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Segmentation of infarcts at hyperacute stage is challenging as they exhibit substantial variability which may even be hard for
experts to delineate manually. In this paper, a sparse representation based classification method is explored. For each patient,
four volumetric data items including three volumes of diffusion weighted imaging and a computed asymmetry map are employed
to extract patch features which are then fed to dictionary learning and classification based on sparse representation. Elastic net
is adopted to replace the traditional 𝐿

0
-norm/𝐿

1
-norm constraints on sparse representation to stabilize sparse code. To decrease

computation cost and to reduce false positives, regions-of-interest are determined to confine candidate infarct voxels.The proposed
method has been validated on 98 consecutive patients recruited within 6 hours from onset. It is shown that the proposed method
could handle well infarcts with intensity variability and ill-defined edges to yield significantly higher Dice coefficient (0.755 ± 0.118)
than the other two methods and their enhanced versions by confining their segmentations within the regions-of-interest (average
Dice coefficient less than 0.610). The proposed method could provide a potential tool to quantify infarcts from diffusion weighted
imaging at hyperacute stage with accuracy and speed to assist the decision making especially for thrombolytic therapy.

1. Introduction

Irreversible infarcts are critical for the assessment of potential
risk and benefit pertaining to thrombolysis in hyperacute
ischemic stroke [1]. Due to the high sensitivity and specificity
of diffusion weighted (DW) imaging (which consists of T2-
weighted image (𝑏 = 0) to be denoted as B0, a diffusion
weighted image (DWI) with the 𝑏 value being 1000–1500 s/
mm2, and the calculated apparent diffusion coefficient (ADC)
map), it is considered the optimum clinical imagingmodality
for hyperacute ischemic stroke [2]. Previously, it was reported
that DW imaging reversal was not rare [3], putting a ques-
tion mark on determination of infarcts from DW imaging.
Recently, it has been found that the DW imaging reversal is
rare [1] and does not translate to permanent tissue salvage
[4]. This new finding justifies the urgent need for accurate
determination of infarcts from DW imaging.

Ischemic lesions are inhomogeneous in terms of ischemic
injury and recovery potential [5] and could be classified into 4
categories onDWIs [6]: single lesion with well-defined edges,
single lesionwith ill-defined edges,multiple lesionswithwell-
defined edges, and multiple lesions with ill-defined edges. It
has been shown that lesions at hyperacute stage (i.e., within
6 hours from ictus) exhibit greatest variability in appearance
(Figure 1)whichmakes expert delineation difficult and incon-
sistent [6]. The difficulties in identifying infarcts at hyper-
acute stage were also reflected in an automatic method to
segment infarcts from DWIs, where the segmentation was
substantially less accurate for patients imaged at the time of
admission than for those imaged at 72 hours (mean Dice
coefficient (DC) of 0.63 versus 0.81) [7].

There have been efforts on automatic segmentation of
infarcts from DW imaging. Tsai and coworkers segmented
infarcts from DWIs and ADCmaps based on fuzzy C-means
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Figure 1: Illustration of inhomogeneous ischemic lesions. From (a) to (c): an axial slice of DWI with inhomogeneous infarcts (red and blue
arrows, resp., pointing to hyperintense and isointense DWI regions of the lesion); the corresponding ADC and the ground truth lesion (in
red) overlapped on the DWI slice.

(FCM) clustering [8]: it used the most frequent normalized
DWI intensity 𝐼peak within the brain to remove nonrele-
vant voxels, classified the remaining voxels into 50 clusters,
removed clusters and connected components whose average
DWI intensity was not greater than 𝐼peak + 0.2, eliminated
false positive regions without apparent edges, and got rid
of false positive regions due to magnetic inhomogeneity by
imposing ADC constraints. It reported an average DC of
0.899 ± 0.065 for 22 ischemic patients with stroke onset
within 10 days. Mujumdar et al. [9] segmented infarcts from
DWIs through 3 𝑏 values (𝑏 = 0, 1000, and 2000 s/mm2):
multiple 𝑏 values were employed to impose local contrast
constraints; the left candidates were passed to an active
contour model to refine segmentation. It reported an average
DC of 0.810 ± 0.120 for 41 ischemic stroke patients without
specifying stroke onset time. Prakash et al. [7] segmented
infarcts from DWIs by first identifying axial slices with
ischemic lesions followed by binarization with a global DWI
intensity threshold derived from histogram divergence: it
was basically a global thresholding method based on the
assumption of asymmetry induced by the ischemic lesion;
it was tested on 57 datasets with 46 scanned at the time of
admission without knowing the exact imaging time and 11
scanned at 72 hours from admission, to yield an average DC
of 0.670 ± 0.220.

As images are naturally sparse and have redundant
information, sparse representation has been widely used in
image processing [10]. The first successful application of
sparse representation to computer aided diagnosis was by Liu
and coworkers [11]. Their method was extensively validated
for both colorectal polyp and lungnodule detection and could
achieve superior classification/segmentation performance to
existing methods using support vector machine and its vari-
ants, boosting, logistic regression, relevance vector machine,
or 𝑘-nearest neighbors. The success of sparse representation
based classification/segmentation owes to the fact that a
high-dimensional image can be represented or coded by a
few representative samples from the same class in a low-
dimensionalmanifold and the recent progress of 𝑙

0
-norm and

𝑙
1
-norm minimization technique [12]. Sparse representation

could be used as a classifier for voxel-wise classification.
Zhang et al. [13] made use of sparse representation to seg-
ment cervigram images. Based on traditional constructive
dictionary learning method, they proposed a discriminative
dictionary learning method. The learned discriminative dic-
tionaries were more suitable for classification and achieved
better performance to segment tissues in optical images of
the uterine cervix. A prostate segmentation framework based
on sparse representation was proposed by Gao et al. [14].
Different from conventional dictionary learning method,
discriminative dictionaries were learned through k-means
after feature selection. New samples were classified according
to reconstruction error computed with the learned discrim-
inative dictionaries. It performed better to segment prostate
in computed tomography (CT) images compared with other
state-of-the-art methods.

