polymer functional groups to the surface of 
Au NPs through ligand exchange, usually in the presence 
of chain transfer agents or initiators. For example, 

Figure 1 An overview of high stability Au NPs: From design to application in nanomedicine.
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PNIPAM and polyacrylic acid (PAA) can be used to graft 
from the surface of Au NPs for functionalization.47–50 

Another approach is the “grafting to” strategy, which is 
to graft polymer containing sulfhydryl, amino, and other 
functional groups on the surface of Au NPs by way of 
ligand substitution to obtain composite Au NPs.51,52 

Many studies have confirmed that the “grafting to” 
method can get Au NPs with high stability. For example, 
poly (2-(dimethylamino)ethyl methacrylate (PDMA) and 
poly (2-(methacryloyloxy)ethylphosphocholine) (PMPC) 
can synthesize excellent stability of Au NPs.53 More 
importantly, by this method, the assembled structure of 
Au NPs can be well controlled to meet the specific appli-
cation’s needs via adjusting structural parameters (such as 
ratio and molecular weight) of the hydrophilic and hydro-
phobic partitions of the amphiphilic polymer.

What is more, using some polymer as capping agent can 
improve the stability and light-to-heat conversion efficiency 
of nanoparticles.54,55 These polymer-encapsulated Au NPs 
maintained the self-assembly behavior of the amphiphilic 
polymers, resulting in a series of functional nanostructures.56 

Polymer capping agents can further improve the stability of 
Au NPs. Therefore, many scholars have adopted polymers to 
synthesize Au NPs based on the Turkevich method, espe-
cially some responsive polymers that can give Au NPs some 
new properties to respond to external stimuli. In this way, the 
colloidal properties may vary with pH, ionic strength, redox 
potential, temperature, etc.57–62 In addition, these responsive 
polymers can also enhance the stability of Au NPs and 
expand their application range. In general, the polymers 
used to synthesize Au NPs are currently classified according 
to their functional groups and mainly divided into hetero-
cyclics, alcohols, and amines.63–65

Heterocyclic Substances
Some heterocyclic substances can reduce the Au precur-
sors to prepare stable water-soluble and uniformly tunable 
Au NPs. Keeping nanoparticles’ long-term and reasonable 
stability in biological relevant ionic media.66 This is 
maybe due to N heterocyclic molecules (NHC) can form 
stronger bonds with metals.67 The primary mechanism for 
carbon-based heterocyclic synthesis of Au NPs is the use 
of long alkyl chains to exchange ligands on nanoparticles 

Figure 2 Various methods of synthesis high stable Au NPs.
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self-assembly.68,69 Compared with the Au-S bond, the 
covalent bond formed by the NHC and Au NPs is stronger, 
which makes the nanoparticles have better stability in 
different physiological environments.70–73 Many reports 
have confirmed that NHC-stabilized Au NPs have great 
potential in biomedicine.69,73 As a common NHC, under 
the action of an initiator, polypyrrole (PPy) is used as 
a protective agent to synthesize a composite urchin-like 
Au NP of about 6 nm utilizing oxidative polymerization. 
Compared with bare Au NPs, PPy-coated Au NPs have 
excellent stability under long-term storage, heat, pH, and 
laser irradiation and improve light-to-heat conversion 
efficiency.74 The latest research shows that bidentate 
NHC is a new end-capping ligand to synthesize Au NPs 
by top-down and bottom-up approaches. For the top-down 
method, dodecyl sulfide-protected nanoparticles follow the 
Brust−Schiffrin method. For the bottom-up preparation, 

mono-and bidentate NHC−Au complexes were reduced 
with NaBH4 in ethanol affording the corresponding Au 
NPs (Figure 3). The Au NPs obtained by both top-down 
and bottom-up maintained better stability after heating at 
130 °C for 24 hours due to the larger ligand density 
(Figure 4).63

PEG-Based Polymer
In recent years, the use of polyethylene glycol (PEG) to 
synthesize Au NPs has received more and more attention. 
As a typical alcohol polymer, PEG is widely used due to 
its low toxicity, good biocompatibility, and easy modifica-
tion to the surface of Au NPs.75 Due to the very high 
specific binding affinity of gold to thiol groups, the groups 
in PEG can be direct covalently modified on the surface of 
Au NPs and bind firmly to it, making the system have 
electrostatic repulsion and provide a particular steric 

Figure 3 TEM images and particle size distributions of Au NPs stabilized by DDS, and free carbenes (1−3R) stabilized Au NPs prepared by the top-down and bottom-up 
approaches. (A) DDS-Au NP, (B) 1R•Au NPTD, (C) 2R•Au NPTD, (D) 3R•Au NPTD, (E) 1R•Au NPBU, (F) 2R•Au NPBU, (G) 3R•Au NPBU. Reprinted with permission from Man 
RWY, Li CH, MacLean MWA, et al. Ultrastable gold nanoparticles modified by bidentate N-heterocyclic carbene ligands. J Am Chem Soc. 2018;140:1576-1579. Copyright 
(2018) American Chemical Society.63
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hindrance to prevent salt and biomolecules induced 
aggregation.76,77 For example, in the serum-containing 
phosphate buffer, PEG forms a dense layer on the surface 
of Au NPs, prevents the adhesion of BSA, and can sig-
nificantly improve the stability of Au NPs.78 Besides, Au 
NPs can be modified by ligand exchange with different 
anchor groups of PEG, such as monothiol (MP7M), flex-
ible dithiol (BP7M), constrained dithiol (DP7M), and dis-
ulfide bond (TP7M), all of which are improved the 
stability of Au NPs to a certain extent. The disulfide 
bond modified Au NPs have the best stability and can 
maintain specific stability for 15 minutes at 100°C in a 2 
M NaCl solution. Because the disulfide bond groups 
attached to the surface of the Au NPs form a dense 
structure.79 Next, Park et al facilely synthesized PEG- 
coated Au NPs by reducing the gold precursor. Due to 
the chelating effect of the group, Au NPs can keep several 
months of stability under the cell physiological environ-
ment simulated by the mixed solution of 3.0 M DTT and 
2.0 M NaCl.80 In addition to physiological environments, 
some Au NPs modified with PEG can maintain long-term 
stability at high temperatures. Since Au NPs are often used 
in the photothermal treatment of tumors, their thermal 

stability is also the main direction of current research. 
The latest study shows that the physical sputtering method 
can synthesize Au NPs covered with PEG with uniform 
size and shape, ultra thermal stability (100 °C) without 
cytotoxicity.81 Except for PEG, some surfactants can also 
improve the stability of Au NPs.82 In particular, it can 
slow down the deformation caused by the maturation of 
Au nanomaterials, thereby improving its thermal stability. 
For example, Au nanofluids were synthesized using 
Gemini surfactant butane 1,4 (N-tetradecyl-N, 
N-dimethyl); ammonium bromide has better thermal sta-
bility. The results of UV-Vis spectroscopy showed that it 
was at 150 °C, 140 °C and 130 °C stables for 8 hours, 12 
hours and 20 hours, respectively.83

Amine-Terminated Polymers
The organic compound amine is also commonly used as 
a protecting group to synthesis Au NPs. Since the amine 
molecule can cap the Au NPs in the solution and the 
nanoparticles are stabilized covalently, the colloid has 
good dispersibility. For example, 2-methyl aniline (MA) 
protects Au NPs with an average diameter of 20 nm. Due 
to the oxidative polymerization of amine to form 

