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Abstract

Cognitive processing speed is crucial for human cognition and declines with aging.

White matter hyperintensity (WMH), a common sign of WM vascular damage in the

elderly, is closely related to slower psychomotor processing speed. In this study, we

investigated the association between WMH and psychomotor speed changes

through a comprehensive assessment of brain structural and functional features.

Multi-modal MRIs were acquired from 60 elderly adults. Psychomotor processing

speeds were assessed using the Trail Making Test Part A (TMT-A). Linear regression

analyses were performed to assess the associations between TMT-A and brain fea-

tures, including WMH volumes in five cerebral regions, diffusivity parameters in the

major WM tracts, regional gray matter volume, and brain activities across the whole

brain. Hierarchical regression analysis was used to demonstrate the contribution of

each index to slower psychomotor processing speed. Linear regression analysis dem-

onstrated that WMH volume in the occipital lobe and fractional anisotropy of the for-

ceps major, an occipital association tract, were associated with TMT-A. Besides,

resting-state brain activities in the visual cortex connected to the forceps major were

associated with TMT-A. Hierarchical regression showed fractional anisotropy of the

forceps major and regional brain activities were significant predictors of TMT-A. The

occurrence of WMH, combined with the disruption of passing-through fiber integrity

and altered functional activities in areas connected by this fiber, are associated with a

decline of psychomotor processing speed. While the causal relationship of this
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WMH-Tract-Function-Behavior link requires further investigation, this study

enhances our understanding of these complex mechanisms.
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tractography, white matter hyperintensity

1 | INTRODUCTION

Psychomotor processing speed describes the amount of time taken to

process a set of cognitive operations (Miyake et al., 2000). It is crucial

for human brain cognition, and it declines with age (Burgmans et al.,

2011; Lu et al., 2011; Morgan, 2007; Voineskos et al., 2012). Slower

psychomotor processing speeds can significantly impair daily activities

(Pantoni, 2010). Several studies have revealed that decline in

processing speed is associated with white matter hyperintensity

(WMH), a common symptom in the elderly population (Atwi et al.,

2018; Wright et al., 2008). The WMH appears hyper-intense patches

in the white matter on T2 and T2FLAIR images (Fazekas et al., 1993;

Wardlaw et al., 2013), and is vascular originated (Wardlaw, Smith, &

Dichgans, 2019). While WMH may slow down the processing speed,

its intermediate mechanisms have not been fully defined.

The association between WMH and processing speed decline are

well studied and the WMH distribution pattern is important. Extended

distributions of WMH around the anterior and posterior per-

iventricular horn region, as opposed to deep white matter areas, are

associated with executive dysfunction (Lampe et al., 2019; Smith

et al., 2011; Sudo et al., 2012; Sun et al., 2017). This phenomenon can

be explained by WMH in different locations that are associated with

white matter damage on different fibers. Further studies found that

FA changes in the anterior thalamus radiata, corpus callosum, and cin-

gulum are related to impaired executive functions in patients with

cerebral small vessel disease (Bender, Völkle, & Raz, 2016; Ghanavati

et al., 2018; Johnson et al., 2017; Papma et al., 2014; Tuladhar et al.,

2015). Based on these findings, it has been proposed that slower

processing speeds caused by WMH are a result of “disconnection,”

arguing that disrupted fiber integrity slows information flow among

different brain regions, leading to brain activity alterations. Indeed,

brain functional changes contribute to processing speed decline (Fjell

et al., 2017; Jacobs et al., 2012; Langen et al., 2018; Madden et al.,

2017; O'Sullivan et al., 2001; Seiler et al., 2018; Shenkin et al., 2005;

Tuladhar et al., 2016). Whether this is caused by fiber disruption or

gray matter damage remains undefined.

Previous studies implicated a possible association between WMH,

white matter tract, and brain function and behavior, suggesting that

WMH contributes to brain cognition decline by damaging passing-

through fibers and altering brain activities in regions connected by the

fibers. Indeed, severe fiber demyelination is observed in WMH areas

(Muñoz Maniega et al., 2019). As the majority of brain function relies

on efficient information transmission through brain fibers, its

microstructural integrity directly affects information processing in the

connected cortex (O'Sullivan et al., 2001), and may also cause retro-

grade neuron degeneration (Duering et al., 2015; Tuladhar et al.,

2015). While this WMH-Tract-Function-Behavior link aligns with our

neuroscience knowledge, further supporting evidence is required. Pre-

vious studies explored this link by analyzing the relationship between

processing speed and one or two brain features (Dhamoon et al.,

2018; Hirsiger et al., 2017; Lampe et al., 2017; Marquine et al., 2010;

Seiler et al., 2018; Smith et al., 2011; Tuladhar, Reid, et al., 2015;

Tullberg et al., 2004), and the results were inconsistent (Madden et al.,

2017; Seiler et al., 2018; Shi et al., 2017). Alterations that are specifi-

cally related to spatial relationships of brain structural and functional

changes have not been unified.

