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Abstract

The analysis of molecular data within a historical biogeographical framework, coupled with ecological characteristics can
provide insight into the processes driving diversification. Here we assess the genetic and ecological diversity within a
widespread horseshoe bat Rhinolophus clivosus sensu lato with specific emphasis on the southern African representatives
which, although not currently recognized, were previously described as a separate species R. geoffroyi comprising four
subspecies. Sequence divergence estimates of the mtDNA control region show that the southern African representatives of
R. clivosus s.l. are as distinct from samples further north in Africa than they are from R. ferrumequinum, the sister-species to R.
clivosus. Within South Africa, five genetically supported geographic groups exist and these groups are corroborated by
echolocation and wing morphology data. The groups loosely correspond to the distributions of the previously defined
subspecies and Maxent modelling shows a strong correlation between the detected groups and ecoregions. Based on
molecular clock calibrations, it is evident that climatic cycling and related vegetation changes during the Quaternary may
have facilitated diversification both genetically and ecologically.
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Introduction

The fields of ecology and conservation biology centre around

the interactions between biological diversity and the environment.

Species are arguably the most important taxonomic unit used

when testing broad-scale ecological patterns. Knowing the number

and uniqueness of species, is important for conservation planning

as it reflects species richness, endemism as well as potential threats

of losing biodiversity [1]. In recent years the newly discovered

mammal species account for approximately 10% of what were

known prior to 1993, with higher than expected numbers in some

orders, particularly the Chiroptera [2,3]. In the past, the trend of

increasing numbers of species has been attributed to ‘‘taxonomic

inflation’’ [1], although others argue that it reflects the underlying

nature of species [4] and highlight the importance of evaluating

previously unrecognized biodiversity (including genetic diversity)

and the implications of this for ecological studies, conservation

planning and the preservation of ecosystem services [3,5].

DNA-based studies enable the analysis of genetic diversity

within taxa and in particular the quantification and subsequent

recognition of cryptic and sibling species [6]. Often, many species

shown to be complexes harbouring cryptic species do not

demonstrate morphological differences either due to nonvisual

mating signals (e.g. sound) or selection that favours morphological

stasis [5]. Within bats, substantial difficulties are associated with

species identification as exemplified by the high incidence of

cryptic species [7–11]. Most cryptic bat species, identified through

molecular techniques, cannot be identified using external

morphology but often do show other distinguishing characters,

either in echolocation call [12–14] or more subtle morphological

characters such as cranial morphology or tragus shape [15,16].

The Rhinolophidae, or horseshoe bats, are restricted to the Old

World. They are a taxonomically problematic group and the

difficulties associated with resolving their taxonomy can be

attributed to, amongst other things, a high level of morphological

convergence [17,18]. In addition to molecular techniques,

echolocation calls have also contributed towards the identification

of species or cryptic species. Echolocation frequency has been

associated with partitioning of dietary resources and is thought to

have a role in facilitating intraspecific communication, thus

potentially allowing for species recognition and the discrimination

of congeners [19–23].

Apart from the ecological factors responsible for driving the

divergence amongst taxa, the genetic patterns of many species

carry a signature of the effects of past climatic events on speciation

[24,25]. By using DNA data within a historical biogeographical

framework, we can begin to improve our understanding of the

evolutionary processes that drive diversification [6] and by linking

the outcome hereof with ecological attributes, we can better

explore the processes facilitating the observed diversification.

Rhinolophus clivosus s.l. (type locality W. Arabia; [26]) is

widespread throughout Arabia and Africa. It is predominantly a

savanna woodland species, but is also found on forest fringes and

in deserts [26]. This species/species-complex represents a taxon

that is morphologically complex and variable [27]. Previously

Roberts [28] recognized individuals from southern Africa, which

PLoS ONE | www.plosone.org 1 February 2012 | Volume 7 | Issue 2 | e31946



were larger than R. clivosus individuals elsewhere in Africa, as an

endemic species, R. geoffroyi (originally described by Smith 1829,

type locality South Africa [26]). Within this species, he defined

four subspecies on the basis of morphological and cranial

characters and which were largely allopatric in distribution: 1)

R. g. geoffroyi, 2) R. g. augur, 3) R. g. zuluensis, and 4) R. g. zambesiensis

(rough distributions and type localities indicated in Fig. 1).

However, R. geoffroyi is not currently recognized as a separate

species because the name was unidentifiable and the type

specimen apparently lost [26].

Here we assess the mtDNA genetic variation of R. clivosus s.l. in

Africa, with particular focus on the South African representatives.

Because four distinct subspecies were previously identified using

morphology and cranial characters [28] we predict that there should

be evidence of phylogeographic structuring of R. clivosus s.l in South

Africa. Furthermore we assess the ecological diversity of these

putative genetic groups by incorporating data on the echolocation

and wing morphology of genotyped individuals and model the likely

geographic ranges of the previously recognized subspecies using

Maxent to gain insight into geographic factors that may underlie the

genetic and ecological patterns observed. Due to the joint constraints

of flight and detection of food in different habitats, echolocation and

wing design have been assumed to form an adaptive complex [29]. If

phylogeographic groups are closely linked to geographical attributes

such as habitat, we predict that these groups should be largely

allopatric in their distribution range and that they should clearly

separate on echolocation and wing parameters.

Methods

Sampling, DNA Extraction and nucleotide sequencing
We followed international guidelines for the ethical treatment of

animals and this research was approved by the ethics committee of

Stellenbosch University (ID 2009B101003). Permits from AAA004-

000400-0035(Western Cape), FAUNA 028/2010 and FAUNA

029/2010 (Northern Cape) and MPB 5254 (Mpumalanga) were

obtained for the capture of bats. Tissue samples (mostly wing biopsy

punches) from 144 individuals from various sampling localities

(Table 1) were studied. Sequenced individuals included represen-

tatives from Egypt, Kenya, Mozambique, Namibia, South Africa,

Swaziland and Tanzania. Within South Africa, we included samples

that were collected from close to the type locality for three of the

subspecies described by Roberts [28]: R. g. geoffroyi, R. g. augur and R.

g. zuluensis (Fig. 1). Total genomic DNA was extracted using the

DNeasy Blood and Tissue Kit (Qiagen, Hilden, Germany) following

the manufacturer’s recommendations.

A 456 bp section of the mitochondrial control region was

amplified using the primers N777 and DLH1 [30,31]. Polymerase

chain reaction (PCR) thermal conditions were an initial 5 min

denaturation at 95uC, followed by 35 cycles of 30 s at 94uC, 45 s

annealing at 50uC, 45 s at 72uC, and a final extension cycle at

72uC for 10 min. All PCR reactions included a negative (all

reagents, but no template) to control for contamination. A

subsample of the PCR products was visualized on 1.0% agarose

gels containing ethidium bromide. The remaining product was

sent to the Core Sequencing Facility, Stellenbosch University,

South Africa, where the PCR products were purified and cycle-

sequenced using BigDye (Applied Biosystems, Perkin Elmer)

chemistry. Sequencing products were then analysed on an ABI

3100 (Applied Biosystems, Perkin Elmer) automated sequencer.