Figure 4 Stability studies of NHC-Au NPs. UV–vis spectra of NHC-Au NPs prepared from top-down and bottom-up approach, heated at 130°C in xylenes. (A) 1R•Au 
NPTD, (B) 2R•Au NPTD, (C) 3R•Au NPTD, (D) 1R•Au NPBU, (E) 2R•Au NPBU, (F) 3R•Au NPBU. Reprinted with permission from Man RWY, Li CH, MacLean MWA, et al. 
Ultrastable gold nanoparticles modified by bidentate N-heterocyclic carbene ligands. J Am Chem Soc. 2018;140:1576-1579. Copyright (2018) American Chemical Society.63
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a polymer shell on the surface of Au NPs, it has excellent 
stability.65 Rajesh Sadar et al used polyallylamine (PAAM) 
to synthesize PAAM-Au NPs. Then they tested the pre-
pared small-sized Au NPs (<3 nm) in solutions of different 
pH and found that it can still maintain better stability 
under the conditions of pH 1.5 and 3.5. More interestingly, 
Au NPs can be assembled into various structures at differ-
ent pH values, which significantly expands its scope of 
application.84 Nowadays, the latest report shows that poly-
propylene imine (PPI) can be used to synthesize highly 
stable dendritic Au NPs. The high density of functional 
groups on the surface of nanoparticles significantly 
improves their stability under different physiological con-
ditions (phosphate buffer solution, serum, Hanks buffer).85 

Susumu et al used maleimide as a ligand to terminate Au 
NPs, which can be stable for 10 days under 2 M NaCl and 
0.5–1 M DTT conditions.86 As an amide polymer, poly-
vinyl pyrrolidone(PVP) can stabilize and prevents the 
aggregation of Au NPs. It can well control the morphology 
of the nanoparticles. What’s surprising, a minimal amount 
of PVP can achieve excellent stabilization effects on Au 
NPs.87 Besides, some amine salts, such as polyallylamine 
hydrochloride (PAH) can also be used to prepare Au NPs 
(5–50 nm) with controllable size by in-situ growth. The 
synthesis method is simple, and the prepared Au NPs have 
good stability and biocompatibility.88 Also, dendritic poly-
amide amide (PAMAM) can be used as a template for 
modification to obtain highly stable Au NPs. Next, they 
confirmed that the particular zwitterionic layer on the sur-
face of the modified Au NPs limits the interaction between 
fibrinogen and Au NPs, so it has higher stability in the 
fibrinogen solution (within 24 hours).89

Thiol Terminated Polymers
Au NPs can be conjugated with a variety of groups by 
simple chemical methods, such as sulfhydryl groups.47,90 

Thiol is a class of compounds containing sulfhydryl func-
tional groups, usually cross-linked with Au NPs using Au-S 
bonds to protect and stabilize the nanoparticles. For exam-
ple, previous research shows that the ligand exchange synth-
esis between Au citrate and dithiol is very stable and can 
resist the external environment, which may be due to the 
tight binding of the dithiol group of dihydrolipoic acid 
(DHLA) to the surface of Au NPs.91 Besides, Li et al pre-
pared aliphatic thiol-stabilized Au NPs. They confirmed that 
it can still maintain better stability even in 0.1 M dithiothrei-
tol solution.92 Next, based on the Brust method, Kornberg 
et al take advantage of ligand exchange reaction prepared 

Au NPs, the nanoparticles with controllable size by adjust-
ing the ratio of thiol and HAuCl4. Perhaps surprisingly, the 
Au NPs produced by this strategy can be stable in an aqu-
eous solution for several years under thiol protection.93

Acid-Induced Synthesis High Stability Au 
NPs
As a general compound, acid can induce synthesis Au 
NPs, and it exhibits excellent stability under specific 
physiological environments. In detail, acid-functionalized 
can modify Au NPs and broaden their application range 
while improving their stability. Phosphonic acid (PA) is 
one of them. Due to the excellent hydrophilicity of the 
PA groups on the surface of Au NPs and the electrostatic 
repulsion and steric hindrance between them to protect 
the Au NPs. For example, ethylenediamine-tetramethy-
lene phosphonic acid (EDTMP) can be used to synthesize 
phosphonic acid-functionalized Au NPs. Zhang et al 
synthesized phosphonic acid-functionalized Au NPs. 
The characteristic peaks of P=O, PO3, and P-OH were 
found by Fourier transform infrared spectroscopy (FTIR), 
which further confirmed that the phosphonic acid groups 
were successfully modified on the surface of the Au NPs. 
They found that under 25 mM PBS buffer (pH 7.0), Au 
NPs were almost the same as the initial absorbance, and 
further research shows that the absorbance of Au NPs 
remained virtually constant in the pH range of 3.0–12.0. 
Meanwhile, after 3 months of storage, no flocculation or 
aggregation of Au NPs was observed.94 Except phospho-
nic acid, some other acids are also used to synthesize 
highly stable Au NPs. For example, Mohammad et al 
synthesized Au NPs coated with PEGylated deoxycholic 
acid (DCA). It exhibits excellent stability and can remain 
stable in a wide temperature range (-78 °C−48 °C) and 
wide pH (2.5–11). More surprisingly, due to the higher 
X-ray attenuation coefficient of Au NPs and the sensitiv-
ity of deoxycholic acid-specific tumor cells, PEGylated 
DCA@Au NPs are expected to be used in targeted tumor 
therapy and contrast agents.95 Besides, cinnamic acid 
(CA) can be used as a template to induce the self-assem-
bly of Au NPs, and it can significantly improve the 
stability of nanoparticles. Then they further verified the 
stability of Au NPs; compared with the conventional 
chemical method, the Au NPs (5 nm) synthesized by 
this method can still maintain excellent stability when 
stored at room temperature for 3 months.96
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Green Synthesis
The green synthesis of Au NPs is a hot spot in current 
research. It consists of two main categories: biological 
synthesis and biomimetic synthesis. Biological synthesis 
mainly uses extracts from some plants and microbes 
(including bacteria and fungi) as stabilizers or reducing 
agents to synthesize gold nanomaterials.97,98 Biomimetic 
synthesis refers to biomolecules and water as reaction 
reagents to guide the synthesis of nanomaterials under 
defined reaction conditions with the metabolites of living 
organisms as substrates.99–101 Biomimetic synthesis over-
comes some apparent drawbacks of biosynthesis, such as 
low yield, difficulty to control the size and shape, and 
further separation and purification of the obtained poly-
disperse gold nanomaterials. It’s a new synthesis strategy 
evolved from biological synthesis.102,103

Plant Extract-Mediated Synthesis
Nowadays, Au NPs synthesized from plant-based phyto-
chemicals are extremely attractive for their unique efficacy 
and biocompatibility.40 Meanwhile, the plant-mediated 
method is synthesized at room temperature and does not 
require additional chemical reagents. The prepared Au 
NPs have unique properties, such as antioxidant, anti- 
tumor activity, and antibacterial activity.104–106 At present, 
the major drawback of stabilizing Au NPs by plant 
extracts is that it is difficult to control the shape and size 
of the nanoparticles due to their anisotropic.