Sparse representation has also been incorporated into
atlas-based methods for image segmentation. Wang et al.
[15] used sparse representation to build subject-specific atlas
from a series of aligned atlases.The subject-specific atlas built
based on the reconstruction coefficient was integrated into
a level set framework for further accurate segmentation.
Following the same principle, Wang et al. [16] built a patient-
specific atlas from the patch-based sparse representations for
tissue segmentation of cone-beam CT images. Then the built
atlas was integrated into a maximum a posteriori probability-
based convex segmentation framework for accurate segmen-
tation.

There are other applications of sparse representation in
the field of medical image processing. Fang et al. [17] pro-
posed a sparse perfusion deconvolution method to estimate
cerebral blood flow in CT perfusion at low radiation dose.
The sparse dictionary was built from high-dose perfusion
maps. Then the built dictionary was applied to low-dose data
to perform deconvolution-based hemodynamic parameters
estimation.

OnDWIs, infarcts appear as hyperintense and inhomoge-
neous in the form of intensity variation, with complex shapes
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and ambiguous boundaries, which makes manual segmenta-
tion difficult, time consuming, and rater dependent. As time
is critical for hyperacute ischemic stroke patients, especially
for those who are potential candidates to have thrombolytic
therapy, it is highly desirable to quantify their infarcts with
accuracy and speed. To the best of our knowledge, on the one
hand, segmenting infarcts based on sparse representation has
not been reported; on the other hand, efforts on segmenting
hyperacute infarctswith great variability are scarce.These two
issues are to be investigated in this study.

2. Sparse Representation Based Classification

2.1. Sparse Representation. Sparse representation is a power-
ful tool for acquiring, representing, and compressing signals.
Given a dictionary, it selects only a few elements in the dic-
tionary under certain constraints to reconstruct best the sig-
nal through linear combination of the selected elements. Sup-
pose a dictionary 𝐷 ∈ 𝑅

𝑚×𝐾 with 𝐾 elements of 𝑚 dimen-
sions; sparse representation of a signal 𝑠 ∈ 𝑅

𝑚×1 is formulated
as follows:

�̂� (𝑠, 𝐷) = arg min
𝛼∈𝑅
𝐾

‖𝑠 − 𝐷𝛼‖
2

2
,

s.t. ‖𝛼‖0 ≤ 𝜆,

(1)

where 𝛼 ∈ 𝑅
𝐾 is the sparse code or sparse vector, ‖ ⋅ ‖

0
is

𝐿
0
-norm, and 𝜆 is the sparsity which constrains the number

of nonzero elements in the sparse vector 𝛼. Formula (1) is
optimized to find the optimal sparse code that leads to lowest
reconstruction error with a fixed sparsity 𝜆.

The dictionary 𝐷 ∈ 𝑅
𝑚×𝐾 is generally attained through

a dictionary learning process. Given a set of training signals
𝑠
𝑖
∈ 𝑅
𝑚×1

, 𝑖 = 1, 2 . . . , 𝑛, the dictionary𝐷 is constructed such
that the following conditions are met:

min
𝛼,𝐷

𝑛

∑

𝑖=1

𝑠𝑖 − 𝐷𝛼
𝑖



2

2
,

s.t. ‖𝛼‖0 ≤ 𝜆.

(2)

It aims at finding the optimal dictionary 𝐷 that best recon-
structs input training signals under 𝐿

0
-norm constraint on

sparse code 𝛼
𝑖
∈ 𝑅
𝐾×1 of signal 𝑠

𝑖
. The objective function

can be optimized by several algorithms such as K-SVD [18]
or MOD [19].

As the objective functions defined in formulae (1) and (2)
are nonconvex and nonsmooth, finding the solution is NP-
hard. 𝐿

1
-norm could be used as a convex relaxation to replace

𝐿
0
-norm:

�̂� (𝑠, 𝐷) = arg min
𝛼∈𝑅
𝐾

‖𝑠 − 𝐷𝛼‖
2

2
,

s.t. ‖𝛼‖1 ≤ 𝜆

(3)

min
𝛼,𝐷

𝑛

∑

𝑖=1

𝑠𝑖 − 𝐷𝛼
𝑖



2

2
,

s.t. ‖𝛼‖1 ≤ 𝜆,

(4)

where 𝜆 is a parameter that controls the sparsity of sparse
vector 𝛼 and ‖ ⋅ ‖

1
is 𝐿
1
-norm. It can be treated as the LASSO

problem and solved effectively by LARS [20].

2.2. Sparse Representation Based Classification. Sparse repre-
sentation based classification (SRC) has been employed in the
pattern recognition field and achieved state-of-the-art results
in areas like human face recognition [21]. SRC consists of two
stages. At first, given 𝑛 training samples and 𝐶 labels

{(𝑠
𝑖
, 𝑙
𝑖
) | 𝑠
𝑖
∈ 𝑅
𝑚×1

, 𝑙
𝑖
∈ [1, 2, . . . , 𝐶] , 𝑖 = 1, 2, . . . , 𝑛} . (5)

Subdictionaries {𝐷
𝑖
∈ 𝑅
𝑚×𝐾𝑖 | 𝑖 = 1, 2, . . . , 𝐶} are learned

with corresponding samples in every class by formula (2) or
(4), with𝐾

𝑖
being the size of dictionary𝐷

𝑖
.