Chromatograms were visualized and aligned using BioEdit v7.0.1

[32]. Haplotypes are submitted under GenBank Accession

numbers JN618191–JN618334. We included GenBank sequences

(GQ220723, GQ220713, GQ220710) for three R. ferrumequinum

individuals as the outgroup. Rhinolophus ferrumequinum is the sister

species to R. clivosus [33].

Figure 1. Rough distributions of the four R. geoffroyi subspecies as described in Roberts [28]. Type localities for three subspecies and the
sampling sites used in this study are indicated where 1) Barberton, BT; 2) De Hoop, DHC; 3) Ferncliffe, FCC; 4) Winburg, FS; 5) Greyton, GREY; 6)
Knysna, HKV; 7) Hopewell Farm, HWF; 8) Koegelbeen, KGB; 9) Kokstad, KSM; 10) Lajuma, LAJ; 11) Melmoth, MEL; 12) Maitland Mines, MM; 13)
Postmasburg, POST; 14) Stellenbosch, STEL; 15) Sudwala, SUD; 16) Swaziland, SWZ; and 17) Yolland, YOL. The type locality for R. g. zambesiensis is only
given as South Rhodesia, corresponding to present-day Zimbabwe.
doi:10.1371/journal.pone.0031946.g001
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Phylogenetic analysis
Bayesian Inference (BI) was conducted in Mr Bayes 3.1.2 [34]

with four simultaneous chains for three million generations, with

parameters sampled every 1000 generations. Convergence of the

MCMC chains was assessed by inspecting whether the standard

deviation of split frequencies approached zero and the potential

scale reduction factor (PSRF) reached 1.0 for all parameters. We

also confirmed convergence using Tracer v 1.4.1 [35]. A 25%

burnin was used and the 50% majority rule consensus tree was

constructed from the remaining tree data. We used the TIM2 + I

+ G model of DNA substitution as suggested by jModelTest 0.1.1

[36] and Yule process as the tree prior. Uncorrected pairwise

differences were calculated in PAUP* 4.0b10 [37] to allow for

comparisons with other horseshoe bat species. Because our study

involves the analysis of individuals from a single species, where

both ancestral and derived hapotypes may coexist, we also

constructed a minimum spanning haplotype network using TCS

v1.21 [38] with a parsimony threshold set to 95%.

To estimate divergence dates analyses were conducted in

BEAST 1.6 [35]. The Yule speciation process and a relaxed

uncorrelated lognormal molecular clock model were selected. We

used uniform tree priors with an upper limit of 5.3 million years

ago (Mya) and a lower limit of 1.8 Mya. These dates were selected

using the dates of fossils of the sister taxon R. ferrumequinum and

members of the R. ferrumequinum group that were present from the

early Pliocene (5.3 Mya) to the Pliocene-Pleistocene Boundary (1.8

Mya) [39]. The MCMC chain was run for 20 million generations,

with parameters logged every 1000 generations. Results were

evaluated using Tracer 1.4.1 [35]. The Effective Sample Size

(ESS) values were .200 for all parameters, suggesting the MCMC

run was sufficient and independent samples were incorporated to

obtain valid parameter estimates [35]. Trees were collated using

TreeAnnotator 1.6 where mean heights and a burin of 10% were

selected.

Genetic diversity and population structure
From the outcomes of the above analyses, we grouped our

sampling localities into five groups representing the main lineages

for further analyses on the South African samples, including two

specimens from Swaziland. Hereafter we refer to Groups 1 to 5

(see Fig. 2 tree) in the subsequent analyses and results. Standard

molecular diversity indices, including haplotype and nucleotide

diversity were calculated using DnaSP v 4.10.6 [40]. To assess the

genetic structure within South Africa and the variation among

groups, we used an Analysis of Molecular Variance (AMOVA)

with 10 000 permutations implemented in Arlequin 3.5 [41]. We

investigated genetic diversity over the landscape using graphical

landscape interpolation plots in the program Alleles in Space [42].

Residual genetic distances and the midpoints of edges derived

from Delaunay triangulation were used.

Echolocation and wing morphology
Body mass (to nearest 0.5 g) of each captured bat was measured

with a Pesola scale. Sex, age, and reproductive status of each bat

were assessed. Only data for adult bats, identified by the fusion of

the epiphyseal plates in the finger bones [43], were used to remove

the confounding effects from physical immaturity.

Horseshoe bats are high duty-cycle echolocators and reduce

echolocation call frequency in relation to flight speed to

compensate for Doppler shifts [44]. To eliminate variation in

frequency as a result of Doppler shift compensation, echolocation

calls were recorded from handheld bats [45] to obtain their

‘resting frequency’ (RF). Calls were recorded using an Avisoft

Ultrasound 116 bat detector (Avisoft Bioacoustics, Berlin,

Germany) or Pettersson D980 bat detector (Pettersson Elektronik

AB, Uppsala, Sweden) connected to an ASUS EEE 1005HA

netbook (ASUSTek Computer Inc., Taiwan). The sampling

frequency was set at 500 000 Hz (16 bits, mono), with a threshold

of 16. The resultant wave files were analyzed with BatSound Pro

(version 3.31b, Pettersson Elektronik AB, Uppsala, Sweden). Calls

with a high signal-to-noise ratio, i.e. the signal from the bat was at

least three times stronger than the background noise, were used in

analyses. The dominant harmonic from each call was taken from

the Fast Fourier Transform (FFT) power spectrum (size 512). A

Hanning window was used to eliminate effects of background

noise. Resting frequency (RF), the frequency of maximum energy

in the constant frequency part of the pulse of a stationary bat, was

measured from the power spectrum [46].

The extended right wing of each captured bat (after [47]) was

photographed with an Olympus C730 digital camera (Olympus

America Inc., New York, USA) and Canon G9 digital camera

(Canon Inc., Japan) ensuring that the camera was positioned at

90u above the wing. The wing and the right hind limb and tail

membrane was opened and secured in position to the graph paper

with masking tape. We calibrated the wing images with the

dimensions of the graph paper, and measured wingspan (to nearest

0.1 mm) and wing area (including body area without the head,

and the area of the uropatagium; to nearest 0.1 mm2) using

SigmaScan Pro 5 software (version 5.0.0, SPSS Inc., Aspire

Software International, Leesburg, USA). These measurements

were used to calculate aspect ratio (AR = b2/S where b is

Table 1. The number of samples (N) and haplotypes (n
haplotypes) for each sampling locality.