In terms of plant component-mediated synthesis, 
Jaewook Lee et al used some active ingredients extracted 
from plants, including Gallic acid (GA), protocatechuic acid 
(PCA), and isoflavones (IF) act as reducing agents to 
synthesize functionalized Au NPs with extremely high bio-
compatibility and stability, it can be stable for three months. 
Because the hydroxyl groups in the phytochemical compo-
sition have a high surface charge: the strong repulsion 
between them can prevent Au NPs from agglomerating.107 

Besides, the preparation of biogenic Au NPs from plants 
with high medicinal value such as Plumbago zeylanica, 
Dioscorea bulbifera, Gloriosa superba, and Gnidia glauca 
has also received much attention. Similarly, it relies on the 
hydroxyl groups of compounds (such as alkaloids, reducing 
sugars, phenols, tannins, saponins, and flavonoids) to bior-
educe Au3+ ions to Au, and the carbohydrates of plant 
extract may be used to stabilize Au NPs108–112 In general, 
HAuCl4 binds to plant extracts through carbon-chlorine 
bonds.113 In addition, during the synthesis process, some 
of the gold seeds elongated without forming gold nuclei due 

to incomplete reaction, resulting in some irregular aggrega-
tion of nanoparticles and obtaining anisotropic Au NPs. 
Moreover, glucose and starch can also reduce agents and 
stabilizers to synthesize Au NPs in different buffers. 
Subsequently, experiments confirmed that Au NPs synthe-
sized in MES buffer have long-term stability and can be 
stored at room temperature for 17 months.114 Similarly, 
glycerin extracted from natural oils and fats can also be 
used as a material to synthesize Au NPs. Rashida Parveen 
et al used glycerin as a reducing agent and stabilizer to 
synthesize uniform-sized Au NPs with excellent biocompat-
ibility and stability. And the size of Au NPs can be con-
trolled by the ratio of glycerin to the water.115 Due to the 
catalytic ability of glycerol and the superior safety of obtain-
ing Au NPs, this synthetic method is expected to be used in 
the fields of catalysis and biomedicine. Using the extract of 
the olive leaf as a reducing agent can prepare Au NPs with 
better stability and non-toxicity. This method is easy to 
synthesize and has a higher reaction rate.116,117 Besides, 
mango leaves can also be used to synthesize Au NPs. The 
extract of mango leaves contains various active ingredients 
such as phenolic acids, terpenes, and glycosides.118 At pre-
sent, studies have shown that using some mango leaf 
extracts can rapidly synthesize spherical Au NPs without 
heating, and obtained nanoparticles have ultrahigh colloidal 
stability. It can be stable for more than 5 months at room 
temperature, which may be due to the active ingredients in 
the mango leaves.119 And the tannin in bayberry can also be 
used to obtain Au NPs with excellent biocompatibility 
effectively. Among them, bayberry tannin serves as 
a reducing agent as well as a stabilizing agent. At the 
same time, the size of the nanoparticles can be adjusted by 
the concentration of tannin. This green synthesis method 
does not require other toxic chemical reagents and has 
comparatively higher practical value.120 And as a natural 
ingredient in plants, Gum Arabic (GA) can be used as 
a stabilizer and a reducing agent to synthesize Au NPs 
with steric stability. Studies have confirmed that spherical 
Au NPs synthesized using GA and NaBH4 have good sta-
bility under long-term storage conditions and can maintain 
physical stability for up to 5 weeks.121 Nowadays, glycans 
have received extensive attention due to their smaller mole-
cular weight and advantages of binding to specific receptors. 
The functionalized Au NPs with some different glycans by 
ligand exchange have excellent biocompatibility and main-
tain high stability in serum proteins.122 This provides a new 
option for the synthesis of ultrastable and biocompatible 
Au NPs.
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Microbes-Mediated Biosynthesis
Except for natural ingredients in plants, nowadays, with the 
deepening of research, people have found that many 
microbes can also synthesize Au NPs. These microbes 
mainly include fungi and bacteria. Fungi can secrete proteins, 
which helps to regulate the morphology of Au NPs. At the 
same time, some bacteria can act as the reducing agents to 
synthesize and stabilize Au NPs.123,124 Microbes can easily 
and quickly stabilize Au NPs with low cost and environmen-
tal friendliness.125 Some microbes secrete proteins that can 
further protect Au NPs and improve their stability in complex 
physiological environments.126,127 What’s more, this 
microbe-mediated synthesis of highly stable Au NPs is 
expected to have a wide range of applications in many fields. 
Many studies on the synthesis of Au NPs by fungi and 
bacteria have been reported based on this. For example, 
Aspergillus (WL-Au) can green synthesize Au NPs with 
controllable size under different reaction conditions 
(Figure 5). The prepared Au NPs have great catalytic activity 
and can be used for the depolarization of dyes.128 And as 
a common fungus, mushroom extracts can also synthesize 
Au NPs. Even more surprising is that the protein in the 
mushroom extract can stabilize Au NPs and prevents their 
aggregation.129 Equally, bacterial green synthesis of Au NPs 
also is a research hotspot in recent years. For instance, Au 
NPs can be prepared by Bacillus subtilis reduction. By this 
method, we can obtain Au NPs with robust antibacterial 
activity, which is expected to be used in the biomedicine 
and food industry.130 Beyond that, some algae in the ocean, 
such as Spirulina platensis, can be used as raw materials to 
synthesize Au NPs quickly. Due to many bioactive sub-
stances in Spirulina platensis, the prepared Au NPs have 
broad application prospects in the medical field.131

Low Molecular Weight Protein Decorated Au NPs
Biomolecules have become one of the best candidates for 
stabilizing Au NPs by their multifunctional chemical 
groups, high binding ability with metal molecules, and 
excellent biocompatibility.132,133 Due to their superb sta-
bilizing ability, Au NPs can remain stable under various 
physiological environments.132,134 Moreover, while stabi-
lizing Au NPs, it can also be conjugated with different 
specificities molecules to meet its application in 
biomedicine.135,136 Protein is one of them. More detail-
edly, not only Au NPs are immobilized by biomolecules 
because the functional groups in amino acids directly bind 
to nanoparticles through Au–S covalent bonds, but also the 
protein-decorated Au NPs can significantly improve their 

dispersion and anti-aggregation stability in the biological 
matrix to meet applications in biosensor, diagnostic and 
therapeutic.137,138

Based on this, at present, studies have shown that Au NPs 
synthesized with some proteins or amino acids exhibit excel-
lent stability. For example, choline tryptophan and tetraethy-
lammonium (TEA) can be used to prepare Au NPs, where the 
tryptophan group acts as a reducing agent. The nanoparticles 
synthesized by this method show superior stability in a specific 
concentration of hemoglobin buffer (100–200 µL/mL).139 As 
a protein in the human body, ferritin has extreme safety and the 
ability to react with multiple substances. It can be wrapped on 
the surface of Au NPs for modification to enhance its stability, 
and other targeting molecules can be modified on nanoparticles 
for tumor treatment. Studies have shown that the Au NPs 
assembled by ferritin still have excellent thermal stability at 
62.5 °C and do not aggregate in 800 mM NaCl solution.140 

With the deepening of research, people have discovered using 
specific proteins in the human body to decorated Au NPs can 
improve their long-term stability and avoid immune 
rejection.141 This discovery is expected to be a drug delivery 
system that uses Au NPs as a carrier. On the other hand, some 
protein-decorated Au NPs exhibit characteristics that are not 
available in conventional synthetic Au NPs. For instance, 
amino acids and peptides are added to the solution of Au 
NPs and grown in situ to obtain chiral Au NPs. More surpris-
ingly, its unique optical activity contributes to the application in 
nanomedicine.142

In addition to the proteins contained in the human body, 
the proteins extracted from some fungi can also significantly 
enhance the biocompatibility and stability of Au NPs. For 
example, Au NPs prepared using protein from Rhizopus 
oryzae cells as a blocking agent have almost the same 
absorption wavelength in physiological buffer solution with 
a pH range of 6.5–7.5. Its good biocompatibility has been 
confirmed in the hemolysis test.143

