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ABSTRACT Meta-analyses at the whole-community level have been important in
microbiome studies, revealing profound features that structure Earth’s microbial
communities, such as the unique differentiation of microbes from the mammalian
gut relative to free-living microbial communities, the separation of microbiomes in
saline and nonsaline environments, and the role of pH in driving soil microbial com-
positions. However, our ability to identify the specific features of a microbiome that
differentiate these community-level patterns have lagged behind, especially as ever-
cheaper DNA sequencing has yielded increasingly large data sets. One critical gap is
the ability to search for samples that contain specific features (for example, sub-
operational taxonomic units [sOTUs] identified by high-resolution statistical methods
for removing amplicon sequencing errors). Here we introduce redbiom, a micro-
biome caching layer, which allows users to rapidly query samples that contain a
given feature, retrieve sample data and metadata, and search for samples that
match specified metadata values or ranges (e.g., all samples with a pH of �7), im-
plemented using an in-memory NoSQL database called Redis. By default, redbiom al-
lows public anonymous sample access for over 100,000 publicly available samples in
the Qiita database. At over 100,000 samples, the caching server requires only 35 GB
of resident memory. We highlight how redbiom enables a new type of characteriza-
tion of microbiome samples and provide tutorials for using redbiom with QIIME 2.
redbiom is open source under the BSD license, hosted on GitHub, and can be de-
ployed independently of Qiita to enable search of proprietary or clinically restricted
microbiome databases.

IMPORTANCE Although analyses that combine many microbiomes at the whole-
community level have become routine, searching rapidly for microbiomes that
contain a particular sequence has remained difficult. The software we present
here, redbiom, dramatically accelerates this process, allowing samples that con-
tain microbiome features to be rapidly identified. This is especially useful when
taxonomic annotation is limited, allowing users to identify environments in
which unannotated microbes of interest were previously observed. This approach
also allows environmental or clinical factors that correlate with specific features,
or vice versa, to be identified rapidly, even at a scale of billions of sequences in
hundreds of thousands of samples. The software is integrated with existing anal-
ysis tools to enable fast, large-scale microbiome searches and discovery of new
microbiome relationships.
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Data reuse has posed a significant challenge in the microbiome field, especially
because of technical variation among studies (1). Analyses at the whole-

community level, typically using principal-coordinate analysis (PCoA) or similar dimen-
sionality reduction techniques, have nevertheless revealed many large-scale patterns
relating microbiomes to one another (2–4), especially when standardized techniques
are used either within one study or across many studies in a consortium effort using
common protocols (5). In particular, resources such as Qiita (6) were developed to
facilitate reuse of data and now house amplicon data from hundreds of thousands of
microbiomes with associated metadata (per-sample, per-individual, and/or per-site
information related to each sample) in the standardized MIxS format introduced by the
Genomic Standards Consortium (7).

There is a need to search for samples that contain particular microbial taxa and for
taxa that explain differences among samples. These tasks are especially important for
revealing which specific microbes are associated with particular environmental or
clinical metadata. Performing the search directly at the sequence level is possible, but
typically incurs substantial computational effort, especially as improvements in se-
quencing technology yield ever-larger data sets. To address this need, we developed
redbiom, which enables rapid discovery and retrieval of sample data into BIOM tables
(8) for immediate integration for meta-analysis.

Figure 1 outlines the redbiom data model. At its core, redbiom is a structured data
model built off Redis, a key-value in memory NoSQL database. Sample data are stored
in sparse vectors allowing hundreds of thousands of samples with multiple different
processing to be represented in under 40 GB (underlying sequence data total of 45 TB).
Identifiers are remapped into a unique integer space to minimize memory utilization
and to leverage Redis ziplist optimizations. Data are partitioned by sequencing and
bioinformatics protocol to minimize technical biases. These partitions, called “contexts,”
allow for identifying samples processed in one way (e.g., Deblur [9]) and obtaining data
from another (e.g., closed reference operational taxonomic unit [OTU] picking). Sample
and preparation information are indexed efficiently and allow retrieval of a specific
variable for a given sample. These variables are additionally indexed by applying Porter
stemming (10) to all unique strings such that each stem forms a key that is associated
with a set containing the samples where that stem was observed. The combination of
indexing strategies allows users to generally search for samples (e.g., all samples with
the stem of antibiotics) or to constrain the searches to specific variables and values (e.g.,
all samples with “soil” in the description field and a pH of �7).

redbiom enables a new paradigm for microbiome analysis and data mining. With
indexed exact sequences, it is possible to perform a maximal-precision search of
deposited studies to test for replication (as noted in reference 11 [example below]). This
is in contrast to manually identifying studies and processing and searching existing raw
data or the more frequent strategy of relying on imprecise taxon names mentioned in
manuscripts (e.g., hunting for Clostridium sp. enrichment in human fecal studies). As
redbiom indexes sample metadata and taxonomic information (when available), it also
readily allows users to identify samples of interest for comparative purposes: e.g., “How
do my samples compare to the Earth Microbiome Project soil samples?” By partitioning
technical parameters, it is possible to identify samples in one context and extract from
another (e.g., selecting samples with closed reference OTUs based on the presence of
specific 16S Deblur sub-operational taxonomic units [sOTUs]).