Sampling locality N n haplotypes Latitude Longitude

Barberton (BT) 2 2 225.72 31.27

De Hoop (DHC) 31 6 234.43 20.42

Ferncliffe (FCC) 13 7 229.55 30.32

Winburg (FS) 1 1 228.54 27.05

Greyton (GREY) 1 1 234.07 19.69

Knysna (HKV) 4 3 233.95 23.17

Hopewell Farm (HWF) 14 6 229.66 31.02

Koegelbeen (KGB) 5 1 228.67 23.37

Kokstad (KSM) 3 3 230.81 29.28

Lajuma (LAJ) 3 1 223.03 29.43

Melmoth (MEL) 4 3 228.59 31.40

Maitland Mines (MM) 2 1 233.96 25.62

Postmasburg (POST) 11 2 228.62 23.32

Stellenbosch (STEL) 1 1 233.96 18.76

Sudwala (SUD) 29 9 225.38 30.69

Swaziland (SWZ) 2 2 225.96 31.17

Yolland (YOL) 3 3 228.89 31.47

Egypt 1 1

Kenya 5 1

Mozambique 7 7

Namibia 1 1

Tanzania 1 1

Geographical coordinates are not available for Egypt, Kenya, Mozambique,
Namibia and Tanzania and these samples were not used in the population-level
analyses.
doi:10.1371/journal.pone.0031946.t001
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wingspan, m and S is wing area, m2) and wing loading

(WL = M69.81/S where 9.81 is the gravitational acceleration,

m.s22, and M is mass, kg; after [48]).

To determine whether echolocation and wing parameters could

distinguish among the lineages revealed by the DNA analyses, we

used a discriminant function analysis (DFA) on RF, WL and AR in

Statistica 7 (Statsoft, Inc., Tulsa, Oklahoma).

Ecological niche modelling
In light of the genetic and ecological diversity observed, the

potential geographic ranges of the phylogeographic groups of

southern African bats were modelled using Maxent v 3.1.0

[49,50]. Maxent is a presence-background modelling technique

that has performed well in recent tests [51,52]. We used the

sampling localities in this study and georeferenced locality data of

R. clivosus s.l. in southern Africa based on 165 museum specimen

records (see [53] for detailed information including museum

accession number and latitude and longitude) to provide accurate

presence data for the ecological niche models. Maxent can

incorporate a ‘‘bias grid’’ with values that indicate relative

sampling effort to address potential bias in sampling; however

this requires a good understanding of the spatial pattern of the

sample collection effort that produced the occurrence data. We did

not produce such a bias grid because it is unlikely that there was

Figure 2. BI consensus topology. Values above nodes represent posterior probabilities. Grey bars indicate the five groups used in analyses of
southern African bats. South African sampling localities are depicted graphically on the map.
doi:10.1371/journal.pone.0031946.g002
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more effort (by chance) in sampling a particular area of the region;

our database consisted of records collected across the region by a

number of researchers at different times with different sampling

efforts and deposited in 12 museums. For us to introduce such a

bias grid in the niche modelling would probably have introduced a

sampling bias because of poorly informed sampling probabilities.

Rhinolophus clivosus s.l. museum specimens were classified into four

groups, based on the four subspecies and their putative distribution

ranges previously recognized by Roberts [28]. We did not include

specimens that occurred between Knysna and Maitland Mines

(Group 2 bats) because we could not accurately assign them to one

of the four subspecies due to the overlap in their distributions with

both R. g. geoffroyi and R. g. zuluensis. To run the niche models, we

used 11 bioclimatic predictors (annual mean temperature,

isothermality, temperature seasonality, maximum temperature of

the warmest month, minimum temperature of the coldest month,

mean temperature of the wettest quarter, mean temperature of the

driest quarter, annual precipitation, precipitation seasonality,

precipitation of the warmest quarter, and precipitation of the

driest quarter) derived from the WorldClim (http://www.world

clim.org). We used the World Wildlife Fund’s Ecoregion database

as a categorical variable [54,55]. Ecoregions were defined as large

land units that contain distinct assemblages of species and should

approximate their natural distribution before anthropogenic land

alteration. This data set was built on biogeography principles and

with the collaboration of many researchers [54], and is a useful

variable for natural land-cover across the region and for work with

museum specimens that can be decades old [50]. We also used one

topographic predictor (altitude) derived from a digital elevation

model provided by the Shuttle Radar Topography Mission [56].

The environmental data were set to a spatial grid resolution of 2.5

arcminutes (,5 km). The models were run with the convergence

threshold set to 1025, the maximum number of iterations set to

1000, the regularization multiplier set to 1, the output format set to

logistic, and models were calibrated using both linear and

quadratic features. We transformed the continuous probability

output, ranging from 0 to 1, to a map representing the probability

of suitable environmental conditions.

Model accuracy was evaluated with a threshold-independent

receiver operating characteristic (ROC) analysis [50]. The area

under the ROC curve (AUC) provides a single measure of model

performance, independent of choice of threshold. Although the

ROC and AUC have recently been criticised [57,58], they can

indicate the usefulness of the distribution models for identifying

suitable areas of occurrence for species [51]. An AUC of 0.5

indicates that the model fits occurrence data no better than

random predictions, while a value of 1 indicates perfect fit of

predictions with data. AUC values .0.7 indicate useful predic-

tions [59]. To test each model, 25% of the data in each run were

randomly selected by Maxent and compared with the model

output created with the remaining 75% of the presence data. The

percentage contribution of each explanatory variable to model

performance was evaluated with a jackknife procedure imple-

mented in Maxent, where variables are successively omitted and

then used in isolation to measure their relative and absolute

contribution to the model.

Results

Phylogenetic analyses and genetic diversity
Bayesian analyses recovered six monophyletic major clades for

the South African sampling localities (including Swaziland and

Namibia) and three of these were supported by significant ($95%)

posterior probabilities (Fig. 2). When these major clades are

overlaid onto sampling localities it is possible to identify five

geographic groups comprising a Western Cape clade (Group 1),

Knysna region clade (Group 2), Northern Cape clade (Group 3), a

predominantly KwaZulu-Natal/Mpumalanga mixed group

(Group 4) and a Mpumalanga/Limpopo Province clade (Group

5; Fig. 2). The geographic locations of these groups are shown in

Figure 3. Outside of South Africa, the Egyptian sample diverged

first from all other specimens sampled in this study followed by

samples from Kenya, followed by individuals from Mozambique,

and Tanzania. There is generally a strong correspondence

between genetic divergence and geographic origin of samples.