Designed and Controlled Genetic Material for the 
Synthesis of Au NPs
At present, genetic materials (such as deoxyribonucleic 
and ribonucleic acid) are often used as templates to 
synthesize or modify Au NPs due to their unique self- 
assembly properties.144 These nucleotide-modified Au 
NPs show excellent biocompatibility.145 More importantly, 
it can protect the Au NPs by forming a dense layer on the 
surface of the Au NPs through the chemical bond, thereby 
further improving its stability.146 The currently commonly 
used synthesis strategy is to conjugate DNA to Au NPs via 
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Figure 5 Green synthesis Au NPs by Aspergillum sp. (A) UV-Vis spectra of Au NPs produced extracellularly by strain WL-Au under different pH conditions. (B) TEM image 
and size distribution histogram of Au NPs produced extracellularly from WL-Au strain at pH 7.0 and 8.0. (C) UV-Vis spectra of Au NPs produced extracellularly by strain 
WL-Au using different fungi biomass concentrations. (D) TEM images and size distribution histograms of Au NPs synthesized from different biomass concentrations. 
(100 mg/mL, 300 mg/mL, 480 mg/mL). (E) UV-Vis spectra of Au NPs produced extracellularly by strain WL-Au using different HAuCl4 concentrations. (F) TEM image and 
size distribution histogram of Au NPs synthesized from different HAuCl4 concentrations (1mM, 3mM, 5mM). Reprinted from Phys E Low-Dimensional Syst Nanostructures, 88, 
Qu Y, Pei X, Shen W, et al. Biosynthesis of gold nanoparticles by Aspergillum sp. WL-Au for degradation of aromatic pollutant. 133-141, Copyright (2017), with permission 
from Elsevier.128
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Au-S bonds.147,148 On the other hand, Au NPs synthesized 
using genetic material have specificity and can be selec-
tively combined with specific molecules.135 It is expected 
to be widely used in the field of biomedicine. What’s 
more, DNA-conjugated Au NPs can also be used as sen-
sors to detect metal ions.149 Liu et al systematically stu-
died the influence of different factors on the stability of the 
DNA-Au NPs. They confirmed that a higher concentration 
of salt solution allows DNA to adsorb on the surface of Au 
NPs faster and enhances its stability; while a lower pH is 
conducive to the formation of a dense layer of DNA on the 
surface of Au NPs; polar solution and long-chain DNA 
have a better protective effect on Au NPs.150 In recent 
years, a lot of work has been devoted to preparing highly 
stable DNA-Au NPs. Hwu et al prepared DNA-conjugated 
Au NPs and significantly improved Au NPs by regulating 
the density of DNA. Au NPs can still maintain excellent 
stability in five freeze-thaw tests (−80 °C).151 Next, Cheng 
et al added biotin and diluents to different functionalized 
DNA adaptors to conjugated it with Au NPs and devel-
oped a new DNA-Au NPs synthesis strategy. More sur-
prisingly, the Au conjugates prepared by this method have 
ultra-high stability and can still maintain a good dispersion 
state in the 4 M NaCl solution. The absorbance remains 
almost unchanged during five freeze-drying cycles.152 

Besides DNA, some RNA aptamers can also modify Au 
NPs due to their excellent affinity and specificity. Miao 
et al stabilized Au NPs with different theophylline RNA 
aptamers, which showed excellent salt tolerance and 
remained stable under 70 mM NaCl solution. What’s 
more, nanoparticles can quickly and accurately detect 
theophylline concentration in the human body.153 David 
et al used a self-assembly strategy to synthesize Au-siRNA 
NPs. It remains stable for 24 hours in 10% fetal bovine 
serum, so these nanoparticles are expected to serve as ideal 
functional probes in tumor therapy.154

Synthesis High Stable Ultra-Small Au NPs
Compared with conventional plasmonic Au NPs, ultra- 
small Au NPs (1–3 nm in diameter) with atomic-level 
precision have different properties in optics and magnet-
ism due to enhanced quantum size effects.155–157 Among 
them, photoluminescence is a unique property of ultra- 
small Au NPs’ surface state; It has strong emission in the 
NIR region due to the ultra-small size,158,159 And ultra- 
small Au NPs are paramagnetic.160,161 After decades of 
research, people have made significant progress in prepar-
ing and applying ultra-small Au NPs. At this stage, four 

primary approaches are used to synthesize ultra-small Au 
NPs: bottom-up method, top-down method, dynamic con-
trol method, and green synthesis method.157,162–164

Bottom-Up
The bottom-up synthesis strategy is to use thiolates or 
other ligands (such as biomolecules, dendritic polymers, 
etc.) to protect the ultra-small Au NPs.165–167 Specifically, 
chloroauric acid forms a complex with a phase transfer 
agent, and then the ligand reduces the Au3+ in the complex 
to Au+. The template protects the ultra-small Au NPs from 
agglomeration.162 Biomolecules and dendritic polymers 
are commonly used as templates. Biomolecules can 
synthesize ultra-small Au NPs under mild reaction condi-
tions, and the products have great biocompatibility. Still, 
the yield of ultra-small Au NPs prepared by this method is 
lower. The dendritic polymer used as a hard template to 
prepare ultra-small Au NPs has a higher yield, but the 
disadvantages such as poor biocompatibility and longer 
reaction time limit its application. Nowadays, many stu-
dies show that the size of ultra-small Au NPs can be 
precisely controlled by adjusting the addition ratio of 
reducing agent and chloroauric acid to obtain size-con-
trolled water-soluble or organic-soluble ultra-small Au 
NPs.97,168,169 Xie et al precisely synthesized ultra-small 
Au NPs with high quantum yields using thiol molecules 
as templates.168 Meanwhile, egg white has also been used 
to synthesize ultra-small Au NPs of controlled size.170

Top-Down
The top-down method is also called the etching method. It 
is a widely adopted synthetic strategy that enables the 
controlled synthesis of ultra-small Au NPs.171,172 The 
mechanism of this method is to etch polydisperse Au 
NPs into small-sized ultra-small Au NPs using etchants 
(such as dihydrolipoic acid, polyethyleneimine, 
etc.).173,174 In the presence of the etchant, the large Au 
NPs are continuously etched into small-sized Au NPs. 
Through continuous etching, the obtained ultra-small Au 
NPs have the most stable structure. For example, Wei et al 
precisely synthesized ultra-small Au NPs with good ther-
mal stability by thiol etching in the presence of 
a protective agent.175 Also, some natural plant components 
can also be used to etch and prepare ultra-small Au NPs. 
Chen et al synthesis highly biocompatible ultra-small Au 
NPs by stepwise etching method using mustard acid as an 
etchant and reducing agent.176
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Dynamic Control Methods
Recently, dynamic control methods have been increasingly 
used for the synthesis of ultra-small Au NPs. It is based on 
other ways, and precise control is implemented by varying 
the reaction temperature and reaction time, the pH of the 
reaction system, and the concentration of the reducing 
agent.163,164 This method can obtain ultra-small Au NPs 
that meet expectations by real-time tuning. Lahtinen et al 
achieved a controlled synthesis of ultra-small Au NPs that 
are stable at different pH values by adjusting the ratio of 
methanol to water.169 Wang et al prepared ultra-small Au 
NPs protected by alkyne ligands, which can spontaneously 
isomerize to a more stable structure (Au23-2→Au23-1) and 
have good thermal stability.177 Crudden et al first reported 
super-stable ultra-small Au NPs modified with NHC as 
a ligand, and the NHC-modified methyl monosubstituted 
ultra-small Au NPs were stable at 70 °C for more than 24 
h due to the super-stabilizing force between the ligand and 
gold.178