This study had two primary goals. The first was to fully demon-

strate whether WMH, fiber integrity, and gray matter alterations are

associated with psychomotor processing speed changes. To achieve

this goal, we included the analyses of macrostructure (distribution pat-

terns of WMH and regional gray matter volume), microstructure (fiber

integrity), and brain resting-state activities. We used the Trail Making

Test part A (TMT-A) assess psychomotor processing speed. Due to

the involvement of the speed of processing, attention, visual scanning

and search, number recognition, numeric sequencing, TMT-A was

believed to assess the cognitive domains including processing speed

mental flexibility and visual-motor skills and has been widely used to

evaluate psychomotor processing speed in healthy subjects and

patients (ter Telgte et al., 2018). Our previous study has also demon-

strated that TMT-A completion time was related to WMH severity

(Luo et al., 2017). Our second goal was to validate the WMH-Tract-

Function-Behavior link, by observing whether an overlapping pattern

among results derived from different modalities exists. As previous

studies have shown inconsistent results, we did not select priori

regions or tracts, allowing us to capture the spatial patterns of focal

pathology that could be more general and universal.

2 | SUBJECTS AND METHODS

2.1 | Subjects

The study was approved by the Medical Ethics Committee of the Sec-

ond Affiliated Hospital, Zhejiang University School of Medicine. The

written informed consents were obtained from all subjects.

We retrospectively reviewed patients admitted to the Department

of Neurology who received brain MRI and were diagnosed with
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cerebral small vessel disease between December 2015 and December

2017. Those patients had no specific symptoms but were found to

have WMH lesions, which indicate mild alterations in brain vascular

systems. Inclusion criteria were as follows: (a) visible WMHs on T2

FLAIR; (b) Fazekas score of WMHs >2; (c) age > 40; (d) normal vision

and hearing. Exclusion criteria were as follows: (a) WM lesions of non-

vascular origin (immunological-demyelinating, metabolic, toxic, infec-

tious, etc.); (b) severe head motion during MRI scanning; (c) history of

stroke, multiple sclerosis, Alzheimer's disease, Parkinson's disease, and

head trauma.

Sixty subjects were included after hierarchical exclusion. Exclusion

details are shown in Figure 1. Demographic information and vascular

risk factors including age, gender, diabetes, hypertension, hyperlipid-

emia, heart disease, smoking, and drinking histories were recorded in

Table 1.

2.2 | Neuropsychological assessment

The neuropsychological condition of each subject was assessed by

the mini-mental state examination (MMSE), Montreal Cognitive

Assessment (MoCA). Psychomotor processing speeds were evaluated

with TMT-A (Bowie & Harvey, 2006). In part A, all the participants

used a pencil to connect a series of 25 encircled numbers in numerical

order under the standard administration instructions. The completion

time is evaluated by scoring the time in seconds, and the maximum

completion time for TMT-A was limited to 180 s.

2.3 | MRI data acquisition

All subjects experienced multi-model MRI on a 3.0 T MR (MR750, GE

Healthcare) scanner using an 8-channel brain phased array coil. Scanning

modalities included high-resolution 3D sagittal T1-weighted imaging

(3DT1), T2 FLAIR imaging, diffusion tensor imaging (DTI) and resting-

state functional magnetic resonance imaging (rs-fMRI). 3DT1 was

acquired using spoiled gradient echo sequenceswith TR/TE=7.3/3.0ms,

TI = 450 ms, flip angle = 8�, slice thickness = 1 mm, matrix = 250 × 250,

field of view (FOV) = 250 mm × 250 mm. The sequence parameters of

T2 FLAIR were: TR/TE = 8,400/152 ms, TI = 2,100 ms, flip angle = 90�,

slice thickness = 4 mm without slice gap, matrix size = 256 × 256,

FOV = 240 mm × 240 mm. DTI was performed with a single shot,

diffusion-weighted spin echo echo-planar imaging sequence. Maximum

b-values were 1,000 s/mm2 in 30 noncollinear directions; 5 volumes

were acquired without diffusion weighting (b-value = 0 s/mm2). Other

parameters of DTI were as follows: TR/TE = 8,000/80.8 ms, flip

angle = 90�, slice thickness = 2 mm without slice gap, matrix

size = 128 × 128, FOV= 256 × 256. Rs-fMRIwas acquired using a gradi-

ent recalled echo/echo planar imaging sequence and comprised a time

series of 180 volumeswith the following parameters: TR/TE = 2,000/30-

ms; flip angle = 77�; FOV = 240 mm × 240 mm; matrix size = 64 × 64;

slice thickness = 4 mm; slice gap = 1 mm; slices = 38.