The phylogeographic position of the main groups in South Africa

correspond geographically with the distributions of the previously

described subspecies (Group 1 = R. g. geoffroyi; Group 3 = R. g.

augur; Group 4 = R. g. zuluensis; Fig. 2; [28]). Group 2 comprises

individuals from Knysna and Maitland Mines near Port Elizabeth

and based on geography could correspond with R. g. geoffroyi (for

the Knysna samples) or R. g. zuluensis (for the Maitland Mine

individuals). Group 5 comprises individuals from the most

northern parts of South Africa, and may correspond with the

fourth subspecies R. g. zambesiensis. At the higher level, sequence

divergences indicate that the southern African representatives are

as different from R. clivosus s.l. samples from further north in Africa

(Kenya, Egypt) as they are from the sister species R. ferrumequinum

(Table 2). Estimates for the time to most recent common ancestor,

suggest that the South African individuals diverged from the

individuals in Kenya, Tanzania, and Mozambique around 3.7

Mya (95% HPD: 1.447–4.076) and that all of the samples diverged

from the most northern sample, Egypt, around 4.26 Mya (95%

HPD: 2.23–5.29). Divergence of the five South African groups

occurred during the late Pliocene and early Pleistocene (Table 3).

The deep intraspecific phylogeographic structure present in the

South African samples is supported by the haplotype network

(Fig. 3) where eight statistical groups were found. Four of the

lineages (Groups 1, 2, 3 and 5) are confirmed monophyletic, and

the fifth (Group 4) shows a considerable amount of variation (four

groupings that could not be connected to each other with certainty

and form part of the two lineages, with week posterior

probabilities, in the BI analysis).

Nucleotide and haplotype diversity was the highest in Group 4

when compared with the other groups, whilst the lowest

nucleotide and haplotype diversity was found in Group 3

(Table 3). A graphical interpolation-based representation of the

genetic structure in South Africa indicates that the highest genetic

diversity occurs in the north-eastern edge, corresponding with

Groups 4 and 5 (Fig. 3 inset). AMOVA revealed significant

genetic differentiation (all values p,0.0001) between the five

geographic groups with 66.67% of the variation among groups,

19.72% among samples within groups and 13.61% within

sampling sites (WCT = 0.667; WSC = 0.592; WST = 0.864). Pairwise

WST values were high and significantly different between groups

with the lowest values between Group 4 and the other groups

(Table 4).

Echolocation and wing morphology
The five genetic groups were significantly separated by the DFA

on wing (WL and AR) and echolocation (RF) parameters (Wilks’

Lambda 0.148, F(12, 185) = 16.35, p,0.001; Fig. 4, Tables 5 and 6).

Four groups (excluding Group 2) were separated from each other

along Function 1 (corresponding to resting frequency). Classifica-

tion success for these four groups ranged from 75% (Group 1) to

89% (Group 4). Classification success for Group 2 was 0% and

these bats were separated from Group 1 bats along Function 2

(corresponding to wing parameters). The above interpretation is

Genetic and Ecological Diversity in R. clivosus
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supported by multivariate ANOVA comparing the wing and

echolocation parameters among the five groups. Differences in

AR, WL, and RF were found among all groups (F(12, 172) = 12.55,

p,0.001), but not between sexes (F(3, 65) = 1.32, p = 0.275),

although the interaction between sex and groups was significant

(F(12, 172) = 1.98, p = 0.029).

The WL of Group 1 was significantly larger than those of the

other groups (Tukey test p,0.01 in all cases), and the WLs of

Group 2 and Group 5 were significantly smaller than those of

Group 3 (Tukey test p,0.01 in both cases). Specifically, the WL of

female Group 1 bats was significantly larger than those of male

and female groups (Tukey test p,0.01 in all cases), except males

Figure 3. Minimum spanning network (95% threshold) for South African bats (including two individuals from Swaziland). Circle size
represents haplotype frequency and patterns indicate the sampling locality for the proportion of individuals with that haplotype. Sampling locality
codes are the same as in Figure 2 and Table 1. The inset shows the graphical interpolation-based representation of the genetic structure obtained
over a South African landscape. Darker grey is indicative of high genetic diversity and lighter grey, of lower genetic diversity.
doi:10.1371/journal.pone.0031946.g003

Table 2. Uncorrected pairwise distances (%) between R. ferrumequinum (RF) and R. clivosus s.l. from Egypt (EGY), Kenya (KEN),
Tanzania (TAN), Mozambique (MOZ), Namibia (NAM), and the five South African groups (see Fig. 2. Bold, italic values in the
diagonal indicate within group distances and hyphens indicate n = 1).

RF EGY KEN TAN MOZ NAM Group 1 Group 2 Group 3 Group 4 Group 5

RF 0.2–0.7

EGY 4.4–5.1 -

KEN 12.2–12.4 11.6 0

TAN 10.3–10.7 10.7 10.5 -

MOZ 10.7–11.9 10.5–12.7 10.5–12.1 2.2–2.9 0.7–8.3

NAM 11.7–12.1 12.1 11.6 6.8 7.7–8.6 -

Group 1 11.6–13.0 11.2–11.8 10.3–11.0 7.5–8.8 7.2–9.9 4.2–5.0 0.0–1.8

Group 2 11.8–13.2 11.2–12.3 10.8–11.0 8.1–8.6 8.6–10.1 4.4–4.8 2.6–3.3 0.0–2.0

Group 3 11.8–12.3 11.8–12.5 11.6–12.1 7.2–7.9 8.1–8.6 2,2–2.9 3.5–4.8 3.7–4.6 0.0–0.7

Group 4 10.5–13.8 9.9–12.7 9.9–11.9 6.6–8.3 7.0–9.6 3.7–5.5 3.7–6.4 3.3–6.6 5.0–6.8 0.0–6.4

Group 5 9.6–11.0 10.7–11.4 9.2–11.7 8.6–8.9 8.1–9.6 7.7–7.9 7.2–8.3 7.0–8.1 8.1–8.3 6.1–9.0 0.0–1.8

doi:10.1371/journal.pone.0031946.t002
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from Groups 1 and 3 (Tukey test p.0.18 in both cases). The AR

of Group 1 was significantly larger than those of Group 2, Group 4

and Group 5 (Tukey test p,0.05 in all cases). Specifically, the AR

of female Group 1 bats was significantly larger than those of

females in Groups 4 and 5 (Tukey test p,0.05 in both cases). The

RF of bats in Group 4 was significantly higher than those of the

other groups (Tukey test p,0.001 in all cases), and the RF of

Group 3 was significantly lower than those of the other groups

(Tukey test p,0.001 in all cases). Specifically, the RF of males in

Group 4 was significantly higher than those of male and female

groups (Tukey test p,0.05 in all cases), except females in Group 4.

Similarly, the RFs of males and females in Group 3 were

significantly lower than those of other male and female groups

(Tukey test p,0.01), except males in Groups 1 and 5 and females

in Group 2 (Tukey test p.0.5).