In the second stage, when a new sample 𝑠 ∈ 𝑅
𝑚×1 is given

to be classified, the global dictionary𝐷 = [𝐷
1
, 𝐷
2
, . . . , 𝐷

𝐶
] ∈

𝑅
𝑚×∑
𝐶

𝑖=1
𝐾𝑖 is used to sparsely represent 𝑠 in a competitive

manner to select basis elements. The reconstruction error of
every class is

𝑟
𝑖
=
𝑠 − 𝐷

𝑖
𝛿
𝑖
(�̂�)



2

2
, 𝑖 = 1, 2, . . . , 𝐶, (6)

where 𝛿
𝑖
(⋅) is a characteristic function that selects the coeffi-

cients associated with the 𝑖th class (𝐷
𝑖
).Then the new sample

is classified into the class with the lowest reconstruction error.
The SRC framework could be employed for medical

image segmentation. However, different from face recogni-
tion, medical images are inherently three-dimensional (3D)
to be computationally demanding. In addition, there could
be strongly correlated samples in the object and background
such that the learned subdictionaries could contain strongly
correlated basis elements which make the sparse code unsta-
ble. We explore the extension of SRC for segmenting cerebral
infarcts from DW imaging to be elaborated next: to reduce
the computational cost by confining the searching space and
to avoid the unstable sparse coding by replacing the 𝐿

0
-

norm/𝐿
1
-norm with elastic net.

3. Infarct Segmentation Based on
Sparse Representation

The proposed method extends the SRC framework to seg-
ment cerebral infraction (Figure 2). It consists of dictio-
nary learning and voxel-wise classification. For a patient, in
addition to the 3 volumes of DW imaging, a new volume
is calculated to represent the asymmetry feature due to
infarction. Local patches of the 4 volumes are employed
to extract patch features. During voxel-wise classification,
regions-of-interest (ROIs) are extracted based on expansion
of the ischemic regions that have been validated previously
[22]. Only voxels within ROIs are considered as candidates
for classification based on elastic net.

Denote the baseline B0, DWI, and ADC images as B0(𝑥,
𝑦, 𝑧), DWI(𝑥, 𝑦, 𝑧), and ADC(𝑥, 𝑦, 𝑧), respectively. The algo-
rithm can be decomposed into preprocessing, feature extrac-
tion, dictionary learning, derivation of ROIs, and classifica-
tion.
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Figure 2: Flow chart of the proposed method, ROI for region-of-interest.

3.1. Preprocessing [23]. The original volumes can have large
intensity range which is rescaled to [0, 255] to facilitate sub-
sequent processing.

The 3 volumes B0(𝑥, 𝑦, 𝑧), DWI(𝑥, 𝑦, 𝑧), and ADC(𝑥,
𝑦, 𝑧) all play a role in differentiating infarct voxels from

noninfarct voxels. Specifically, hyperintense B0(𝑥, 𝑦, 𝑧) could
be used for differentiating fresh from old infarction; an
infarct will have hyperintense DWI(𝑥, 𝑦, 𝑧) and hypointense
ADC(𝑥, 𝑦, 𝑧). A volumeDWI ADC(𝑥, 𝑦, 𝑧) can be generated
to emphasize infarcts.

DWI ADC (𝑥, 𝑦, 𝑧) =

{

{

{

DWI (𝑥, 𝑦, 𝑧) − ADC (𝑥, 𝑦, 𝑧) , if DWI (𝑥, 𝑦, 𝑧) − ADC (𝑥, 𝑦, 𝑧) > 0

0, otherwise.
(7)

As infarction is generally asymmetrical with respect to the
midsagittal plane (MSP), a composite volume is formulated
and is denoted as ASYM(𝑥, 𝑦, 𝑧) in the following way:

ASYM (𝑥, 𝑦, 𝑧) =

{

{

{

dif (𝑥, 𝑦, 𝑧) , if dif (𝑥, 𝑦, 𝑧) > 0

0, otherwise,

dif (𝑥, 𝑦, 𝑧) = DWI ADC (𝑥, 𝑦, 𝑧)

− max
(𝑢,V)∈𝑁𝑠(𝑥0 ,𝑦0)

DWI ADC (𝑢, V, 𝑧) ,

(8)

where (𝑥
0
, 𝑦
0
) and (𝑥, 𝑦) are symmetrical to the midsagittal

line (which is the intersection between the MSP and the axial
slice 𝑧) on the axial slice 𝑧 and𝑁

𝑠
(𝑥
0
, 𝑦
0
) is the neighborhood

of (𝑥
0
, 𝑦
0
) and is set as 5 ∗ 5 neighborhood. MSP is extracted

fromB0(𝑥, 𝑦, 𝑧) based on local symmetry and outlier removal
[24]. Figure 3 shows an axial slice of DWI,ADC, and ASYM.

3.2. Feature Extraction. Based on the fact that image patches
could capture more anatomical information than a single
voxel, patch-based methods have been recommended for
label fusion and segmentation [10]. For every sample voxel,

four patches centered at the voxel with size 𝑑 are obtained
from volumes B0, DWI, ADC, and ASYM. Then intensity
values of each patch are rearranged into a column-vector.
These column-vectors are concatenated into the final feature
vector.

In this study, both two-dimensional (2D) and 3D patches
will be explored. Square patches are obtained from axial slice
of four volumes to form a 4 ∗ 𝑑

2 feature vector for 2D
patches; cuboid patches are obtained from four volumes and
concatenated into a 4∗𝑑3 feature vector for 3D patches. Here
𝑑 = (2 ∗ 𝑅

𝑝
+ 1) with 𝑅

𝑝
= 1, 2, 3 . . ., being the side length of

the patch.