To test the search capability, we obtained sOTUs from a novel differential abun-
dance method (12) in which five sOTUs were observed to strongly associate with
high-pH soils and five with low-pH soils (see Table S1 in the supplemental material), in
a reanalysis of a study by Ramirez et al. (13). We sought to determine whether the pH
association of these sOTUs replicated across studies. Each sOTU was searched against
137,678 samples using redbiom, resulting in a total of 560 unique samples from 20
different Qiita studies (see the observed studies in Table S2 and the bash script for
search in Text S1 in the supplemental material); a sample was only pulled out of Qiita
if it contained any of the five high-pH or five low-pH sOTUs of interest. We did not
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calculate the prevalence of an sOTU because the interpretation may be misleading
given inherent biases in which studies are represented in Qiita, different depths of
sampling among different studies, etc. The search for samples, extraction of Deblur-
processed data in BIOM format, and retrieval of sample metadata was performed per
feature and took an average of 20 s. The pH of the observed samples was significantly
different depending on the source feature set (Fig. 2A; Mann-Whitney U statis-
tic � 7,280, P � 9.95 � 10�65). We then rarefied the samples to 1,000 sequences per
sample and performed UniFrac (14) and principal-coordinate analysis on the collected
samples, observing pH as a driver of community composition (Fig. 2B, unweighted
Unifrac, Pearson’s r � 0.552, P � 6.61 � 10�46; Fig. 2C, weighted UniFrac, r � 0.562, P �

6.8 � 10�48). Visualization of the coordinates shows a visual pH gradient despite some
study grouping (Fig. 2D to G), which is expected given the design of some studies (e.g.,
the Cannabis soil microbiome [15]). The analysis indicates that pH is a driver of overall
community structure across multiple projects from a variety of institutions with mark-
edly different research questions, soils, and locations.

redbiom provides a critical part of the Earth Microbiome Project (5) infrastructure,
underpinning the popular Trading Cards, with a default database that is regularly
updated as new data are made public in Qiita (6). Additionally, redbiom allows queries
across processing partitions, allowing users to operate across technical parameters if
needed (e.g., to identify samples by Deblur and retrieve closed reference OTUs), as well
as searching for samples by taxonomy when taxonomic information is present. These
issues and others are explored in detail in a community tutorial for using redbiom with
QIIME 2 (16), which together with the forum, the BSD open source license, and
compatibility with microbiome standards will promote a broad user community. Finally,
we note that the data model on which redbiom depends is general, allowing storage
of gene expression and metabolomics data, and we expect that redbiom will provide

FIG 1 The redbiom data model is a key-value store built on top of Redis. By storing features and sample
identifiers as keys, it is possible to rapidly query the resource for information on those entities. Similarly,
by indexing the sample metadata, queries can be performed against variables of interest (e.g., pH) in
order to identify sample identifiers of interest, which can then be used to extract a feature table for
downstream analysis. (A) A “set” command associates a key with a value: in this case, a feature identifier
is associated with the samples the feature was observed in. A “get” command can then be issued using
the feature identifier as the key to obtain the associated values (i.e., the samples). (B) Feature counts (e.g.,
a vector from an OTU table) are associated with a composite key that describes the processing context
and the sample identifier. The processing context, in this case “deblur,” denotes a bioinformatic
procedure applied. For Qiita, the context names also include molecular preparation details. The expec-
tation is the data within a context should be comparable. The sample data themselves are encoded in
a sparse vector format with the feature identifiers remapped into unique integers to improve compres-
sion and reduce data redundancy. (C) The Porter stem of the word “Antibiotics.” (D) The association of
metadata word stems with sample identifiers. Redis natively supports classic set operations, which can
be applied to keys to obtain, for example, the intersection of sample identifiers represented by two keys.
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a key underpinning for future multiomics microbiome studies as these capacities
expand in the field.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mSystems.00215-19.
TEXT S1, TXT file, 0.1 MB.
TABLE S1, XLSX file, 0.1 MB.
TABLE S2, XLSX file, 0.1 MB.
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