Ecological niche modelling
Evaluation of model performance based on both training and

test presence data indicated that the predictive ability of the

models was higher than expected by chance (AUC.0.95 in all

cases). The extent of the potential distribution ranges of Groups 1,

3, 4 and 5 (Fig. 5A–D) corresponded closely with the distribution

ranges of the subspecies previously described by Roberts [28]

(Fig. 1). To summarize the distribution of the four groups, we

modelled the distribution of all individuals (Fig. 5E). It is notable

that there was little overlap among the lineages. Jackknife tests of

variable importance revealed that for three groups (Groups 1, 4

and 5) the environmental variable with the highest gain when used

in isolation (i.e. appears to have the most useful information by

itself) and the environmental variable that decreases the gain the

most when omitted (i.e. appears to have the most information that

is not present in other variables) was ecoregions. For the arid-

adapted Group 3 this variable was the minimum temperature of

the coldest month.

Discussion

For many faunal species, their distributions coincide with the

vegetation biomes, which in turn are influenced by temperature

and rainfall and which would have experienced major changes

during the Pliocene-Pleistocene. The impact that temperature

changes had on the vegetation, may have contributed to

diversification and speciation in many southern African taxa

[60–64].

Sequence divergence values suggest that southern African R.

clivosus s.l. bats are as genetically distinct from samples further

north in Africa as from the sister species R. ferrumequinum, and the

magnitude of the difference is similar to those between two

horseshoe bat species from Kenya (10% for the mtDNA control

region) - R. eloquens and R. hildebrandtii (Taylor et al. unpublished).

The genetic distinctness of the southern African bats, currently

recognised as R. clivosus, emphasises the need for a thorough

taxonomic revision covering the entire distribution range of R.

clivosus s.l. Within Africa, the large genetic differentiation between

north-eastern and south-western lineages has been documented in

other African vertebrate taxa [65–69] and has been linked to

climatic changes during the Quaternary. In addition, samples from

Mozambique show high levels of mtDNA genetic divergence both

within Mozambique and between Mozambique and South Africa

(Table 2). Recent investigations into other horseshoe bat species in

Mozambique show that cryptic species are evident (Taylor et al.

unpublished; Stoffberg et al. unpublished). The inclusion of

nuclear markers and more comprehensive sampling of R. clivosus

s.l bats throughout Mozambique, Namibia and Zimbabwe is

required to fully resolve the taxonomic status of the lineages

identified in this study and the geographic range of the southern

African R. clivosus s.l..

Roberts [28] recognized the southern African representatives of

R. clivosus s.l. as an endemic southern African species R. geoffroyi.

Four of the lineages identified in this study do correspond to the

geographical distributions of his proposed R. geoffroyi subspecies

[28]: Group 1 bats (R. g. geoffroyi) in the Cape Floral Kingdom

Table 3. Molecular diversity indices for the five southern
African groups showing samples size (N), number of
haplotypes (nh), haplotype diversity (h) and nucleotide
diversity (p).

N nh h p tmrca 95% HPD

Group 1 33 8 0.767 0.004 2.07 0.654–2.553

Group 2 6 4 0.867 0.011 1.87 0.401–2.448

Group 3 16 2 0.125 0.001 1.54 0.327–1.793

Group 4 55 24 0.955 0.027 2.54 0.889–3.192

Group 5 19 6 0.749 0.749 2.31 0.611–3.129

Estimated dates of time to the most recent common ancestor (tmrca) means
and 95% higher posterior densities provided in millions of years ago.
doi:10.1371/journal.pone.0031946.t003

Table 4. Matrix of pairwise WST values between the five
groups.

Group 1 Group 2 Group 3 Group 4 Group 5

Group 1 p,0.0001 p,0.0001 p,0.0001 p,0.0001

Group 2 0.813 p,0.0001 p,0.0001 p,0.0001

Group 3 0.915 0.913 p,0.0001 p,0.0001

Group 4 0.653 0.498 0.679 p,0.0001

Group 5 0.93 0.893 0.948 0.724

WST values are given below the diagonal and p values above the diagonal.
doi:10.1371/journal.pone.0031946.t004

Figure 4. Plot of canonical scores from discriminant function
analysis on echolocation and wing parameters. The five groups
correspond to Figure 2 and squares = Group 3, open triangles = Group
1, closed triangles = Group 2, diamonds = Group 5 and circles = Group 4.
doi:10.1371/journal.pone.0031946.g004
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(CFK) that covers the extreme south-western and southern parts of

South Africa, and where the climate is Mediterranean character-

ized by a winter rainfall season, Group 3 bats (R. g. augur) in the

arid areas on the central plateau of the western half of the country,

Group 4 bats (R. g. zuluensis) in the eastern, more mesic parts of

South Africa, and Group 5 bats (R. g. zambesiensis), occurring in the

northern parts of South Africa, consistent with many taxa showing

distribution patterns that extend only into the northern-most parts

of South Africa. These include birds (Aquila ayresii, Coracias

spatulatus, Falco dickinsoni, Melierax metabates, Myrmecocichla arnoti,

Neafrapus boehmi, Poicephalus fuscicollis, Pytilia afra, Telacanthura ussheri,

Telophorus nigrifrons; [70]), reptiles (Aparallactus lunulatus; [71]), frogs

(Ptychadena uzungwensis; [72]), and mammals (Galago senegalensis,

Heterohyrax brucei, Raphicerus sharpie, Rhabdomys dilectus dilectus,

Cryptomys hottentotus nimrodi; [73–75]), including bats (R. fumigatus,

R. landeri, Hipposiderus vittatus, Nycteris woodi; [53]). Bats in Group 2

may represent a unique taxon that occurs in the Knysna Forest

comprising patches of indigenous forest in the southeastern parts

of the CFK.

Group 4 warrants additional research. Compared to the other

groups, Group 4 comprises four discrete networks (Fig. 3), has the

highest haplotype diversity and was not well recovered in the

phylogeny with the two lineages comprising Group 4 having poor

branch support (posterior probabilities ,95%; Fig. 2). Although

not well resolved, the two lineages recovered in the phylogeny may

represent a predominantly ‘northern lineage’ and a predominantly

‘southern lineage’. The northern lineage includes samples from the

northern parts of KwaZulu-Natal (e.g. YOL, MEL and some

specimens from FCC; Fig. 2), Mpumalanga (e.g. SUD, BT; Fig. 2)

and Swaziland, whilst the southern lineage includes bats from

more southern locations in KwaZulu-Natal (e.g. FCC, HWF,

KSM; Fig. 2) as well as from the Free State Province. These two

lineages were assigned to Group 4 because their distributions

correspond with the previously described subspecies R. g. zuluensis,

the type locality being close to MEL and YOL sampling localities.

However, on the basis of our results they may represent two

separate genetic lineages that occur in sympatry in parts of their

distribution and further geographic sampling will be required to

assess the status of these two lineages. Future work should consider

the inclusion of morphological and cranio-dental characters to

assess the concordance between the molecular results found in this

study and the characters originally used to define the subspecies.