3.3. Dictionary Learning. To stabilize the sparse code, a 𝐿
2
-

norm regularization term is added to form the elastic net [25,
26] for deriving the sparse code in the form of

�̂� = argmin
𝛼

1

2
‖𝑠 − 𝐷𝛼‖

2

2
+ 𝜆
1 ‖𝛼‖1 +

𝜆
2

2
‖𝛼‖
2

2
, (9)

where 𝜆
1
and 𝜆

2
are, respectively, parameters to control spar-

sity and stability. Likewise, the dictionary learning objective
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(a) (b) (c)

Figure 3: From (a) to (c), an axial slice of DWI and ADC and corresponding asymmetry map ASYM.

(a) (b) (c)

Figure 4: From (a) to (c), an axial slice of DWI with infarcts marked in red, the corresponding ADC, and the derived positive samples (in
red) and negative samples (in yellow).

function will be in the form of elastic net to replace the 𝐿
0
-

norm or 𝐿
1
-norm.

min
𝛼,𝐷

1

𝑛
(
1

2

𝑛

∑

𝑖=1

𝑠𝑖 − 𝐷𝛼
𝑖



2

2
+ 𝜆
1

𝛼𝑖
1

+
𝜆
2

2

𝛼𝑖


2

2
) . (10)

For classifying voxels into infarct and noninfarct (normal),
two subdictionaries are needed, which are denoted, respec-
tively, as𝐷infarct and𝐷normal.

As the number of voxels of infarcts is far smaller than that
of normal voxels, selection of training samples needs careful
attention to achieve representative sampling while avoiding
unbalanced samples. For training, the set of infarct voxels
forms the positive samples and is denoted as GT(𝑥, 𝑦, 𝑧).
GT(𝑥, 𝑦, 𝑧) is iteratively dilated with a structuring element
of radius being 1 voxel until the dilated size is not smaller
than the original size of GT(𝑥, 𝑦, 𝑧). Those noninfarct voxels
included in the dilated GT(𝑥, 𝑦, 𝑧) are then acting as the
negative samples.The rationale behind this procedure will be
explained in Discussion. Figure 4 shows the positive samples
(in red) and negative samples (in yellow).

The objective function (formula (10)) could be optimized
by an online algorithm based on stochastic approximations
[27].

3.4. Derivation of Regions-of-Interest [23]. Due to the com-
plexity and inhomogeneity of ischemic infarcts, there may be
infarct-mimics in DWI volumes, which could be recognized
as false positives.The ROIs are to include as many as possible
infarct voxels and to exclude most infarct-mimics to reduce
subsequent computational cost and enhance reliability. The
ROIs are derived from dilation of the initial ischemic regions
modified from [22] by thresholding ADC maps with con-
straints onDWIs. Specifically, denote themost frequent ADC
value for all voxels within the brain mask as ADCref , and any
voxels with ADC(𝑥, 𝑦, 𝑧) not greater than 0.75 ∗ ADCref are
checked to formulate connected components. Any connected
components with average DWI values not smaller than the
intensity average plus the intensity standard deviation of
brain voxels on DWI at the corresponding axial slice are kept
as part of region 𝑅

1
. Voxels with ADC value within (0.75 ∗

𝐴𝐷𝐶ref , 0.85 ∗ ADCref ) are checked to formulate connected
components and are added to 𝑅

1
if the component has at

least one neighboring voxel in 𝑅
1
. 𝑅
1
is then increased by



6 Computational and Mathematical Methods in Medicine

(a) (b) (c)

Figure 5: From (a) to (c), an axial slice of DWI and ADC and the corresponding ROIs for detecting infarction overlaid in color on the DWI,
where regions in red are initial ROIs modified from [22] while those in yellow are from morphological dilation.

morphological dilation with a structuring element of radius
𝑅
𝑑
. Suppose the 𝑧 coordinates of 𝑅

1
are in the range of 𝑧

0
to

𝑧
𝑛
with 𝑧

𝑛
≥ 𝑧
0
; then the 𝑅

1
regions on the axial slice 𝑧

0
and

𝑧
𝑛
are, respectively, pasted to axial slice 𝑧

0
− 1 and 𝑧

𝑛
+ 1 to

attain the eventual ROIs. Figure 5 shows an axial slice ofDWI,
ADC, and the corresponding ROIs (in color), where regions
in red are initial ischemic infarcts and those in yellow are
added voxels through the described morphological dilation.

3.5. Classification. Once ROIs are determined, voxels within
the ROIs are classified as infarct or normal based on SRC
according to patch features of voxels. The classification pro-
cedure is as follows:

(1) A global dictionary 𝐷 is formed by concatenating
the two subdictionaries𝐷 = {𝐷infarct, 𝐷normal}.
(2) The sparse code �̂� of a new sample 𝑠 is computed
by optimizing the elastic net function in formula (9)
with respect to the global dictionary𝐷.
(3) Compute the residue for each class

𝑟
𝑖
(𝑠) =

𝑠 − 𝐷
𝑖
𝛿
𝑖
(�̂�)



2

2
, (11)

where 𝑖 = {infarct, normal} and𝛿
𝑖
(⋅) is a characteristic

function that would select the coefficients associated
with class 𝑖.
(4) Classification according to the residue of each
class is as follows:

Label (𝑠) = argmin
𝑖

𝑟
𝑖
(𝑠) . (12)

4. Experiments

Tiantan Hospital and Tianjin Huanhu Hospital have been
involved in a National Stroke Registry since 2005, which
registered patients prospectively with stroke ictus within 6
hours according to a preestablished system [22]. The study
included 98 consecutive patients (31 women and 66 men, age
range 24–78 years) with confirmed ischemia. The protocol of

the research has been approved by the Institutional Review
Board of both hospitals. All patients gave written consent and
provided permission for scientific and educational purpose.

