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Gliomas are the most common primary tumors of the central nervous system. Due to the
existence of the blood-brain barrier and its unique regional immune characteristics, the
study of the immune microenvironment of gliomas is particularly important. Glioma stem
cells are an important cause of initiating glioma, promoting tumor progression and leading
to tumor recurrence. Immunotherapeutic strategies targeting glioma stem cells have
become the focus of current research. This paper will focus on the research progress
of glioma stem cells in the immune microenvironment of glioma to provide the basis for the
immunotherapy of glioma.
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INTRODUCTION

Glioma is one of the most common malignant tumors of the central nervous system. According to
the statistics of brain Tumor Registry in the United States, glioma accounts for about 80% of all
malignant tumors of the central nervous system, and more than half of gliomas are glioblastoma
(GBM) (Ostrom et al., 2015). GBM growth is aggressive, causes tumor recurrence, migration, so that
it is difficult to cure. Currently, the standardized treatment plan for glioma, namely, the maximum
safe surgical resection of the tumor supplemented by postoperative concurrent chemoradiotherapy
or adjuvant chemotherapy, has a very poor prognosis with a median survival of only 15 months due
to its rapid growth, high invasiity and multi-tolerance of chemoradiotherapy (Eder and Kalman,
2014; Wang et al., 2016). Even emerging molecular targeted therapy, electric field therapy and other
methods, but these can only alleviate the disease to a limited extent, there is no significant
improvement in overall survival. Recent studies have shown that the brain can connect to the
peripheral immune system throughmeningeal lymphatic vessels. This subversive finding reconsiders
the relationship between the brain immune microenvironment and neurological diseases (Louveau
et al., 2016). Immunotargeted therapy is a hot topic in glioma treatment (Agarwal et al., 2011).
Glioma stem cells (GSCs) play an important role in initiating glioma, promoting tumor progression
and leading to tumor recurrence (Singh et al., 2004; Sundar et al., 2014). In the microenvironment of
glioma, GSCs can not only cause reprogramming of related cells in the microenvironment, but also
have a high inhibitory effect on the antitumor activity of immune cells (Laterra et al., 2021). The
study of GSCs in glioma immune microenvironment and targeting GSCs therapy have become the
forefront focus of neurooncology. In this paper, we will review and analyze the research progress of
glioma immune microenvironment and targeted immunotherapy for GSCs.
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IMMUNE MICROENVIRONMENT IN
GLIOMA

The microenvironment of glioma tissue is composed of tumor
cells, immune cells and various cytokines secreted by them. These
cytokines, including pro-inflammatory factors, anti-
inflammatory factors and chemokines, constitute a
microenvironmental network, which interact with each other
to jointly regulate the regional immune effect and ultimately
determine the outcome of the disease (Grabowski et al., 2021).

Glioma highly inhibits tumor immunity, and glioma cells
produce immunosuppressive factors such as TGF-β, IL-10 and
indoleamine–pyrrole 2, 3-dioxygenase (IDO) (Tran et al., 2007;
Preusser et al., 2015) Glioma also expresses immune checkpoint
ligand to inhibit immune response (Garber et al., 2016; Hodges
et al., 2017), so it is difficult to use immunotherapy to treat
glioma. In addition, Glioma tumor microenvironment is filled
with a large number of regulatory T cells (Tregs), M2 tumor-
associated macrophages (TAMs), and myeloid inhibitory cells
(MDSCs), which are closely related to the poor prognosis of
glioma (Yue et al., 2014). Many clinical trials have been
conducted to suppress immune checkpoints by reinvigorating
the body’s immune system against glioma (Preusser et al., 2015).