The distributions of the five groups identified in this study are

largely linked to the biomes present in South Africa today, similar

to those reported for Miniopterus natalensis [60]. Furthermore,

modelled distributions for bats assigned to one of the four

previously recognized subspecies indicate that differences in

ecoregions, as defined by the WWF, may play an important part

in the present-day distribution patterns.

Pleistocene climatic cycling, with subsequent vegetation chang-

es, has been shown to drive diversification in horseshoe bat species

including R. affinis [76] and R. ferrumequinum [77] in East Asia.

Estimates of divergence dates of the five groups suggest that they

were present during the Quaternary (ca 2.6 Mya) a time when the

climate was characterised by periodic glaciations and the more

arid regions in the west of South Africa (Karoo biomes) had

formed [78]. Climatic changes during the Pliocene/Pleistocene

would have altered the suitable habitat in the mesic parts of the

country through the fluctuations associated with the repeated

expansion and contraction of savannas and woodlands/forests

[78], resulting in bat populations becoming repeatedly isolated

from one-another. During the Last Glacial Maximum (LGM ca

21–18 thousand years ago) the western arid regions of South

Table 5. Size, wing and echolocation parameters (mean 6 SD; minimum–maximum) for the total number of bats in each of the
five groups (see Fig. 2 tree).

Species group N Mass (g) WS (cm) WA (cm2) WL (Nm22) AR RF (kHz)

Group 1 21 20.261.37 34.561.11 197.3614.67 10.160.66 6.160.63 92.560.52

(m = 9; f = 12) 18–22.5 32.5–35.9 167.9–210.5 9.1–11.0 5.0–7.1 92.0–93.3

Group 2 7 16.961.31 33.760.01 206.4616.0 8.060.32 5.560.38 92.260.55

(m = 4; f = 3) 15.0–19.0 31.8–35.7 189.1–228.9 7.5–8.3 5.0–6.0 91.2–93

Group 3 14 19.661.62 35.061.31 212.5611.35 9.060.7 5.860.47 91.060.91

(m = 6; f = 8) 17.0–22.0 33.8–37.7 187.8–229.5 7.9–10.1 5.2–6.6 90.0–93.0

Group 4 18 16.261.25 33.460.01 197.8611.12 8.460.71 5.660.36 93.860.53

(m = 8; f = 10) 14.5–21.5 31.9–36.0 181.4–226.1 7.7–10.8 4.9–6.4 92.6–94.4

Group 5 27 15.661.25 32.460.01 190.8614.48 8.060.74 5.560.28 92.460.69

(m = 3; f = 24) 13.0–17.0 30.0–34.6 155.1–216.5 6.8–9.2 4.9–6.2 90–93

WS: wingspan, WA: wing area, WL: wing loading, AR: aspect ratio, RF: resting frequency. N = number of bats, where sample sizes for each sex (m = males; f = females)
are provided in parentheses below the total number of bats.
doi:10.1371/journal.pone.0031946.t005

Table 6. Results of discriminant function analysis on
echolocation and wing parameters of five groups.

Function 1 Function 2
F to
remove

Wilks’
lambda p

WL 20.27 0.975 14.393 0.43 ,0.001

AR 20.416 0.186 2.452 0.169 0.054

RF 0.958 0.432 33.307 0.43 ,0.001

Eigen value 2.122 1.161

Cumulative % 64.6 99.9

Wilks’ lambda 0.148 0.463

x2 137.466 55.489

d.f. 12 6

p ,0.001 ,0.001

Groups correspond to Figure 2, WL = wing loading, AR = aspect ratio and RF
= resting frequency.
doi:10.1371/journal.pone.0031946.t006
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Africa were dominated by desert [79] and many of the arid-

adapted bats may have experienced population declines which

could explain the low levels of haplotype and nucleotide diversity

observed in Group 3 bats. The southern regions would have

remained fynbos and shale renosterveld [64,79], and may have

harboured some individuals in suitable refugia such as the Cape

Fold Mountains [80,81]. The eastern interior of South Africa was

characterised by steppe, with the xerophytic woodland/shrubland

(including grassland) biome dominating the northern parts and

extending southwards along the western border with the desert

biome and on the eastern edge between the steppe and coast [79].

This habitat may have been more suitable for horseshoe bats along

the eastern and northern sections of South Africa, providing more

areas of refuge in which many bats could persist. Genetic diversity

is also highest in these areas, and Lawes et al. [82] propose that

major refugia for forest-associated taxa existed on the eastern coast

of South Africa, from which they could have recolonised in a

southerly or northerly direction. It may be possible that the two

lineages in Group 4 (Fig. 2) reflect past recolonisation routes or

migratory patterns during seasonal movements between winter

and summer roosts that occur in a southerly or northerly direction.

The inclusion of microsatellites in future analyses will help to assess

levels of gene flow and investigate the potential for sex-biased

dispersal.

Although divergence between the South African lineages

occurred when much of the modern day biomes were already

present, the continuous cycle of changing habitat followed by the

survival of some individuals in refugia in their respective biomes,

and subsequent recolonisation to suitable areas during more

favourable conditions, may have reinforced the genetic divergence

observed, and resulted in ecologically distinct groups. The

combination of wing and echolocation parameters is important

in determining where and how a bat can forage [29,48,83–86].

Size, echolocation call design, and wing morphology are part of

the same adaptive complex allowing bats to utilize different

habitats and prey [29]. Specifically, the short and broad wings,

and high-duty-cycle echolocation, characterized by high frequen-

cies, are adaptations for slow and manoeuvrable flight and

detection of fluttering prey in structurally complex (‘‘cluttered’’)

habitats [84]. A multivariate analysis of wing and echolocation

characters differentiates between the five groups suggesting that

they may be adapted to their local habitats. However, sample sizes

for the groups are fairly small so differences in morphology and

call frequency may reflect sub-sampling of geographically separate

populations rather than selection for particular habitats. Hence,

with increased sample size there may be a continuum of variation

and increased overlap in echolocation and wing morphology

rather than discrete states. Moreover, the variation in echolocation

and wing parameters was found to be as large within groups as

between groups, thus differences in these parameters among

groups are unlikely to provide differential access to prey and/or

habitat.

Another possible explanation for the separation of bats along

Function 1 of the DFA is that the differences in echolocation

Figure 5. Ecological niche models (ENM). ENMs are based on occurrence records of four groups (see Fig. 2 tree) using current bioclimatic,
altitude and ecoregions variables. A. Group 1, B. Group 3, C. Group 4, D. Group 5, E. all individuals. Shading shows probability of occurrence (i.e.
habitat suitability) from low (blue) to optimal (red) conditions. Sampling locations used to build the ENM are shown as white squares and purple
squares represent locations that were included in the training analyses.
doi:10.1371/journal.pone.0031946.g005
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frequency may facilitate communication amongst conspecifics

[20,23] and assist in distinguishing amongst heterospecifics even

when there is overlap of species’ frequency bands [22]. In this

regard, it is perhaps notable that along Function 1 the Knysna bats

(Group 2) show the most overlap, particularly with bats from

Groups 1 and 5. Knysna bats may not need unique frequency

bands to distinguish conspecifics because they are unlikely to

encounter bats from Group 5 based on geographic distribution,

and are separated from bats of Group 1 on the basis of their wing

morphology. Specifically, their wing loading was significantly

lower than that of bats in Group 1. Lower wing loadings are more

suitable for flying in structurally complex habitats and the

differences observed may be due to the selection pressures exerted

by the structural complexity of the Knysna forests where these bats

occur as opposed to the Fynbos habitats of the Group 1 bats.