2.4 | Image processing and analysis

2.4.1 | WMH lesion distribution analysis

Based on our previous studies, WMH volumes in different regions, as

opposed to whole brain WMH volumes, were specifically related to

psychomotor speed reduction. We initially assessed WMH volumes in

five cerebral ROIs. The detailed procedure of WMH segmentation has

been described in our previous studies (Jiaerken et al., 2019; Luo

et al., 2017). In general, 3DT1 image and T2 FLAIR images of each

subject were used to automatically segment WMH lesions using the

F IGURE 1 Subject selection flowchart. Patients with WMHs
were reviewed between December 2015 and December 2017 from
the Department of Neurology. A total of 60 subjects were included in
after hierarchical exclusion. WMHs, white matter hyperintensities

TABLE 1 Clinical and demographic data of participants

N = 60

Age, years, mean (SD) 64.8 (9.6)

Males (%) 30 (50)

Diabetes (%) 9 (15.0)

Hypertension (%) 37 (61.7)

Hyperlipidemia (%) 2 (3.3)

History of heart disease (%) 2 (3.3)

History of smoking (%) 16 (26.7)

History of drinking (%) 15 (25.0)

MMSE (SD, range) 26.9 (2.6, 17–30)

MoCA (SD, range) 23.5 (3.4, 14–30)

TMT-A completion time (SD, s) 82.22 (34.90)

WMHV (SD, cm3) 21.5 (16.4)

Frontal WMHV (SD, cm3) 7.98 (7.82)

Temporal WMHV (SD, cm3) 1.89 (2.01)

Parietal WMHV (SD, cm3) 7.60 (6.43)

Occipital WMHV (SD, cm3) 1.12 (1.16)

Subcortical WMHV (SD, cm3) 4.20 (2.61)

ICV (SD, cm3) 1,423.1 (141.8)

Note: Data are presented as mean (SD, range) or number (percentage).

Abbreviations: ICV, intracranial volume (cm3); MMSE, mini-mental state

examination; MoCA, Montreal Cognitive Assessment; TMT-A, Trail

Making Test Part A (second); WMHV, white matter hyperintensity

volume (cm3).
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Lesion Segmentation Toolbox in SPM12 (Schmidt et al., 2012). All

voxels in the 3DT1 images were labeled as gray matter, white matter,

or cerebrospinal fluid. The hyper-intense regions of each tissue class

were extracted based on the T2 FLAIR images. Experiencing an itera-

tive algorithm, the lesion expanded based on voxel-wise weighted

assumption and the anatomical WM location. The segmented results

were visually inspected and manually corrected in ITK-SNAP software

(www.itksnap.org).

We co-registered the standard atlas (UNC adult brain atlas tem-

plate, created by University of North Carolina at Chapel Hill, www.

nitrc.org) to the 3DT1 images of each subject. The UNC lobar

parcellation mask had five different ROIs, encoding the frontal, occipi-

tal, temporal, parietal lobe, and subcortical region. The 3DT1 image

was co-registered to T2 FLAIR and the deformation field was applied

to the registration of individual cerebral masks to T2 FLAIR images.

These cerebral masks were used to extract the WMH volume in five

cerebral ROIs by combing WMH lesion maps.

2.4.2 | VBM analysis

VBM was used to assess the relationship between regional gray mat-

ter volume and processing speed, and was implemented by the Statis-

tical Parametric Mapping toolbox (SPM12, http://www.fil.ion.ucl.ac.

uk/spm). Processing steps included: (a) Segment T1 weighted images

into gray matter, white matter, and cerebrospinal fluid (CSF) using the

unified segmentation module. (b) Study-specific group templates using

Diffeomorphic Anatomical Registration using Exponentiated Lie alge-

bra (DARTEL) (Ashburner, 2007), through which we could achieve

accurate inter-subject registration. (c) Normalization of each partici-

pant's brain into the MNI space, using the group brain template as the

intermediate image. Normalized images were modulated to ensure

that the relative gray matter volumes were preserved following spatial

normalization. (d) Modulated GM images were smoothed with a 6 mm

FWHM Gaussian kernel filter. Two specialized radiologists visually

checked the output results in addition to the correction of segmenta-

tion errors based on corresponding WMH lesion masks.