The baseline DW imaging was carried out with two 3.0
Tesla scanners (Trio-Tim, Siemens, Erlangen, Germany) with
a spin-echo, multislice, and single shot echo-planar imaging
of 𝑏 = 0 and 1000 or 1500 s/mm2 and the corresponding ADC
map. The DWIs in this study are isotropic whose intensities
are the cubic root of the multiplied signal intensities of the
three individual images acquired with a diffusion gradient in
each of the three orthogonal directions (𝑥, 𝑦, and 𝑧 axes).The
imaging covered the whole brain, with 19–24 axial slices of a
5mm slice thickness and 1–1.5mmgap, most matrixes being
128 × 128 with few being 156 × 156 or 384 × 384 to have an
in-plane resolution of 0.60mm to 1.80mm.

A neuroanatomy expert (QH) manually drew the infarc-
tion regions using in-house software (that could adjust
contrast, enlarge, pan, and undo) as the reference for mea-
suring the accuracy of automatic algorithms. When ischemia
boundaries were not clear, bothDWI andADCwere checked,
and a neuroradiologist was invited for discussion (YZ) to
make the drawing as accurate as possible.

The algorithm was implemented with C++ based on
SPAMS [27]. All experiments were carried out on a Pentium
4 PCwith 2.4GHz CPU (4 cores) and 4G RAM.The segmen-
tation performance was tested by 2-fold cross validation. All
training datasets were randomly divided into 2 groups with
equal number of datasets. One group was used as training
set while the other was used as testing set and vice versa. To
quantify the infarct segmentation, the followingmeasures are
adopted as used in other investigations [7, 8]: DC, sensitivity,
specificity, positive prediction value (PPV), and negative
prediction value (NPV) given below:

DC =
2 × TP

FP + 2 × TP + FN
,

sensitivity = TP
TP + FN

,

specificity = TN
TN + FP

,
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Table 1: Dice coefficients with different combinations of 𝜆
1
and 𝜆

2
.

𝜆
2

𝜆
1

0.1 0.3 0.5 0.7 0.9
0.1 0.737 ± 0.129 0.755 ± 0.117 0.754 ± 0.119 0.745 ± 0.125 0.716 ± 0.133
0.3 0.744 ± 0.126 0.735 ± 0.127 0.728 ± 0.135 0.733 ± 0.134 0.738 ± 0.125
0.5 0.724 ± 0.132 0.705 ± 0.144 0.711 ± 0.142 0.722 ± 0.137 0.738 ± 0.128
0.7 0.689 ± 0.148 0.684 ± 0.154 0.694 ± 0.147 0.713 ± 0.137 0.736 ± 0.128
0.9 0.660 ± 0.163 0.658 ± 0.163 0.673 ± 0.154 0.704 ± 0.140 0.731 ± 0.130
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Figure 6: Classification with different patch sizes.

PPV =
TP

TP + FP
,

NPV =
TN

TN + FN
.

(13)

Here TP, TN, FP, and FN are, respectively, for true positive,
true negative, false positive, and false negative.

The execution time for segmenting a dataset includes 5
seconds for determining ROIs and 1.9 seconds for classifying
infarcts from ROIs on a Pentium 4 PC with 2.4GHz CPU (4
cores) and 4G RAM).

4.1. Parameters. Experiments are carried out to choose the
appropriate parameters in dictionary learning and sparse
representation in terms of DC. Best performance is achieved
with 𝜆

1
= 0.3, 𝜆

2
= 0.1, 𝑅

𝑝
= 1, 𝑅

𝑑
= 2, and 𝐾 = 200. Rel-

evant experiments are conducted to see the dependency of
accuracy on these parameters. When changing one or two
parameters, the other parameters are fixed as those that attain
the best performance.

The two parameters 𝜆
1
and 𝜆

2
are changed simultane-

ously, both taking one of the values of {0.1, 0.3, 0.5, 0.7, 0.9}
(Table 1). Experiments of accuracy dependency on other
parameters are carried out separately, with 𝑅

𝑝
to be one of

the values of {1, 2, 3} (Figure 6), 𝐾 taking a value of {50, 100,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
ic

e c
oe

ffi
ci

en
t

100 150 200 250 30050 
K

Figure 7: Classification with different dictionary sizes.
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Figure 8: Classification with different 𝑅
𝑑
.

150, 200, 250, 300} (Figure 7), and 𝑅
𝑑
being one of the values

of {1, 2, 3, 4} (Figure 8).

4.2. Role of the Regions-of-Interest. Wehave conducted exper-
iments to validate the effect of ROIs on ischemic lesion seg-
mentation. To implement the proposed method without
ROIs, two minor modifications have been made to the
proposedmethodwith ROIs. First, in addition to the negative
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9: An axial slice of a patient with deep inhomogeneous infarcts, the DWI (a), ADC (b), ground truth infarcts (c), segmented infarcts
by the proposed method (d), the FCMmethod (e), the FCM ROI method (f), the DMmethod (g), and the DM ROI method (h).

samples of the proposed method, another equal portion
of negative samples from the rest of the brain is included
to represent the normal brain structure for learning the
dictionary 𝐷normal. Second, after every voxel is classified
by sparse representation classification as a candidate lesion
voxel, a postprocessing step is applied. The postprocessing is
to form candidate lesion region through connected compo-
nent analysis and eliminate candidate lesion regions with less
than 3 voxels, as well as eliminate candidate lesion regions
with low average DWI (less than the most frequent value of
DWI) or high average ADC (greater than the most frequent
value of ADC). It was found that the proposed method
without ROIs could yield a Dice coefficient of 0.673 ± 0.179, a
sensitivity of 0.797 ± 0.168, and a specificity of 0.999 ± 0.001.