Immune Cells
Macrophage and Microglia
Macrophages infiltrated by gliomas mainly come from
monocytes in peripheral blood circulation, which are recruited
to tumor regions and differentiated into tumor infiltrating
macrophages (Sica and Bronte, 2007). Gliomas associated
macrophages are usually immunosuppressive (Grabowski
et al., 2021). Promote the fine direct contact between
macrophages and tumors to create conditions for tumor cells
to induce immunosuppression of macrophages (Zheng et al.,
2013). Antitumor drugs targeting macrophages (Yu et al., 2021),
such as colony-stimulating factor-1 receptor (CSF-1R), have been
used to create glioma models in mice (Pyonteck et al., 2013; Sun
et al., 2019; Akkari et al., 2020) found that targeting these Gliomas
associated macrophages populations using a colony-stimulating
factor-1 receptor (CSF-1R) inhibitor combined with radiotherapy
substantially enhanced survival in preclinical models.

Microglia are both CNS-resident myeloid cells and the most
important form of defense in the central nervous system. Ye et al.
found that a large number of microglial cell infiltrates in gliomas,
and the degree of infiltration is positively correlated with the
degree of malignancy of gliomas (Ye et al., 2012). Glioma-derived
factors can enhance the migration and continuous proliferation
of microglia and promote the local aggregation of microglia in
tumors by enhancing the adhesion kinase and PI3K/Akt pathway
(Ellert-Miklaszewska et al., 2013). Microglia not only express
CSF1R, but also GABA receptors (Beppu et al., 2013; Liu et al.,
2016). Glutamate induces targeted chemotaxis of microglias to
glioma margins and releases ligands in an AMPAR-dependent
manner, promoting invasion of glioma cells and stemness
activation of GSCs (Guo et al., 2009). In synaptic studies
(Parkhurst et al., 2013; So-Hee et al., 2013; Miyamoto et al.,
2016), microglia have been found to mediate synaptic formation

through direct contact or secretion of soluble proteins BDNF or
IL-10. However, GSCs induce IL-10 secretion through microglia
(Wu et al., 2010), suggesting that GSCs secrete IL-10 through a
bidirectional signaling axis by microglia, leading to abnormal
synaptic formation, which also provides potential research
direction for immunotherapy targeting GSCs.

Macrophages and microglias showed mutual activation and
counterbalance in glioma immune microenvironment and tumor
progression. The specific and unique roles of microglia and
macrophages depend on their localization in and around the
tumor (Radin and Tsirka, 2020). Studies on IDHmutated gliomas
have found that macrophage transcription programs on
microglias increase with tumor grade (Venteicher et al., 2017).
Studies in mouse glioma models have found that microglias are
predominantly located in the margins of gliomas, where they may
promote spatially related behaviors such as invasion,
proliferation, and stemness (Hambardzumyan et al., 2015;
Shen et al., 2016; Caponegro et al., 2020). Caponegro et al.
found that microglias promote the recruitment of anti-
inflammatory macrophages and T regulatory cells from
systemic circulation by releasing chemokines such as CCL2
(Caponegro et al., 2020). Their study also found that the
enrichment of associated microglias around gliomas was
associated with reduced patient survival. Microglia can also
promote stem cell differentiation by releasing IL-6 (Wang
et al., 2009; Zhang et al., 2012), which in turn induces GSCs
to recruit anti-inflammatory macrophages by releasing
osteoperioprotein (Zhou et al., 2015). An increased proportion
of macrophages was found in studies of recurrent gliomas, which
may indicate that macrophages play a potential role in mediating
the recurrence of gliomas after radiation (Akkari et al., 2020).

Regulatory T Cells and Myeloid-Derived Suppressor
Cells
Regulatory T cells (Treg) and Myeloid-derived suppressor cells
(MDSC) play an immunosuppressive role in glioma and are
important reasons for mediating immune escape. Treg does
not exist in normal human brain tissue, but there are a large
number of immunosuppressive Treg cells in GBM
microenvironment, and the degree of Treg infiltration in
glioma is closely related to tumor origin and pathological
grade (Heimberger et al., 2015). Treg not only inhibits the
activation of effector T cells by presenting surface antigens
(Mccoy and Gros, 1999), but also inhibits the functions of
other immune cells by secreting cytokines (IL-10, TGF-β and
so on) and induces the transformation of T cells into Treg
(Câmara et al., 2003; Cantini et al., 2011). Liu et al. found that
Treg infiltrated densely in gliomas induced the expression of
stemness related genes CD133, SOX2, NESTIN and so on,
activated GSCs and promoted tumor growth by secreting
TGF-β mediated NF-κB-IL6-STAT3 signaling pathway (Liu
et al., 2021). In addition, their results showed that blocking
the IL-6 receptor with tocilizumab eliminated this effect in
in vitro and in vivo models.