2.4.3 | Fiber tract analysis

To explore the relationship between white matter integrity and psy-

chomotor speed, we used TRACULA (TRActs Constrained by Under-

Lying Anatomy) (Yendiki, Reuter, Wilkens, Rosas, & Fischl, 2016), a

probabilistic automatic tracking method based on Freesurfer (version

6.0, http://surfer.nmr.mgh.harvard.edu/fswiki) and FSL (https://fsl.

fmrib.ox.ac.uk/fsldownloads), to perform fiber reconstruction.

TRACULA utilizes the underlying anatomic pathways from the fiber

tracts atlas of the training datasets and is capable of reconstructing

18 major white matter tracts.

The workflow and technical details are described in prior publica-

tion (Lee et al., 2015). In general, (a) Structural segmentation: Cortical

parcellation and subcortical segmentation of raw T1-weighted data

were implemented in FreeSurfer. The structure segmentation results

of each subject, covering the locations and orientations of tracts, were

required as anatomical references for tract tracking; (b) Pre-processing

of DTIs: A standard pre-processing method for DTI, including eddy

currents and motion correction, was performed by registering the

diffusion-weighting to the b = 0 images. Tensor fitting was used for

extraction of tensor-based measures (i.e., FA, MD); (c) Reconstruction:

the FSL's bedpostX algorithm which is based on a “ball-and-stick” dif-

fusion model was used to calculate the model parameters of each

voxel (Behrens et al., 2003; Behrens, Berg, Jbabdi, Rushworth, &

Woolrich, 2007). To ensure the pre-processing quality for diffusion

MRIs, the head motion index computed from the affine registration

was evaluated in the TRACULA report (Yendiki, Koldewyn, Kakunoori,

Kanwisher, & Fischl, 2014). Two subjects were excluded due to abrupt

translation and rotation. By combining the anatomic structure seg-

mentation of each subject's T1 imaging, the probabilistic distribution

of the pathways was reconstructed.

Finally, 18 WM pathways were reconstructed from each subject

(Figure 2), including the corticospinal tract (CST), uncinate fasciculus

(UNC), inferior longitudinal fasciculus (ILF), anterior thalamic radia-

tions (ATR), cingulum—cingulate gyrus bundle (Ccg), cingulum—

angular bundle (Cab), superior longitudinal fasciculus—parietal branch

(SLFp), superior longitudinal fasciculus—temporal branch (SLFt), cor-

pus callosum—forceps major (FMajor), and corpus callosum—forceps

minor (FMin). Except for the corpus callosum, all other pathways were

reconstructed for the left (L) and right (R) hemisphere. The average FA

of each tract was obtained.

Each subject's reconstructed tracts underwent visual inspection,

and aberrant or truncated fiber tracts were excluded. Five subjects

were excluded due to motion artifacts and reconstruction failures,

leaving 62 cases for subsequent analyses.

2.4.4 | Resting-state functional MRI

The processing of raw rs-fMRIs was performed using the Statistical

Parametric Mapping toolbox (SPM12, http://www.fil.ion.ucl.ac.uk/

spm) and the Data Processing Assistant for Resting-State fMRI tool-

box (DPARSF, http://www.rfmri.org). The initial 10 time points of

each rs-fMRI scan were removed to eliminate the effects of signal

non-equilibrium and unsteady states. The remaining rs-fMRI data

underwent slice timing to correct acquisition delays. Then, the func-

tional volumes for each subject were motion-corrected using rigid-

body transformation to align all BOLD images to the first volume

(Yan, Wang, Zuo, & Zang, 2016). Data were discarded if the transla-

tion exceeded 2 mm or if the rotation exceeded 2
�
. Two subjects were

excluded under these criteria. The corrected rs-fMRI images were co-

registered to the standard Montreal Neurological Institute (MNI)