In case of taking the whole brain as the ROIs, the average
execution time for segmenting a dataset is substantially
increased from 7 seconds to 39 seconds.

4.3. Comparison with Existing Methods. The proposed
method is to be compared with divergence measure based
method (DM method) [7] and FCM method [8]. It is worth
noting that the DC values reported in [7] (0.67) and [8]
(0.90) are based on their data, and none of them used the
data within 6 hours from ictus. As demonstrated in [7],
data at admission are more difficult to be segmented due
to substantial variability in appearance [6]. For a fair and
relevant comparison, we have tried our best to implement
the other two methods with minor enhancement to attain
the best performance on the 98 datasets within 6 hours from
symptom onset.

We are unable to use ROIs derived from Section 3.4
for FCM/DM because the two algorithms depend on the
whole volume or slice for its calculation (either for histogram

calculation (DM) of the two hemispheres and clustering into
50 clusters (FCM) (ROI may contain too few voxels to be
categorized into 50 clusters)). In other words, it is very hard,
if not impossible, to implement FCM/DM methods just for
data within the ROIs. We have thought out and implemented
one way to incorporate the ROIs for comparison: to segment
the lesion using the original FCM/DM and remove those
lesions outside the ROIs. To simplify denotations, these two
implementations are, respectively, denoted as FCM ROI and
DM ROI. Altogether there are 5 methods to be compared,
namely, the proposed, DM, DM ROI, FCM, and FCM ROI
methods.

Figures 9 and 10 show, respectively, an axial slice with
deep inhomogeneous infarcts and an axial slice with inho-
mogeneous infarcts involving the cortex, ground truth, and
the segmented infarcts of the five methods.

The segmentation performance of the 98 datasets by the
proposed, FCM, FCM ROI, DM, and DM ROI methods in
terms of DC, sensitivity, specificity, PPV, and NPV is sum-
marized in Table 2 and shown in Figure 11.

5. Discussion

An SRC based method has been proposed and validated to
segment infarcts from hyperacute ischemic stroke patient
data. It consists of dictionary learning and classification. The
first stage is carried out offline with elastic net. Then recon-
struction residue is used for voxel-wise classification. Exper-
iments are conducted to determine the appropriate parame-
ters, including dictionary size𝐾, 𝜆

1
to control the sparsity of

the sparse code, 𝜆
2
to control the stability of the sparse code,

radius of patches 𝑅
𝑝
, and size of structuring element 𝑅

𝑑
to

dilate the initial ischemic region for deriving the ROIs. The
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Table 2: Segmentation performance comparison between the proposed and four other methods.

Methods DC SEN SPE PPV NPV
Proposed 0.755 ± 0.118 0.758 ± 0.149 0.999 ± 0.001 0.779 ± 0.141 0.999 ± 0.001
FCM 0.597 ± 0.204 0.585 ± 0.221 0.999 ± 0.001 0.689 ± 0.230 0.999 ± 0.001
FCM ROI 0.606 ± 0.201 0.505 ± 0.215 0.999 ± 0.001 0.871 ± 0.156 0.999 ± 0.001
DM 0.215 ± 0.213 0.565 ± 0.346 0.983 ± 0.024 0.179 ± 0.200 0.999 ± 0.001
DM ROI 0.428 ± 0.342 0.380 ± 0.321 0.999 ± 0.001 0.599 ± 0.404 0.999 ± 0.001
SEN for sensitivity, SPE for specificity, PPV for positive prediction value, and NPV for negative prediction value.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10: An axial slice of a patient with inhomogeneous infarcts involving the cortex, the DWI (a), ADC (b), ground truth infarcts (c),
segmented infarcts by the proposed method (d), the FCM method (e), the FCM ROI method (f), the DM method (g), and the DM ROI
method (h). Red arrows point to false positive regions, which could be eliminated by ROI confinement.
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Figure 11: Performance comparison with existingmethods. SEN for
sensitivity, SPE for specificity, PPV for positive prediction value, and
NPV for negative prediction value.

proposed method achieves best accuracy when these param-
eters are, respectively, 200, 0.3, 0.1, 1, and 2with features being
extracted from 2D patches. With different combinations, the
accuracy DC could vary from 0.660 ± 0.163 to 0.755 ± 0.117
(Table 1). As the segmentation accuracy is sensitive to 𝜆

1
and

𝜆
2
(Table 1), they need to be determined with care. Once they

are fixed, the segmentation is not sensitive to the variation of
other parameters (Figures 6–8). In otherwords, the algorithm
is robust to parameters𝐾, 𝑅

𝑝
, and 𝑅

𝑑
.

Experiments have been conducted to compare the per-
formance of 2D patches and 3D patches which are used to
train dictionary and sparse coding. Results show that the
segmentation accuracy with 2D patches (DC = 0.755±0.117)
is slightly better than that with 3D patches (DC = 0.749 ±

0.123), whichmay imply that neighboring axial slices will add
confusing information due to the large slice spacing.

In addition, we have carried out extra experiments to
compare classification performance between elastic net and
𝐿
1
-norm constraints. For 𝐿

1
-norm constraints based on

formulas (3) and (4), optimum 𝜆 and 𝐾 are found through
experiments to be, respectively, 0.9 and 150. For a fair
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comparison, both elastic net and 𝐿
1
-norm constraints are

based on 2D patches of 𝑅
𝑝
being 1 and 𝑅

𝑑
being 2, with other

parameters being optimum. As expected, elastic net yields
higher DC than the 𝐿

1
-norm constraint (0.755 ± 0.117 versus

0.749 ± 0.119), which may imply that elastic net could better
balance sparsity and stability of sparse codes than 𝐿

0
-/𝐿
1
-

norm at least for classification of ischemic infarcts. Gao and
his colleague [14] were the first to advocate elastic net and
showed similar difference to ours (difference between DC of
elastic net and that of 𝐿

0
/𝐿
1
-norm around 0.007).