Green Synthesis Methods
Some new strategies for the precise synthesis of atomic- 
scale ultra-small Au NPs have been reported in recent 
years.156,179,180 The green synthesis of ultra-small Au 
NPs mediated by natural products is one of them.97,99 

Zhang et al prepared highly stable ultra-small Au NPs by 
a simple one-pot method using polyphenols from green tea 
as reducing and stabilizing agents.181 Ghosh et al success-
fully synthesized ultra-small Au NPs on different bacteria, 
in which the bacteria acted as templates and the internal 
proteins interacted with gold to provide stable force. This 
highly safe, low-cost, and rapid preparation method offers 
new ideas for future nanomaterial synthesis strategies.182

Other Ways to Improve the Stability of 
Au NPs
Some physical methods to improve the long-term stability 
of Au NPs after synthesis effectively. Centrifugation is one 
of them. Under certain conditions (7000 g, 20 minutes), 
the Au NPs were centrifuged and determined by DLS. The 
researchers found that the suspension of Au NPs can be 
stable for storage at 4 °C for 20 days. This study provides 
new ideas for improving the stability of Au NPs.183 On the 
flip side, high molecular weight PEG can be used to 
deplete and stabilize Au NPs, and achieve excellent stabi-
lity under long-term storage conditions through depletion 
force without destroying its surface properties (Figure 6). 
And what is more, this method can further enrich the 
application of Au NPs.184 Depletion stability can be used 

Figure 6 The stability of citrate-terminated 13 nm Au NPs in the presence of various solutes. (A) Aggregation begins to occur in 20% (w/w) PEG 200 or 50% PEG 400 (no 
other salts added). (B) Au NPs modified with high concentration, and high molecular weight PEG remains stable in 10 mM Mg2+. (C) Long-term stability of Au NPs in 2% 
PEG 20,000. (D) 13 nm and (E) 50 nm Au NPs in the presence of various salt and PEG concentrations or molecular weights. Reprinted with permission from Zhang X, 
Servos MR, Liu JW. Ultrahigh Nanoparticle Stability against Salt, pH, and Solvent with Retained Surface Accessibility via Depletion Stabilization. J Am Chem Soc. 2012;134, 
9910–9913. Copyright (2012) American Chemical Society.184
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as a technical means to improve the spatial stability of Au 
NPs, so that people can explore many colloidal properties 
and reactions for a long time.

In conclusion, conventional chemical methods may 
not be sufficient to protect Au NPs in some cases, 
causing aggregation of Au NPs. Currently, some poly-
mer-modified Au NPs exhibit excellent stability under 
different physiological environments. For example, the 
superb binding ability of NHC to Au NPs has been 
shown to remain long-term stable in various biological 
media (pH, GSH, salt solution).69,71 PEG significantly 
improves the steric stability of the colloids, allowing the 
Au NPs to remain well dispersed under different pH and 
salt ion environments.185 Similarly, PVP-protected Au 
NPs exhibited excellent stability in some physiological 
environments, especially high citrate and citric acid 
concentrations.87,185 Natural product-mediated green 
synthesis of Au NPs can remain stable under long-term 
storage, and modified by biomolecules (proteins and 
DNA) can remain stable for a long time under biologi-
cal substrates and extreme temperatures. The various 
stabilization methods of Au NPs are shown in 
Figure 7. And we give various stabilizers used during 
various synthesis methods in Table 1. At this stage, due 
to Au NPs with long-term stability and satisfactory 
stability in ionic solution and biomatrix, their applica-
tion prospects in biomedicine are receiving more and 
more attention.

Application of Au NPs in 
Biomedicine
At present, because of the continuous in-depth research on 
Au NPs, it occupies a vital position in biomedicine. Due to 
the smaller size of Au NPs, they can accumulate in tumor 
tissues in the biomedical field. It is called enhanced pene-
tration and retention effect (EPR), which helps achieve 
better therapeutic effects.186 And the unique physical and 
chemical properties of Au NPs, there are bright prospects 
in nanomedicine.179,187–190 Herein, we focus on the most 
recent studies in biomedicine, including drug delivery 
vehicles, bioimaging, PTT, clinical diagnosis, nanozymes, 
RT, and other application.

Drug Delivery
Drug chemotherapy is a primary clinical treatment 
method. However, it has obvious disadvantages: First, 
some drug’s poor solubility and stability inhibit the ther-
apeutic effect. More importantly, the direct administration 
method cannot enrich the medicine at the tumor site, 
thereby weakening the drug’s efficacy and causing many 
side effects to the body. Therefore, there is an urgent need 
for a carrier to load the drug to extend its blood half-life 
and protect its activity to achieve enrichment and con-
trolled release at the tumor site. Due to its easy-to-control 
size, active surface chemical properties, and good biocom-
patibility, Au NPs are widely used as an ideal carrier for 
drug delivery.191 We can achieve drug delivery by 

Figure 7 Various methods of stabilizing Au NPs.
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Table 1 Preparation of Highly Stable Au NPs

Stabilizing Agent Synthesis Method pH Time Stability 
Temperature

Ions Stress Ref.

Bidentate NHC Brust-Schiffrin method _ _ 130°C 5 mM DDT [63]

1 mM thiophenol

PPy Seed-mediated method 1–9 1 year 50°C _ [74]

PDMAEMA One-step synthesis _ 6months _ 2 M NaCl [80]

PEG/EG 3 M DTT

PEG Physical sputtering method _ _ 100°C _ [81]

PVP K30 Chemical reduction _ 6weeks _ _ [87]

PAH Chemical reduction _ >1 month _ _ [88]

DHLA Chemical reduction _ 50 days 4°C PBS [91]

_ _ 1 M NaCl

0.1 M DTT

EDTMP One pot method 3–12 3 months _ 25 mM PBS [94]

PEG Chemical reduction 2.5–11 _ −78–48°C _ [95]

DCA

CA Self-assembly _ >3 months _ _ [96]

GA Chemical reduction _ _ _ [107]

PCA 3 months

IF

Starch Chemical reduction _ >1 year _ _ [114]

Glucose

Extract of mango leaves Hydrothermal _ >5 months _ _ [119]

Gum Arabic Chemical reduction _ 5 weeks _ _ [121]

Glycan Ligand exchange _ _ _ 0.07g/mL serum [122]

PEG 20K Chemical reduction _ _ 63°C 500 mM NaCl [134]

Choline

TEA Two-step synthesis _ _ _ 200 µL/mL Hbs [139]

Tryptophan

Thermo ferritin Self-assembly _ _ 62.5°C 800 mM NaCl [140]

Keratin Chemical reduction _ 6 months 4°C _ [141]

Albumin

Protein extract of 
Rhizopus oryzae cells

One-pot synthesis _ _ _ 100mM (PBS, Bicarbonate, Tris- 
HCl, HEPES, PIPES)

[143]

DNA Covalent binding method _ _ −80°C _ [151]