space via T1-weighted images from each subject, resampled to the

3-mm isotropic voxels and spatially smoothed using 6 × 6 × 6 mm3

Gaussian kernels. Nuisance covariate regression was used to regress

out the head motion using the 24 motion parameters from the imag-

ing realignment estimation results (Friston, Williams, Howard,

Frackowiak, & Turner, 1996; Satterthwaite et al., 2013; Yan et al.,

2013). To regress out physiological noises, T1-weighted image was

segmented into WM and CSF masks (Ashburner & Friston, 2005).
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F IGURE 2 Workflow of multi-modality imaging pre-processing. (a) Macrostructure analysis. 3DT1 and T2 FLAIR images were used for the
analysis of WMH lesions. 3DT1 images were normalized to the modulated maps following tissue segmentation. We co-registered the standard
atlas to the 3DT1 image of each subject. The 3DT1 image was co-registered to T2 FLAIR, and the deformation field was obtained for the
registration of individual cerebral masks to T2 FLAIR images. The final cerebral masks in the subject's T2 FLAIR space were used to extract the
WMH volume in five cerebral ROIs through combing with the WMH lesion map; (b) DTI-based tractography. The cortical parcellation and
subcortical segmentation of raw 3DT1 data and pre-processing of DTIs were implemented. The probabilistic distribution of the pathways was
reconstructed by combining the tracts atlas and labeled structure segmentation data from each subject in the native diffusion space; (c) Activity
localization. Rs-fMRI was used to obtain the fALFF values, and the coefficient map of each subject was normalized to z-scores across the whole
brain after pre-processing. DTI, diffusion tensor imaging; fALFF, fractional amplitude of low-frequency fluctuations; GM, gray matter; Rs-fMRI,
resting-state functional magnetic resonance imaging; WMH, white matter hyperintensity
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Then the CompCor method was applied to extract the first five princi-

pal components from a combined WM/CSF mask which were

regressed out in the step of nuisance covariate regression (Behzadi,

Restom, Liau, & Liu, 2007).

The pre-processed functional data were used for fALFF calcula-

tions at each intracranial voxel. The Fractional amplitude of low-

frequency fluctuation (fALFF) representing the ratio of the sum of

amplitudes of low-frequency (0.01–0.08 Hz) to the sum of Fourier

amplitudes across the entire frequency range (Zou et al., 2008), was

calculated using the pre-processed functional data. Specifically, the

pre-processed time series for each voxel was first transformed to

the frequency domain using a Fast Fourier Transform (FFT), and the

power spectrum was obtained. The square root of the power spec-

trum was computed at each frequency of the power spectrum, and

the averaged square root was obtained across the low-frequency

(0.01–0.08 Hz) at each voxel. Then, fALFF value was calculated as the

ratio of the low-frequency power spectrum to the power spectrum of

the entire frequency range. Finally, the generated fALFF coefficient

map of each subject was normalized to z-scores across the whole

brain, which was used to the subsequent analyses.

2.5 | Statistical analysis

All numerical data were analyzed using SPSS version 23.0 (SPSS, Inc.,

Chicago, IL). To examine the relationship between WM lesions and

psychomotor processing speed changes, linear regression analyses

were performed between the TMT-A completion time and WM imag-

ing features, including WMH volumes in five cerebral ROIs and the

average FA values from 18 reconstructed tracts, controlling for age

and gender.

TMT-A completion times were set as the dependent variable. Var-

iables that reached a p value of <.05 were selected as inputs for fur-

ther hierarchical multiple regression models to estimate significant

predictors of psychomotor processing speed.

To investigate the association of psychomotor processing speed

with regional gray matter volume and brain activity, voxel-wise linear

regression analyses were performed between the TMT-A completion

time and brain maps (modulated gray matter map and fALFF maps) in

each voxel, controlling for age and gender. Significant result was

corrected by false discovery rate (FDR) method, controlling for age

and gender (p < .05). After voxel based comparisons across whole

brain, the mean fALFF values were extracted from significant clusters

for further analysis.

Based on these findings, significant variables of structural-

functional indices were entered into hierarchical multiple regression

analysis in a forward fashion, so that variables were only entered if

they statistically improved the model. TMT-A completion times were

set as the dependent variable. Age was entered into the initial block.

Occipital WMH volumes, FA in tracts (FA in FMajor, right Cab, and

right UNC) and regional fALFF values were added into further blocks

in a stepwise forward fashion. Adjusted R2 (explanation of variance),

incremental explanation of variance (Δ), standardized beta values (βj)

and the p values of the change in variance between the models were

calculated.

3 | RESULTS

3.1 | Demographic and clinical data

Sixty subjects were included in the final analysis. Detailed demo-

graphic and clinical data are presented in Table 1. Thirty subjects were

male. The average age was 64.8 ± 9.6. All subjects were right-handed.