Because ischemic infarcts are inhomogeneous and are
undergoing variation at hyperacute stage, the boundaries
between the infarcts and noninfarcts are usually blurred.
We thus hypothesize that samples near the infarct bound-
aries are more difficult to be differentiated. To validate this
assumption, another classification model is derived in a
similar way to the proposed one with the only difference
being that the negative samples are randomly picked from
noninfarct voxels. As expected, the classification model from
randomly picked negative sample yields significantly lower
accuracy than the proposed one (DC 0.706 ± 0.121 versus
0.755 ± 0.118, 𝑝 < 0.001 according to the paired 𝑡-test). This
additional experiment justifies the way to pick up negative
samples near the boundaries during training. As processing
time is critical for hyperacute ischemic stroke data, ROIs are
introduced to confine the classification space. Due to the
substantial variability of DWI and ADC intensities of infarcts
and artifacts with similar DWI and/or ADC intensities to
infarcts, it is hard to determine appropriate candidate regions
of infarcts or ROIs. For this purpose, we extend the ischemic
regions calculated from our previous work that are based on
decreasedADCwithDWI being not low [22] that can include
regions with unclear boundaries on DWI. The initial ROIs
modified from [22] could yield an averageDCof 0.601±0.177,
sensitivity of 0.689 ± 0.164, and specificity of 0.999 ± 0.001,
being better than FCM method [8] and DM method [7].
After dilation and pasting the two extreme axial slices, the
eventual ROIs containmost infarct voxels to have a sensitivity
of 0.919 ± 0.105, which means that most infarct voxels not
included in the initial ROIs are within the neighborhood.
From the experiments on changing the neighborhood size𝑅

𝑑

(Figure 8), an 𝑅
𝑑
of 2 attains best balance between inclusion

of infarct voxels and exclusion of infarct-mimic voxels. The
procedure to derive ROIs is reflected in the derivation of
negative samples during training, that is, in the vicinity
of positive samples through dilation and pasting. In the
future, we will be working on derivation of ROIs with higher
sensitivity and higher DC.

The experiments on taking the whole brain as the ROIs
(Section 4.2) will yield lowerDice (0.673 versus 0.755), higher
sensitivity (0.797 versus 0.758), and equal specificity (0.999)
as compared with the proposed algorithm with ROIs. For the
proposedmethod with ROIs, the lower sensitivity reflects the
fact that the ROIs do not include all the ischemic lesions,
while the higher Dice implies a net gain in accuracy to
balance between excluding lesion mimics and missing some
real lesions, as compared with the proposed method without
the ROIs. We may thus argue that the introduction of ROIs
could remove ischemic lesion mimics at the cost of excluding

few ischemic lesions to have a net gain in accuracy, as well as
speed up the segmentation substantially (from 39 seconds to
7 seconds, Section 4.2).

Quantification of infarcts from DW imaging at baseline
within 6 hours from onset is crucial to guide treatment
planning such as thrombolysis. As pointed out in [6], infarcts
on DWI and ADC imaged within 6 hours are most difficult
to be delineated by experts due to substantial variability
in intensities and ill-defined edges as compared with those
imaged after 6 hours. As the DM method [7] is basically a
global thresholding method to determine the DWI threshold
based on divergence measure, it is not appropriate for proc-
essing data imaged within 6 hours due to the substantial
variability in intensities. For the FCM method [8], it is
dependent on the prominent edge on DWI for confirmation
of infarcts, which may be the case for data within 10 days.
As the data in this study are all within 6 hours from ictus,
the ischemic lesion is still evolving and may have ill-defined
edges on DWI; it is understandable that FCM will have a
bad performance for these ischemic data. Derivation of ROIs
from Section 3.4 is a way to incorporate prior knowledge to
differentiate between ischemic lesions and ischemic lesion
mimics based on our previous work [22]. The ROIs are
part of the proposed method to enhance the segmentation
accuracy from an average DC of 0.673 (Section 4.2, the
proposed method without ROIs) to an average DC of 0.755
(Table 2). When the DM and FCM methods are confined
by the ROIs as illustrated in Section 4.3, the DM ROI and
FCM ROI could yield a higher DC (being, resp., 0.417 and
0.606, Table 2), which are still significantly lower than the
proposed method (𝑝 < 0.001). The proposed method could
cope with the variability in intensities and ill-defined edges of
DWI and ADC data imaged within 6 hours through learning
the pattern from training samples. As such, the proposed
method attain significantly higher accuracy in terms of
DC, sensitivity, and PPV than [7, 8] all with 𝑝 < 0.001,
while there exists no significant difference for the specificity
and FPV among the three methods (Table 2). The superior
performance of the proposed method may be ascribed to the
following characteristics of the method.

First, it takes into account B0, DWI, ADC, and asymme-
try with respect to the MSP, so the artifacts on DWI due to
shine-through effect could be eliminated (Figure 12(d)). For
the FCM method [8], it imposes ADC constraint to confine
infarcts so the shine-through artifact could be removed
(Figure 12(e)). As for the DMmethod [7], it could not get rid
of shine-through artifact because it is purely based on DWI
(Figure 12(g)). Both DM ROI and FCM ROI could handle
the shine-through artifact due to the introduction of ROI
constraints.