(Continued)
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combining drugs with Au NPs by physical embedding or 
chemical bonding. Given this, Tan et al conjugated specific 
DNA aptamers to Au NPs through self-assembly. They 
loaded doxorubicin (DOX) on the surface of the nanocom-
posite to achieve controlled drug release under NIR 
irradiation.192 Chen et al directly couple Au NPs with 
methotrexate (MTX) to form a nanocomposite released 
in lung tumor tissues to achieve enhanced therapeutic 
effects.193 Sulaiman et al load biologically active hesper-
idin inside Au NPs by simple stirring. This drug delivery 
system with good biocompatibility can significantly inhibit 
the growth of human breast cancer cells and effectively 
relieve inflammation.194 For drug delivery systems based 
on Au NPs, some specific substances (such as folic acid, 
red blood cell membrane, neutrophil membrane, etc.) can 
modify on the surface of Au NPs to achieve targeted 
therapy and obtain better curative effects.195 For example, 
Au NPs co-protected by PEG and 4-mercaptobenzoic acid 
(MBA) can be used as targeting carriers to deliver DOX, 
thereby significantly improving the therapeutic effect on 
breast cancer.196 Besides, due to the high photothermal 
conversion efficiency of Au NPs, it also has a synergistic 
effect on the photothermal treatment of tumors while deli-
vering drugs. Studies have shown that DOX is loaded into 
the Au nanocage wrapped by the cancer cell membrane. 
The composite nanomaterial can achieve high-efficiency 
delivery of DOX and cause breast cancer cell apoptosis 
through auxiliary NIR irradiation.197 At present, with the 
continuous deepening of research, we have discovered that 
in addition to serving as a drug delivery carrier alone, Au 
NPs can also be conjugated with other substances to form 
composite materials to exert their advantages further. It 
mainly includes some responsive polymers, proteins, and 

inorganic nanomaterials. As a universal heat-sensitive 
polymer, poly (N-isopropyl acrylamide) can combine 
with rod-shaped Au NPs as a drug delivery vehicle. This 
responsive polymer can effectively reduce the toxicity of 
the loaded drug, and the drug also has a controllable 
release rate when the NIR irradiates the carrier.198 For 
protein, Mi-RNA can be combined with Au NPs to release 
Mi-RNA in tumor cells with high glutathione concentra-
tions, thereby realizing efficient gene therapy.199 And Au 
NPs can hybridize with iron to prepare composite nano-
particles with a metal-organic framework (MOF) structure. 
Au-MOF NPs can be loaded with camptothecin, and the 
structure is destroyed under the exceptional physiological 
environment of the tumor to release the drug. What is 
more surprising is that the produced OH· can further 
activate the Fenton reaction and achieve synergistic 
therapy.200 Besides, a novel drug delivery system was 
developed by Zhu et al. They loaded vancomycin onto 
ultra-small Au NPs to achieve controlled release of the 
drug and allowed real-time monitoring of the release pro-
cess by the generated fluorescent signals. This research 
provides new ideas for Au NPs in a multifunctional plat-
form based on drug delivery.180

Bioimaging
The main biomedical imaging methods are magnetic reso-
nance imaging, CT imaging, and photoacoustic 
imaging.201,202 These imaging methods require a contrast 
agent to enter body tissues or organs to improve image 
contrast and imaging effect due to the long half-life of 
nanomaterials in the blood, increasing the accuracy and 
specificity of imaging. Nowadays, more and more nanoma-
terials applications are used in bioimaging.201,203,204 Among 

Table 1 (Continued). 

Stabilizing Agent Synthesis Method pH Time Stability 
Temperature

Ions Stress Ref.

Biotin, DNA Au-S bond and DNA 

assembly

_ _ −80°C 4 M NaCl [152]

RNA aptamer RNA interacts with Au NPs _ _ _ 70 mM NaCl [153]

si RNA RNA hybridization on the 

surface of Au NPs

_ _ _ 10% FBS [154]

ρMBA-thiolate Wet chemical synthesis _ >6 months _ _ [169]

NHC Coordination substitution _ 24h 70°C _ [178]

Extract of Green tea Green reduction _ 7 days _ _ [181]
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them, Au NPs have become one of the current ideal contrast 
agent candidates in bioinaging methods. In CT imaging, 
compared with traditional contrast agents, Au NPs have 
the advantages of high biocompatibility, low toxicity, and 
easy functionalization. What’s more, the high X-ray absorp-
tion coefficient and high contrast of Au NPs make it an 
ideal material for contrast agents.205 Under certain condi-
tions, the X-ray decay rate of Au NPs with the same 
concentration is five times slower than iodine.206 More 
importantly, we can design suitable modifiers to functiona-
lize the surface of Au NPs for targeted delivery to the 
organs and tissues that need to be imaged, thereby improv-
ing the imaging effect.207 At present, there are more and 
more applications of Au NPs in contrast agents. Due to the 
complex physiological environment in the blood, it is often 
necessary to modify other substances to enhance their sta-
bility when synthesizing Au NPs as contrast agents. Studies 
have shown that PEG-modified small-size Au NPs (38 nm) 
have excellent stability, increasing blood half-life, is an 
ideal contrast agents in the blood. It has obvious advantages 
with the traditional contrast agent iodine.208 Next, new 
research confirms that Au NPs functionalized with glutamic 
acid can be used as contrast agents due to their large X-ray 
attenuation coefficient and excellent stability under physio-
logical conditions.209 In addition to being used as conven-
tional contrast agents, Au NPs can also be used for targeted 
imaging. For instance, Sun et al synthesized Au NPs coated 
with glycol chitosan, which can specifically CT imaging of 
tumors in the liver. Currently, Au NPs synthesized from 
some natural products can also be used as X-ray contrast 
agents. For example, Au NPs stabilized and reduced by 
gum arabic show excellent biocompatibility and remain 
stable in electrolyte solutions (2 M NaCl) and serum solu-
tion (1 mg/mL HSA or 1 mg/mL BSA). Furthermore, the 
contrast agent effect of GA-Au NPs is about three times that 
of iodixanol at a similar concentration.210 Photoacoustic 
imaging combines optical imaging and ultrasound imaging, 
is an emerging non-invasive imaging technology with high 
resolution and strong tissue penetration depth.211 Due to the 
LSPR effect, controlled size, and high photothermal con-
version capability of Au NPs, it has wide application fore-
ground in photoacoustic imaging. Tan et al constructed 
a highly specific gold-coated@Fe3O4 multifunctional 
nano-platform, which can realize the functions of magnetic 
resonance imaging, photothermal therapy.212 At this stage, 
many groups have confirmed that Au NPs have great ima-
ging effects as a contrast agent for photoacoustic imaging. 
Chen et al synthesized small-sized rod-shaped Au NPs 

(50nm) by seed-mediated method, which has extreme 
tumor penetration efficiency and can generate photoacous-
tics 3.5 times stronger signal than conventional-sized Au 
nanorods (130 nm).8 Zhang et al developed PEG-modified 
Au NPs (20–50nm), which can be effectively enriched in 
tumor tissues and achieve excellent photoacoustic imaging 
effects.213 On the other hand, luminescent ultra-small Au 
NPs have an easily tunable size, surface functionalization, 
and superior safety making them one of the best candidates 
for bioimaging. And among them, some biomolecule-mod-
ified ultra small Au NPs are of great interest due to their 
specifical targeting and efficient renal clearance 
efficiency.158 For example, the ultra-small Au NPs synthe-
sized by mercapto-cyclodextrin have excellent lumines-
cence properties, with maximum excitation intensity at 
1050 nm. Surprisingly, imaging was still possible even at 
a concentration of 1 μM. And follow-up studies have shown 
that ultra-small Au NPs synthesized by this method also 
have promising applications in protein labeling for tumor- 
targeted imaging.214 Zhang et al prepared excellent biocom-
patible ultra-small Au NPs doped with other atoms using 
glutathione. The ultra-small size enables Au NPs to have 
a greater penetration depth (0.61 cm), while other atoms 
(Cu, Zn) make ultra-small Au NPs have better imaging 
effects, thereby realizing multifunctional real-time imaging 
in vivo.215 Chen et al successfully built a nano platform for 
integrated treatment. The nanoplatform enable dual-mode 
imaging of NIR fluorescence and CT as a bioprobe, and the 
excellent photothermal conversion efficiency enables it to 
be used for photothermal therapy.216