TABLE 2 Linear regression analysis between regional WMH
volumes and TMT-A completion time

WMHV in cerebral ROIs

TMT-A

β p

Frontal WMH .050 .667

Temporal WMH .072 .540

Parietal WMH .097 .402

Occipital WMH .266 .040*

Subcortical WMH −.018 .877

Note: Beta values (β) are presented. Adjusted for age, gender.

Abbreviations: TMT-A, Trail Making Test Part A; WMH, white matter

hyperintensity; WMHV, white matter hyperintensity volume.

*p < .05.

TABLE 3 Linear regression analysis between tract average FA and
TMT-A completion time

Tract_average FA

TMT-A

β p

FMajor −.259 .028*

FMinor −.152 .184

Left Right Left Right

ATR −.046 −.093 .689 .431

Cab −.203 −.232 .089 .045*

Ccg −.154 −.085 .182 .469

CST −.194 −.141 .088 .221

ILF −.099 −.074 .418 .554

SLFp −.108 −.033 .388 .784

SLFt −.112 −.234 .366 .052

UNC −.081 −.288 .490 .010*

Note: Beta values (β) are presented. Except for the FMajor and FMinor, all

other tracts were reconstructed for the left and right hemisphere.

Abbreviations: ATR, anterior thalamic radiation; Cab, cingulum angular

bundle; Ccg, cingulum-cingulate gyrus bundle; CST, corticospinal tract;

FMajor, forceps major; FMinor, forceps minor; ILF, inferior longitudinal

fasciculus; SLFp, superior longitudinal fasciculus-parietal; SLFT, superior

longitudinal fasciculus-temporal; UNC, uncinate fasciculus. Adjusted for

age, gender.

*p < .05.
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3.2 | Linear regression analysis between WMH
volumes and TMT-A performance

WMH volumes located in the occipital lobe showed a significant asso-

ciation with TMT-A (β = .266; p = .040), controlling for age and gen-

der. Relevant details are presented in Table 2.

3.3 | Linear regression analysis between gray matter
volumes and TMT-A performance

There was no significant correlation between modulated gray matter

maps and TMT-A performance.

3.4 | Linear regression analysis between tract
average FA and TMT-A performance

The average FA values of the constructed 18 tracts are summarized in

Table S1. The 18 tracts were reconstructed based on the DTI of each

subject. Figure 2 displays the reconstructed tracts from a representative

subject. The results of linear regression analysis are presented in Table 3.

TMT-A had a close association with FA in FMajor (β = −.259; p = .028),

right Cab (β = −.232; p = .045), and right UNC (β = −.288; p = .010).

Figure 3 showed the correlations between the average FA in three signif-

icant tracts and TMT-A completion time.

3.5 | Linear regression analysis between fALFF and
TMT-A performance

We found that fALFF values mainly clustered in the left occipital lobe

(Figure 4) and negatively correlated with TMT-A performance after FDR

correction. Specifically, subjects with lower fALFF values had longer TMT-

A completion times. Detailed clusters information is provided in Table 4.

3.6 | Hierarchical multiple regression analysis

As shown in Table 5, age (Model 1) explained 23.8% of the variance in

psychomotor processing speeds. FA in FMajor (Model 2) increased

F IGURE 3 The correlation between the average FA of white matter tracts and TMT-A completion time. The results of linear regression
analysis showed that TMT-A had a close association with FA in FMajor (β = −.259; p = .028), right Cab (β = −.232; p = .045), and right UNC (β =
−.288; p = .010). Cab, cingulum—angular bundle; FA, fractional anisotropy; FMajor, forceps major; TMT-A, Trail Making Test Part A; UNC,
uncinate fasciculus

F IGURE 4 Clusters of fALFF values negatively correlated with TMT-A performance (FDR corrected). In rs-fMRI analyses, significantly
relevant regions mainly clustered in the occipital lobe, including part of the superior occipital gyrus and middle occipital gyrus (FDR corrected,
p < .05). fALFF, fractional amplitude of low-frequency fluctuations; FDR, false discovery rate; TMT-A, Trail Making Test Part A
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TABLE 4 The summary of brain
regions in the significant clusters

Regions

Peak MNI

Voxelsx y z

BA 18/Cuneus_L/Occipital_Sup_L −18 −90 21 24

Occipital lobe /Occipital_Mid_L −33 −78 9 4

Cerebellum_8_R 36 −51 57 3

Left cerebellum/cerebellum posterior lobe −12 −45 −42 2

Note: The results of whole brain fALFF analysis, corrected by false discovery rate (FDR) method, adjusted

for age and gender, p < .05.