MDSC are a type of heterogeneous cells, including immature
macrophages, granulocytes, dendritic cell (DC), and other
myeloid cells in the early stage of differentiation. Its main
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functions include promoting the increased expression of
immunosuppressive molecules (IL-10, TGF-β and so on),
inhibiting DC differentiation, inhibiting phagocytosis, reducing
NK cell cytotoxicity and inducing T cell apoptosis (Rodrigues
et al., 2010). Clinical studies have shown that COX-2 inhibitors
(such as aspirin) can inhibit gliomas (Fujita et al., 2011). The
mechanism may be that the COX-2 pathway can promote the
formation of MDSC and the microenvironment of its
polymerization, inhibit the infiltration of cytotoxic T
lymphocytes, and thus promote the growth of glioma. The
infiltration and accumulation of MDSC and Treg in GBM
drives the local immunosuppression influenced by other
immune cells. Chang et al. found that macrophage and
microglia in the glioma microenvironment produce chemokine
CCL2, which is crucial for recruiting Treg and MDSC (Chang
et al., 2016). Their results showed that in a mouse glioma model,
tumors growing in CCL2-deficient mice did not maximize the
accumulation of Treg and MDSC.

Natural Killer Cells
Natural killer (NK) cells can secrete perforin and granase to induce
apoptosis or necrosis of target cells. In gliomas, NK cells are the first
to be recruited to the glioma region, but their function is inhibited,
and the degree of functional inhibition is positively correlated with
the degree of malignancy of gliomas (Dix et al., 1999). Glioma cells
can inhibit NK cells’ function not only by direct contact, but also by
secreting inhibitory factors (Aldemir et al., 2005; Hao et al., 2011;
Wolpert et al., 2012). In addition, (Orozco-Morales et al., 2015)
found that the specific changes of tumor suppressor factor (Rb) and
proto-oncogene (Ras) were also an important reason for the
resistance of glioma cells to NK cell-mediated cytotoxicity.
Therefore, adoptive immunotherapy based on NK cells is a
promising immunotherapeutic strategy for glioma. In vitro
studies have shown that GSCs can express high levels of PVR
and adhesin 2, and NK cells activated receptor DNAM⁃1 can
specifically recognize the above two ligands, thus killing GSCs
(Castriconi et al., 2009). They also found that GSCs derived from
GBM were highly sensitive to NK cell-mediated live lysates
stimulated by IL⁃2 or IL⁃15 (Castriconi et al., 2009).

Cytokines
In the tumor microenvironment, cytokines are communication
mediators between cells and tissues, and are closely related to the
differentiation and activation of immune cells in the tumor
microenvironment. Immunoregulatory cytokines such as pro-
inflammatory factors (IL-1, IL-2, TNF-α, IFN-c), anti-
inflammatory factors (IL-10, TGF-β), and chemokines (CCL-2,
CCL-5, CCL-7, CX3CL1) are synthesized and secreted in the
microenvironment of glioma. These cytokines and their receptors
form a comprehensive regulatory network in the local tumor, and
play an important role in tumor progression and tumor immune
response. Here we introduce some of the latest and most popular
factors.