Photothermal Therapy
While traditional hyperthermia destroys tumor tissues, it also 
damages normal tissues. As a non-invasive treatment method, 
photothermal therapy uses nanoparticles as a photothermal 
therapy agent to irradiate the tumor with a NIR (808 nm), 
which can accurately destroy tumor tissues without damaging 
normal tissues.217 This method can effectively reduce the side 
effects of treatment. As one of the most critical inorganic 
nanomaterials in biomedicine, Au NPs play an essential role 
in photothermal therapy. Due to the high light-to-heat conver-
sion efficiency of Au NPs, strong absorption of NIR, LSPR 
effect, and easy-to-control size and shape. Generally, Au NPs 
are used in photothermal therapy in two ways. One is to use 
pure Au NPs as a photothermal agent; the other is to form 
a composite material with some substances or load drugs for 
synergistic treatment. Because of this, Depciuch et al explored 
the photothermal treatment effect of Au NPs and found that it 
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can significantly inhibit colon cancer cells; the cell viability 
after 808 nm laser irradiation for 5 minutes is only about 
50%.218 Besides, the rod-shaped Au NPs have excellent 
photothermal treatment effects due to their extreme high 
extinction coefficient. Studies have shown that PEG-modified 
rod-shaped Au NPs can exert therapeutic effects within 72 
hours and eliminate breast tumors in mice within 10 days.219 

Nowadays, research on photothermal therapy has turned to 
Au-based composite nanomaterials. We can modify the sur-
face of Au NPs to achieve specific functions. These hybrid 
nanomaterials can be combined with drugs or doped with 
other substances to enhance the photothermal treatment effect 
further. For example, encapsulated by PPy exhibits ultrahigh 
light-to-heat conversion efficiency (70%) due to its unique 
chain structure and self-assembly behavior. Subsequent 
experiments have also confirmed that it can achieve an excel-
lent tumor photothermal ablation effect under the irradiation of 

808nm NIR (Figure 8).220 Next, the latest research shows that 
the Au@Pt composite dendritic NPs synthesized by ultra-
sound have the characteristics of Au and Pt at the same time. 
Therefore, the high photothermal conversion efficiency of Au 
and the photothermal stability of Pt make this composite 
become an ideal material for photothermal therapy.221 

Moreover, adding photosensitizer can further enhance the 
photothermal treatment effect. For example, porphyrin deriva-
tives are used as photosensitizers to couple with Au NPs to 
generate singlet oxygen during the heating process to kill 
cancer cells effectively. This method can achieve high-effi-
ciency photothermal treatment effects.222

Clinical Diagnosis
Compared with traditional clinical methods, nanosystems 
based on noble metals can be quickly and accurately used 
for biomedical diagnosis, which has received extensive 

A

B

C D

E F

G

Figure 8 In vivo photothermal therapy by PPy-coated Au chains. (A) TEM image of Au NPs coated by PPy. (B) PPy-coated Au chains can keep stable both in water and cell 
culture after 7 days of incubation. (C–F) Typical photographs for four groups with different treated additions. (C) Untreated. (D) Only laser irradiated. (E) Only NP injected. 
(F) Both laser irradiated and NP injected. Insets: tumor photographs and weight after 14 days were recorded, and (G) survival rate of the mice for four groups. Reprinted 
with permission from Lin M, Guo CR, Li J, et al. Polypyrrole-Coated Chainlike Gold Nanoparticle Architectures with the 808 nm Photothermal Transduction Efficiency up to 
70%. ACS Appl Mater. 2014;6:5860–5868, Copyright (2014), American Chemical Society.220
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attention in recent years. And Au NPs are one of them; due 
to their superior biocompatibility, unique physical and 
chemical properties, Au NPs are increasingly used as 
diagnostic tools (such as biosensors or nanoprobes) to 
test some clinical indicators. On the one hand, specific 
oligonucleotides can be integrated on Au NP to identify 
sequence-specific DNA or RNA in the sample to be tested, 
which can be identified and analyzed by methods such as 
colorimetry and fluorescence detection.223–225 On the other 
hand, owing to the LSPR effect and Raman scattering 
properties of Au NPs, it can enhance or amplify the SPR 
signal, so they are often used to detect the level of bio-
markers of certain diseases to achieve a rapid 
diagnosis.226,227 In recent years, many researchers are 
committed to building a platform based on Au NPs for 
fast and accurate diagnosis of some clinical indicators. 
Zhu et al developed a multifunctional nanosystem that 
can real-time monitor breast cancer changes in vivo. 
They hybridized specific aptamers with fluorescent DNA 
strands, combined with Au NPs through Au-S bonds. 
Finally, they loaded drugs into nanosystems to achieve 
various functions such as fluorescence monitoring of 
tumor cell expression, drug delivery, and photothermal 
therapy (Figure 9).228 Nietzold et al prepared Au NPs 
with a diameter of 20–60 nm, then fixed anti-α-fetoprotein 
on the surface of Au NPs, and constructed a nanoprobe for 
the rapid detection of tumor marker α-fetoprotein, which 

can detect the concentration of α-fetoprotein in the serum 
of 0.1–0.4 μg·mL−1.229 In addition, specific DNA apta-
mers can be conjugated with Au NPs are used as probes to 
detect the cancer cell marker proteins PDGF and VEGF at 
the nM level using colorimetry and fluorescence 
methods.230 At this stage, compared with conventional 
clinical diagnosis methods, based on Au NPs test tools, 
can provide better results. For example, Au NPs can detect 
hepatoma up-regulated protein RNA in human urine, 
thereby realizing early diagnosis of bladder cancer. What 
is more surprising is that this low-cost diagnosis method 
has strong specificity (88.5%) and sensitivity (94%), a low 
detection limit, even the detection effect exceeds that of 
conventional PCR testing.231 Gordon et al prepared poly-
styrene-modified rod-shaped Au NPs, which can quickly 
detect the signal intensity of Raman spectroscopy in urine, 
and quantitatively analyzing the representative tumor mar-
ker Acetyl Amantadine (AcAm), with a detection limit of 
16ng/mL.232 Besides, using Au NPs to construct micro-
chips to detect the level of some biomarkers in the blood is 
also a hot spot in current research. The latest research 
shows that a new type of diagnosis technology uses elec-
trically activated nanoflow chips to capture the biomarker 
extracellular vesicles (EVs) released by melanoma cells in 
the blood. Simultaneously, it can combine with a particular 
type of Au NPs attached to an antibody, which can adsorb 
unique molecules on melanoma cell EVs’ surface. This 