Abbreviations: BA, Brodmann's area; Cerebellum_8_R, right cerebellum 8; Cuneus_L, left cuneus; MNI,

Montreal Neurological Institute; Occipital_Sup_L, left superior occipital gyrus; Occipital_Mid_L, left

middle occipital gyrus.

TABLE 5 The summary of hierarchical regression models to predict TMT-A performance

Psychomotor processing speed

Model Independent variables Adjusted R2 (Δ) βj p

Model 1 23.8 <.001

Age .501 <.001

Model 2 27.8 (5.0) .047

Age .553 <.001

FA in FMajor −.231 .047

Model 3 54.9 (27.1) <.001

Age .402 <.001

FA in FMajor −.200 .030

Regional fALFF values −.540 <.001

Note: Adjusted R2 (explanation of variance in the percentages) and standardized beta values (βj) were presented for significant findings. Incremental

explanations of variance are shown in brackets as delta (Δ) of adjusted R2 in percentage. p < .05.

Abbreviation: FMajor, forceps major.

F IGURE 5 Spatial overlapping diagram of the analyses results between processing speed and macrostructure, microstructure, and brain
resting-state activities. Blue represents the reconstructed FMajor correlated with the TMT-A completion time; yellow represents the significant
cortical region from linear regression analysis between the TMT-A completion times and resting-state brain activity; orange represents average
WMH distribution in the occipital lobe of the subjects. FMajor, forceps major; TMT-A, Trail Making Test Part A
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the variance to 27.8% (R2Δ = 5.0%, p = .047). Regional fALFF values

as a predictor (Model 3) significantly increased the variance to 54.9%

(R2Δ = 27.1%, p < .001).

4 | DISCUSSION

We performed a combined analysis of macrostructure, microstructure,

and cortical activity to explore neural mechanisms of psychomotor

processing speed changes in elderly individuals with WMH. We found

that TMT-A completion times were associated with WMH volume,

the mean tract FA and resting-state brain activity, suggesting that

structural and functional degeneration contributes to age-related

decline in cognitive function. Interestingly, the results from three

modalities converged in the occipital lobe, with precise spatial overlap

(Figure 5). In addition, hierarchical multiple regression analysis rev-

ealed that FA in FMajor and local fALFF could predict TMT-A comple-

tion time. These results provide a comprehensive understanding of

the association between WMH and psychomotor processing speed

alterations during aging, which supported the aforementioned WMH-

Tract-Function-Behavior link theory.

We found that the higher the occipital WMH burden, the higher

the TMT-A score, which reflected a lower psychomotor speed. Recent

studies reported that lower psychomotor speeds were associated with

a higher frequency of WM lesion in the parieto-occipital lobe (Atwi

et al., 2018; Foster-Dingley et al., 2016; Hirsiger et al., 2017). It was

also reported that a greater WMH burden in the posterior WM led to

poorer visual search performance, which is a domain of psychomotor

processing speed (Davis et al., 2009; Marquine et al., 2010). Consider-

ing that visual searches are a key stage in trail-making tests, these

results are consistent with our study.

Second, we found that the integrity of several major WM tracts

was related to TMT-A completion times. As mentioned, microstruc-

tural integrity of the WM tracts impacts on brain activity in the

regions that connect the tracts. However, the impairments on specific

fibers could not be accurately located to specific fibers using common

voxel-based statistical methods (Duering et al., 2014). While this can

be improved using tract-based spatial statistics (TBSS), it remains a

method for the detection of local alterations considering such

approach creates a mean FA map of the centers of all fiber bundles by

filling the FA value from the nearest relevant tract centre for each

skeleton voxel (Smith et al., 2006). Moreover, as stated in Bach et al.

(2014) and Wang, Luo, Mok, Chu, and Shi (2016), this approach lacks

an explicit tract representation and limited anatomical specificity,

because it overlays the significant results upon the skeleton voxels.

To better assess tract-level degeneration, we used a novel tract recon-

struction technique based on global probabilistic fiber tracking

(section 2.4.3). We found that the mean FA of FMajor, UNC, and Cab

was correlated with TMT-A performance.