Nonetheless, too much overlap of species’ frequency bands should

be selected against if the trait is important in social interactions.

Future studies should investigate if horseshoe bats from different

geographic locations can differentiate each other despite overlap in

call frequencies or if the bats are using other call parameters such

as shape of call or social calls for the recognition of conspecifics.

Alternatively, initial differences in frequency may be due to

founder effects and these differences in frequency may be

maintained in populations because vertical transmission from

mother to offspring plays a role in the fine-tuning of frequency in

horseshoe bats [87]. Conversely, it is unlikely that call differences

among groups can be explained by differences in humidity.

Humidity influences the degree to which atmospheric attenuation

affects echolocation calls. High frequencies are particularly subject

to rapid atmospheric attenuation, and attenuate even more rapidly

under humid conditions. According to this hypothesis therefore

selection should favour lower frequencies in bats that occur in

more humid areas (i.e. Groups 4 and 5). However, these bats used

the highest frequencies.

Genetic structure correlated with distinct ecological attributes as

defined by the separation of the groups using echolocation calls

and wing morphology has been argued to suggest incipient

speciation [60]. The strong concordance between genetic diversity

and ecological diversity suggests that the five geographic groups

examined in this study are distinct and are adapted to their

respective habitats, and should be considered as separate units in

conservation planning. However, there are limitations to the

inferences that can be made using a single marker that evolves

quickly and is maternally inherited (in this study, the mtDNA

control region). It is possible that these distinct groups may reflect

species-level or subspecies splits, or that they are population level

effects and further analysis is required to differentiate between

these hypotheses. Also, genetic introgression has been shown in

other horseshoe bat species [88] and the inclusion of nuclear

markers will be required to test for introgression among southern

African R. clivosus s.l. lineages. Thus further research incorporating

multilocus DNA sequence data, and more traditional taxonomic

characters such as skull morphology, will be required to assess the

taxonomic status of these lineages in South Africa and assist in

resolving the taxonomic status of R. clivosus s.l. in southern Africa.

Acknowledgments

We are grateful to Bruce Patterson, Peter Taylor, Yoram Yom Tov, Bill

Stanley, Lizelle Odendaal, the Durban Natural Science Museum, National

Museum Namibia and the National Museum Bloemfontein for providing

tissue samples. Jimmy van der Linde, Lientjie Cohen, Pieter Malan, Phil

Hockey, Leigh Potter, Henri Combrink, Samantha Naidoo, Shivani

Moonsamy, Leigh Richards and Kirby Waddington are thanked for their

logistical support and assistance in the field. We also thank two anonymous

reviewers for their comments that greatly improved this manuscript.

Author Contributions

Conceived and designed the experiments: SS MCS CAM. Performed the

experiments: SS MCS. Analyzed the data: SS MCS. Contributed

reagents/materials/analysis tools: SS MCS CAM. Wrote the paper: SS

MCS CAM.

References

1. Isaac NJB, Mallet J, Mace GM (2004) Taxonomic inflation: Its influence on

macroecology and conservation. Trends Ecol Evol 19: 464–469.

2. Reeder DM, Helgen KM, Wilson DE (2007) Global trends and biases in new

mammal species discoveries. Occasional Papers The Museum of Texas Tech

University 269: 1–35.

3. Ceballos G, Ehrlich PR (2009) Discoveries of new mammal species and their

implications for conservation and ecosystem services. Proc Natl Acad Sci USA

106: 3841–3846.

4. Agapow PM, Sluys R (2005) The reality of taxonomic change. Trends Ecol Evol

20: 278–280. doi:10.1016/j.tree.2005.04.001.

5. Bickford D, Lohman DJ, Sodi NS, Ng PKL, Meier R, et al. (2006) Cryptic species

as a window on diversity and conservation. Trends Ecol Evol 22: 148–155.

6. Beheregaray LB, Caccone A (2007) Cryptic biodiversity in a changing world.

J Biol 6: 9. doi:10.1186/jbiol60.

7. Clare EL, Lim BK, Engstrom MD, Eger JL, Hebert PDN (2007) DNA barcoding

of Neotropical bats: species identification and discovery within Guyana. Mol Ecol

Notes 7: 184–190. doi:10.1111/j.1471-8286.2006.01657.x.

8. Mayer F, Dietz C, Kiefer A (2007) Molecular species identification boosts bat

diversity. Front Zool 4: 4. doi:10.1186/1742-9994-4-4.

9. Francis CM, Borisenko AV, Ivanova NV, Eger JL, Lim BK, et al. (2010) The

role of DNA barcodes in understanding and conservation of mammal diversity

in Southeast Asia. PLoS ONE 5: e12575. doi:10.1371/journal.pone.0012575.

10. Clare EL (2011) Cryptic species? Patterns of maternal and paternal gene flow in

8 neotropical bats. PLoS ONE 6: e21460.

11. Clare EL, Lim BK, Fenton MB, Hebert PDN (2011) Neotropical bats:

Estimating species diversity with DNA barcodes. PloS ONE 6: e22648.

12. Jones G (1997) Acoustic signals and speciation: the roles of natural and sexual

selection in the evolution of cryptic species. Adv Study Behav 26: 317–354.

13. Jones G, Barlow KE (2003) Cryptic species of echolocating bats. In Thomas JA,

Moss CF, Vater M, eds. Echolocation in bats and dolphins. Chicago: The

University of Chicago Press. pp 301–345.

14. Thabah A, Rossiter SJ, Kingston T, Zhang S, Parsons S, et al. (2006) Genetic

divergence and echolocation call frequency in cryptic species of Hipposideros

larvatus s.l. (Chiroptera: Hipposideridae) from the Indo-Malayan region.

Biol J Linn Soc 88: 119–130.

15. Francis CM, Kingston T, Zubaid A (2007) A new species of Kerivoula

(Chiroptera: Vespertilionidae) from peninsular Malaysia. Acta Chiropterol 9:

1–12.

16. Goodman SM, Ramasindrazana B, Maminirina CPM, Schoeman MC,

Appleton B (2011) Morphological, bioacoustical, and genetic variation in

Miniopterus bats from eastern Madagascar, with the description of a new species.