Second, the proposed method could handle better than
[7, 8] for infarcts with intensity variability on DWI, as it is
based on learning samples with intensity variation. Figure 13
shows an axial slice with lower intensities around the infarct
border onDWI; as such, the FCM[8] and FCM ROImethods
could not include the border (Figures 13(e) and 13(f)) while
the proposed method could (Figure 13(d)). The DM method
[7] fails to segment infarcts at this axial slice as it has a lower
DWI intensity than infarcts at other axial slices.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 12: Illustration of the shine-through artifact on DWI (arrow) of an axial slice, B0 (a), DWI (b), ADC (c), segmented infarcts by the
proposed method (d), FCMmethod (e), FCM ROI method (f), DMmethod (g), and DM ROI method.

(a) (b) (c)

(d) (e) (f)

Figure 13: Illustration of the intensity variation of infarcts of an axial slice, DWI (a), ADC (b), ground truth infarcts (c), segmented infarcts
by the proposed method (d), FCMmethod (e), and FCM ROI method (f).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 14: Illustration of ill-defined edges on DWI of an axial slice. DWI (a), ADC (b), ground truth (c), segmented infarcts by the proposed
method (d), FCMmethod (e), FCM ROI method (f), DMmethod (g), and DM ROI method (h).

Third, the proposed method could handle better than [7,
8] infarcts with ill-defined edges on DWI, once again due to
the fact that the delineation is based on learning samples with
similar edges (Figure 14).

Fourth, introduction of the asymmetry map has signifi-
cantly enhanced the segmentation accuracy. When only B0,
DWI, and ADC are employed for SRC based training and
classification, the best performance is DC = 0.681 ± 0.160

and sensitivity = 0.709 ± 0.188. When the asymmetry map
is added, the DC and sensitivity have been, respectively,
increased to 0.755 ± 0.118 and 0.758 ± 0.149. We also
carried out experiments to segment based on thresholding
the asymmetry map to find that the highest Dice achieved is
0.482 ± 0.233with a sensitivity of 0.528 ± 0.220 and specificity
of 0.999 ± 0.001when the asymmetry threshold is around 40.
As the performance based on thresholding the asymmetry
map is substantially inferior to the proposedmethod, wemay
argue the following: (1) both infarcts and noninfarcts could
cause asymmetry (sensitivity greater than 0 and specificity
smaller than 1); (2) not all infarcts could be detected by
asymmetry map (sensitivity is always smaller than 1); and (3)
the proposed sparse learning framework is better than simple
thresholding, and there is much complementary information
from B0, DWI, and ADC for segmenting the infarcts (recall
that the training of dictionaries is from the asymmetry map,
DWI, ADC, and B0, Section 3.2).

The proposed method combines the advantages of SRC
and our previous work to delineate infarcts based on DWI
and ADC [22]. In particular, SRC could help to find sophisti-
cated object patterns (such as infarcts with intensity variation
and ill-defined edges), while the ROIs derived from [22]
will confine the infarcts within candidate regions to decrease
computational cost and exclude infarct-mimics. According to

[28], a DC of 0.7 and above indicates a good agreement. As
the proposed method could achieve good agreement (DC >

0.70) with speed (within 7 seconds), it could be a potential
tool to be used clinically for guiding thrombolytic therapy.

Theproposedmethodhas only been validated on Siemens
3T scanners of two hospitals. It is our intension to design
different dictionaries for different scanners to account for
variability of imaging hardware. We are in the process of
designing classifiers for GE scanners.

The hyperacute ischemia sometimes exhibits substantial
variability that are hard to bemodeledmathematically, which
is the major cause of deviation from ground truth infarcts
of the proposed method. For these cases, manual delineation
of infarcts is difficult and is based on experience, anatomical
knowledge, and comprehension of the DWI and ADC. To
aid manual delineation, a new volume, that is, DWI(𝑥, 𝑦, 𝑧)+
(DWI(𝑥, 𝑦, 𝑧) − ADC(𝑥, 𝑦, 𝑧)), is created, which is similar to
DWI but emphasizes infarcts. Figure 15 shows an axial
slice with complex image properties and the segmentation
of the proposed method (the FCM, FCM ROI, DM, and
DM ROI methods fail to segment). New tools and methods
are yet to be developed for better segmentation of infarcts
with complicated imaging features that are even hard to be
manually delineated by human experts.

6. Conclusion

In this paper, an SRC based cerebral infarct segmentation
method is explored and validated against 98 ischemic datasets
scanned within 6 hours from ictus. The proposed method
could handle well infarcts with intensity variability and ill-
defined edges to yield significantly higher DC (0.755 ± 0.118)
than the FCMmethod [8] (0.597 ± 0.204, 𝑝 < 0.001) andDM
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(a) (b) (c)

(d) (e)

Figure 15: One axial slice with complex image properties. DWI (a), ADC (b), DWI + (DWI-ADC) (c), ground truth (d), and segmented
infarcts by the proposed method (e). FCM, FCM ROI, DM, and DM ROI methods fail to segment infarcts at this axial slice.

method [7] (0.215 ± 0.213, 𝑝 < 0.001) and their enhanced
versions by confining their segmentations within the ROIs
(0.606 ± 0.201, 𝑝 < 0.001; 0.428 ± 0.342, 𝑝 < 0.001). It could
segment infarcts of a patient from baseline DW imaging
within 7 seconds on a Pentium 4 PC with 2.4GHz CPU (4
cores) and 4G RAM. The superior performance is mainly
ascribed to the comprehensive inclusion of the DW imaging
and introduced asymmetry map, learning based nature that
could learn complex infarct patterns, adoption of elastic net
to stabilize sparse code, and introduction of ROIs to speed up
the classification procedure as well as exclude lesion mimics.
The proposed method could provide a potential tool to
quantify infarcts from DW imaging at hyperacute stage with
accuracy and speed to assist the decision making especially
for thrombolytic therapy.
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