The FMajor connects bilateral occipital cortex, and links the parie-

tal lobe and the visual cortex (Caminiti, Ghaziri, Galuske, Hof, &

Innocenti, 2009; Hofer & Frahm, 2006). This involves connecting the

dorsal visual pathway, which is vital for spatial information analysis

(Ceschin et al., 2015). It has been shown that the FMajor plays an

essential role in regulating the efficiency of visual attention (Niogi,

Mukherjee, Ghajar, & McCandliss, 2010; Park et al., 2008). Impaired

integrity of the FMajor affects the conduction efficiency of visual

information transduction. For example, a previous case report found

that patients with focal hemorrhages in the FMajor showed dysfunc-

tion in their ability to manipulate visuospatial information and orienta-

tion (Tamura et al., 2007).

The UNC is considered as an association fiber that connects the

frontal, temporal and subcortical structures. A significant association

between UNC and information processing speeds is frequently

reported (Diao et al., 2015; Kern et al., 2015). Specifically, the

impaired integrity of UNC was related to poor performance in the

visuospatial task (Metzler-Baddeley, Jones, Belaroussi, Aggleton, &

O'Sullivan, 2011). Notably, our results showed that the right but not

left UNC had a significant correlation with TMT-A performance. This

was in line with the previous findings on the functional lateralization

of the UNC (MacPherson et al., 2017), suggesting that the left UNC is

prone to speech memory, and the right UNC correlates with spatial

memory (Kern et al., 2015; Metzler-Baddeley et al., 2011).

The function of Cab remains blurred, but its anatomic position is

close to the visual association cortex in the occipital lobe (Silvanto,

Muggleton, Lavie, & Walsh, 2009). Previous studies have shown that

the right angular gyrus (AG) is likely to subserve orienting spatial

attention ability (Chambers, Payne, Stokes, & Mattingley, 2004;

Chechlacz, Rotshtein, & Humphreys, 2012; Yin et al., 2012). It is possi-

ble that the right Cab involves visual information processing, contrib-

uting to trail-making tasks.

Although previous studies have demonstrated a heavier WMH

burden associated with lower tract FA (Seiler et al., 2018). We also

verified that WMH affects the integrity of the whole tract (WMH part

and NAWM part) by extracting the average FA of the WMH positive

part of the tracts (lesion-FA) and the remaining (normal appearing

white matter FA, NAMW-FA). These results were in line with previous

studies and are summarized in Tables S2 and S3.

Thirdly, we used resting-state fMRI to explore the correlation

between changes in psychomotor speed and abnormal cortical func-

tion activities in aging, and its relationship with structural analyses.

Interestingly, the significant cortical region derived from our fMRI

analysis was also located in the occipital lobe (in the superior occipital

gyrus) and was precisely connected with the FMajor (Figure 4). In the

literature, this part of the dorsal visual pathway strongly modulates

attention, orientation (Blankenburg et al., 2010; Madden et al., 2002),

and spatial frequency, contributing to the integration of complex

visual information (Blankenburg et al., 2010). Dysfunction in this brain

region may damage visual–spatial integration and deteriorate TMT-A.

Finally, by summarizing the results from different modalities, we

found that the WMH burden disrupted the integrity of the forceps

major and abnormal cortical activities in the occipital lobe were signifi-

cantly associated with lower psychomotor processing speeds. Further-

more, the results derived from different modalities displayed

favorable spatial correspondence (Figure 4). The forceps major passes

through the WMH lesions, which were located near the posterior

WANG ET AL. 613



horn of the lateral ventricles. The areas where brain activities are

associated with TMT-A completion time were directly connected by

the forceps major. These findings not only highlight the importance of

occipital brain structures and functions for psychomotor processing

speeds, but provide strong support for the WMH-Tract-Function-

Behavior link (Fjell et al. 2017; Langen et al., 2018; Madden et al.,

2017; Seiler et al., 2018). Notably, although assessed only psychomo-

tor processing speeds, this theory can be generalized to other brain

functional decline during aging.

Some limitations of our study should be considered. First, as cere-

bral small vessel disease involves several risk factors, it is difficult to

identify matched aging subjects without vascular damage. Second,

while a spatial relationship among different brain features was

observed, their causality requires further exploration. Longitudinal

studies in larger samples are required to validate our findings.

5 | CONCLUSION

In conclusion, we explored the association between important brain

imaging features and psychomotor processing speed decline using a

multi-modality approach. A variety of structural and functional alter-

ations were found related to TMT-A performance, and the results

from different modalities converged in the occipital lobe, highlighting

that WMH lesions, FMajor tract disruption, and altered cortical activ-

ity are important for the TMT-A decline during aging. In addition, the

precise spatial overlap from different modalities supports the WMH-

Tract-Function-Behavior link, which is a useful framework for under-

standing the association between WMH occurrence and brain

functional decline during aging.
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