Figure 9 Multifunctional aptamer-linked DNA-Au nanomachine (Apt-DNA-Au) (A) TEM and (C) CLSM images of the states of Au NPs in MCF-7 cells, HeLa cells, and L02 
cells, respectively, after incubation with Cy5-labeled Apt-DNA-Au nanomachine. Scale bar: 100 μm. (B) The results of different expression levels of TK1 mRNA in MCF-7 
cells by flow cytometry. Scale bar: 100μm. (D) In vivo fluorescence imaging of Apt-DNA-Au nanomachine at different times. (E) In vivo fluorescence imaging of organs and 
tumors treated with saline (top) and Apt-DNA-Au nanomachines (bottom). (F) The signal intensity of different organs and tumors. Reproduced from Yu S, Zhou Y, Sun Y, et 
al. Endogenous mRNA Triggered DNA–Au Nanomachine for in Situ Imaging and Targeted Multimodal Synergistic Cancer Therapy. Angew Chemie Int Ed. 2021;60(11): 5948- 
5958. © 2020 Wiley-VCH GmbH.228
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method is expected to achieve early diagnosis and treat-
ment of cancer.233 Recently, research reports functiona-
lized ultra small Au NPs can diagnose 100% of human 
immunodeficiency virus (HIV) through antigen-antibody 
interactions. More surprisingly, this immunoassay method 
can achieves pico-level sensitivity. This method opened up 
the new way for early clinical diagnosis based on Au 
NPs.234

Nanozyme
The unique enzyme-like activity of ultra-small Au NPs, 
the catalytic sites on their surface, and their good 
stability and biocompatibility give them potential as 
nanozymes in biomedicine.235–237 For instance, dendri-
tic polymer PAMAM-modified ultra-small Au NPs can 
autocatalyze the decomposition of hydrogen peroxide 
to oxygen in an acidic environment, achieve enhanced 
photodynamic therapeutic effects in combination with 
photosensitizers.238 Atomically engineered ultra-small 
Au NPs can meet the expectation of having enzyme- 
like activity while maintaining high stability, resulting 
in efficient antioxidant activity and catalytic activity.239 

Precise synthesis of highly selective atomic-level arti-
ficial enzymes have become a hot research topic in 
recent years. Zhang et al developed gold-based nano-
zymes. And the nanozymes possess CAT and SOD 
enzyme activities, which can significantly reduce the 
reactive oxygen species content and alleviate 
neuroinflammation.240 Recent studies have shown that 
the atomic-level Au24Ag1 cluster enzyme has ultra-high 
physiological stability and its unique CAT and GPx- 
like enzyme activities can effectively inhibit inflamma-
tory molecules in the brain, which is expected to play 
an essential role in nanomedicine.241

On the other side, antibacterial is an essential prop-
erty of nanozymes. Ultra-small size (<2 nm) Au NPs 
have been found to interact with bacteria and destroy 
their cell membrane. They exhibit significant antibac-
terial activity, which is not found in conventional size 
Au NPs.242–244 Because of this, Xie et al synthesized 
ultra-small Au NPs with 6-mercaptohexanoic acid as 
ligand and systematically investigated their antibacter-
ial activity. They found that ultra-small Au NPs (<2 
nm) killed more than 90% of Staphylococcus aureus, 
Staphylococcus epidermidis, Bacillus subtilis, 
Escherichia coli, and Pseudomonas aeruginosa, and 
further studies confirmed that it was due to the ability 
of ultra-small Au NPs to induce the production of 

ROS.245 Apart from that, Gu et al synthesized ultra- 
small Au NPs by a simple one-step method, which can 
promote the release of ROS within Clostridium difficile 
and disrupt its cell membrane, and is expected to serve 
as a new avenue for the treatment of Clostridium diffi-
cile infection.246 Besides, Au NPs prepared from 
Gloriosa superba leaf extracts can interact with biolo-
gical membranes, leading to cell death, exhibiting sig-
nificant antibacterial activity, and promising as 
a treatment for microbial infections drugs.247 Chopade 
et al used the extract of Plumbago zeylanica facile 
synthesis Au NPs, which exhibited remarkable antibac-
terial effects against many bacteria.110

Cancer Radiotherapy
Similar to Au NPs, ultra-small Au NPs also play an 
essential role in the treatment of tumors.179 The excel-
lent safety profile of ultra-small Au NPs, the long 
blood half-life, and the enhanced EPR effect due to 
their small size in the body, creating the conditions 
for their use in tumor radiotherapy. On the other 
hand, because of the larger atomic number, gold has 
stronger absorption for radiation, so it is an ideal 
radiosensitizer.248,249 Given this, Xie et al designed 
a novel glutathione ultra-small Au NPs radiotherapy 
agent, in which glutathione can significantly enhance 
the accumulation of the drug at the tumor site. At the 
same time, the stronger absorption ability of gold to 
radiation can effectively improve the radiotherapy 
effect.250 Basilion et al synthesized PSMA peptide- 
modified ultra-small Au NPs in situ; they confirmed 
that the targeted ultra-small Au NPs significantly inhib-
ited tumor growth in the presence of radiotherapy 
compared to controls.251 Xing et al first prepared 
ultra-small Au NPs with cyclic RGD peptide as 
a template, which maintained excellent stability in dif-
ferent physiological environments (DMEM medium, 
FBS serum, etc.), and next they confirmed the 
enhanced radiosensitizing effect and specific targeting 
ability of ultra-small Au NPs by animal experiments, 
and tumor growth was significantly inhibited after 
treatment.252 Kim et al used Au NPs as 
a radiosensitizer for radiotherapy of melanoma. They 
found that the nanoparticles were effective in killing 
cancer cells and inhibiting their growth in the presence 
of X-rays, and further enriching the application of Au 
NPs in cancer radiotherapy.253
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Other Biomedical Application
Au NPs have a wide range of applications in gene 
therapy, photodynamic therapy, etc.254,255 For example, 
Xu et al synthesized chitosan-coated Au NPs, which 
can carry the p53 gene and treat breast cancer cells 
efficiently. More critically, this nanoplatform enables 
photothermal/gene therapy as well as real-time 
imaging.256 Russell’s group prepared lactose-modified 
targeted Au NPs, and that significantly improved the 
hydrophobicity of the photosensitizer zinc phthalide 
turnip. This synthesis method can enhance photody-
namic therapeutic effects with 90% cytotoxicity against 
human breast cancer cells SK-BR-3.257 These examples 
further demonstrate the enormous potential of Au NPs 
in biomedicine.

Conclusion and Perspective
In this review, we overview various strategies for pre-
paring highly stable Au NPs: polymer-protected 
method, green synthesis method, and size-con-
trolled method, which have promising applications in 
drug delivery, bioimaging, photothermal therapy, clin-
ical diagnostics, nanozyme, clinical diagnosis and other 
biomedical applications due to their excellent biocom-
patibility and stability under various physiological 
environment.

However, there are still many challenges in the 
preparation and biomedicine application of highly 
stable Au NPs. Conventional chemical methods require 
some reagents as reducing or protective agents to help 
synthesize Au NP, but these solvents are difficult to 
remove after the reaction. In in vivo biological appli-
cations, high doses of Au NPs are often required to 
meet their therapeutic effects in drug delivery, bioima-
ging, nanozyme, radiotherapy and photothermal ther-
apy of cancer. Regretfully, the toxicity of high doses of 
Au NPs to the organism is unclear, and further clinical 
studies are needed. On the other hand, for bioimaging 
and early clinical diagnosis, it is essential to continue 
to improve the sensitivity and specificity of Au NPs as 
probes to achieve accurate and rapid imaging and diag-
nosis in complex body fluid environments.

In conclusion, we believe that the synthesis strategy 
of highly stable Au NPs further developed and functio-
nalized to meet the application in biomedicine, thereby 
making remarkable contributions to human health.
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