Zootaxa 2880: 1–19.

17. Stoffberg S (2007) Molecular phylogenetics and the evolution of high-frequency

echolocation in horseshoe bats (genus Rhinolophus). PhD Thesis, University of

Cape Town, South Africa.

18. Kruskop SV, Lavrenchenko LA (2008) Primary results of a bat survey in south-

western Ethiopia, with a new Ethiopian record of Kerivoula lanosa (Chiroptera:

Vespertilionidae). Russian J Theriol 7: 71–76.

19. Kingston T, Rossiter SJ (2004) Harmonic-hopping in Wallacea’s bats. Nature

429: 654–657.

20. Russo D, Mucedda M, Bello M, Biscardi S, Pidinchedda E, et al. (2007)

Divergent echolocation frequencies in insular rhinolophids (Chiroptera): a case

of character displacement. J Biogeogr 34: 2129–2138.

21. Shi LM, Feng J, Liu Y, Ye GX, Zhu X (2009) Is food resource partitioning

responsible for deviation of echolocation call frequencies from allometry in

Rhinolophus macrotis. Acta Theriol 54: 371–382.

22. Schuchmann M, Siemers BM (2010) Behavioral evidence for community-wide

species discrimination from echolocation calls in bats. Am Nat 176: 72–82.

23. Jones G, Siemers BM (2011) The communicative potential of bat echolocation

pulses. J Comp Physiol A 197: 447–457.

24. Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:

907–913.

25. Hewitt G (2004) The structure of biodiversity - insights from molecular

phylogeography. Front Zool 4: 1. doi:10.1186/1742-9994-1-4.

26. Csorba G, Ujhelyi P, Thomas N (2003) Horseshoe Bats of the World

(Chiroptera: Rhinolophidae). Shropshire: Alana books. 160 p.

Genetic and Ecological Diversity in R. clivosus

PLoS ONE | www.plosone.org 10 February 2012 | Volume 7 | Issue 2 | e31946



27. Cotterill FPD (2002) A new species of horseshoe bat (Microchiroptera:

Rhinolophidae) from south-central Africa: with comments on its affinities and
evolution, and the characterization of rhinolophid species. J Zool 256: 165–179.

28. Roberts A (1951) The mammals of South Africa. Johannesburg: Central News

Agency. 700 p.
29. Aldridge HDJN, Rautenbach IL (1987) Morphology, echolocation and resource

partitioning in insectivorous bats. J Anim Ecol 56: 763–778.
30. Hoelzel AR, Hancock JM, Dover GA (1991) Evolution of the cetacean

mitochondrial d-loop region. Mol Biol Evol 8: 475–493.

31. Aplers DL, Van Vuuren BJ, Arctander T, Robinson TJ (2004) Population genetics
of the roan antelope (Hippotragus equines) with suggestions for conservation. Mol

Ecol 13: 1771–1784. doi:10.1111/j.1365-294X.2004.02204.x.
32. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and

analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41: 95–98.
33. Stoffberg S, Jacobs DS, Mackie IJ, Matthee CA (2010) Molecular phylogenetics

and historical biogeography of Rhinolophus bats. Mol Phylogenet Evol 54: 1–9.

34. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference
under mixed models. Bioinformatics 19: 1572–1574. doi:10.1093/bioinformatics/

btg180.
35. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by

sampling trees. BMC Evol Biol 7: 214. Available at: http://beast.bio.ed.ac.uk/.

36. Posada D (2008) jModelTest: Phylogenetic Model Averaging. Mol Biol Evol 25:
1253–1256. doi:10.1093/molbev/msn083.

37. Swofford DL (2002) PAUP* Phylogenetic Analysis Using Parsimony (*and other
methods). Version 4.0b10 for Macintosh. SunderlandMassachusetts: Sinauer

Associates, Inc.
38. Clement M, Posada D, Crandall K (2000) TCS: a computer program to estimate

gene genealogies. Mol Ecol 9: 1657–1660. doi:10.1046/j.1365-294x.2000.01020.x.

39. Woloszyn BW (1987) Pliocene and Pleistocene bats of Poland. Acta Palaeontol
Pol 32: 207–325.

40. Rozas J, Sanchez-De I, Barrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA
polymorphism analyses by the coalescent and other methods. Bioinformatics 19:

2496–2497.

41. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs
to perform population genetics analyses under Linux and Windows. Mol Ecol

Resources 10: 564–567.
42. Miller MP (2005) Alleles In Space: computer software for the joint-analysis of

inter-individual spatial and genetic information. J Hered 96: 722–724.
43. Anthony EL (1988) Age determination in bats. In TH. In Kunz, ed. Ecological

and behavioural methods for the study of bats. WashingtonDC: Smithsonian

Institute Press. pp 47–58.
44. Trappe M, Schnitzler H-U (1982) Doppler shift compensation in insect-catching

horseshoe bats. Naturwissenschaften 69: 193–194.
45. Heller K-G, von Helversen O (1989) Resource partitioning of sonar frequency

bands in rhinolophoid bats. Oecologia 80: 178–186.

46. Schoeman MC, Jacobs DS (2008) The relative influence of competition and prey
defences on the phenotypic structure of insectivorous bat ensembles in southern

Africa. PLoS ONE 3: e3715.
47. Saunders MB, Barclay RMR (1992) Ecomorphology of insectivorous bats: a test

of predictions using two morphologically similar species. Ecology 73:
1335–1345.

48. Norberg UM, Rayner JMV (1987) Ecological morphology and flight in bats

(Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy
and echolocation. Philos Trans R Soc B, Biol Sci 316: 335–427.

49. Phillips SJ, Dudik M (2008) Modeling of species distributions with Maxent: new
extensions and a comprehensive evaluation. Ecography 31: 161–175.

50. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of

species geographic distributions. Ecol Model 190: 231–259.
51. Elith J, Graham CH, Anderson RP, Dud M, Ferrier S, et al. (2006) Novel

methods improve prediction of species’ distributions from occurrence data.
Ecography 29: 129–151.

52. Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, et al. (2008) Effects of

sample size on the performance of species distribution models. Div Distrib 14:
763–773.

53. Monadjem A, Taylor PJ, Cotterill FPD, Schoeman MC (2010) Bats of southern
and central Africa: a biogeographic and taxonomic synthesis. Johannesburg:

Wits University Press. pp 596.
54. Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, et al.

(2001) Terrestrial ecoregions of the world: a new map of life on earth. Bioscience

51: 933–938.
55. Olson DM, Dinerstein E (2002) The global 200: priority ecoregions for global

conservation. Ann Mo Bot Gard 89: 199–224.
56. Farr TG, Rosen PA, Caro E, Crippen R, Duren R, et al. (2007) The Shuttle

Radar Topography Mission. Rev Geophys 45: RG2004. doi:10.1029/

2005RG000183.
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