Transforming Growth Factor⁃β
Transforming growth factor⁃β (TGF-β) signal transducing
pathway is involved in multiple links of glioma genesis and

malignant progression, and the change of TGF-β expression in
serum of patients with malignant glioma is positively correlated
with tumor grade and prognosis. TGF-β can induce monocyte
recruitment, macrophage phagocytosis inhibition, tumor local
T cell proliferation inhibition and other effects (Wu et al., 2010).
TGF-β signal transduction pathway mainly regulates stem cell-
related genes (such as SOX2 and SOX4) to achieve self-renewal
and inhibit differentiation of GSCs (Ikushima et al., 2009;
Peñuelas et al., 2009). Activation receptor NKG2D expressed
by NK cells and CD8+T cells plays a role in specific killing of
transformed cells. Crane et al. found that GBM could down-
regulate NKG2D by secreting TGF-β, thus inhibiting the killing
function of NK cells and CD8+ T cells (Crane et al., 2010).

Chemokines
Chemokines play an important role in the local migration of
immune cells such as microglias and macrophages to tumors.
Studies have shown that the high expression of inflammatory
chemokines ligand 1 (CXCL1) and ligand 2 (CXCL2) is closely
related to tumor invasion, metastasis and poor prognosis (Miyake
et al., 2014; Seifert et al., 2016). CXCR2 is the only receptor for
CXCL1 and CXCL2, and is highly expressed mainly in myeloid
cells, including neutrophils, monocytes and macrophages. These
receptors guide the migration of myeloid derived cells from the
bone marrow to tumor regions where CXCL1 and CXCL2 are
highly expressed, inhibit the activity and proliferation of effector
T cells, and stimulate the growth of regulatory T cells, thereby
promoting tumor immune escape (Oppenheim et al., 1991;
Gabrilovich et al., 2012). In addition to suppressing immunity,
CXCL1 and CXCL2 also recruit myeloid cells to produce
paracrine factors such as S100A9 and promote tumor cell
survival (Acharyya et al., 2012; Alafate et al., 2020) found that
silencing CXCL1 can down-regulate NF-κB and mesenchymal
cell transformation, and inhibit the growth of human glioma
xenograft (Alafate et al., 2020).

Hu et al. found that the high expression of CXCL1 and CXCL2
was closely related to the invasiveness of glioma. The high
expression of CXCL1/CXCL2 promoted the migration of
myeloid cells and disrupted the accumulation of CD8+T cells
in the tumor microenvironment, leading to accelerated tumor
proliferation. Inhibition of CXCL1/2 significantly prevented
myeloid inhibitory cell migration and increased CD8+T cell
accumulation in vitro and in vivo. CXCL1/2 also promoted the
expression of paracrine factor S100A9, activated ERK1/2 and
p70S60k, and promoted tumor growth, while blocking CXCL1/
2 down-regulated the expression of these pro-survival factors and
slowed tumor growth. Targeting CXCL1/2 with standard
chemotherapy can improve the chemotherapy efficiency of
glioma and prolong the survival of glioma mice (Hu et al., 2021).

Oncostatin M
Oncostatin M (OSM) is another cytokine with important
biological significance. Its main function is to inhibit the
growth of various tumor cells and induce the differentiation of
some tumor cells. Oncostatin M receptor (OSMR) is widely
distributed on the surface of many tumor cells, endothelial
cells and epithelial cells. The inhibitory effect of tumor cell

Frontiers in Pharmacology | www.frontiersin.org September 2021 | Volume 12 | Article 7508573

Li et al. GSCs and Immune Microenvironment

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


growth and differentiation induced by statin M is exerted by
specific high-affinity receptors (Auguste et al., 1997; Liu et al.,
1998). Previous single-cell RNA sequencing by researchers found
that malignant glioma cells had four states: neural progenitor cell-
like (NPC-like), oligodendrocyte progenitor cell-like (OPC-like),
astrocyte like (AC-like) and mesenchymal like (MES-like),
indicating that tumor cells have potential state plasticity
(Tanay and Regev, 2017; Neftel et al., 2019). The frequency of
the first three states in tumors is affected by some driving genes
(such as CDK4, PDGFRA, EGFR, etc.). Mesenchymal tumor cells
are almost nonexistent in normal human brain tissue and are
associated only with genetic changes, and they have been poorly
studied. Previous studies have shown that TCGA-MES subtype is
related to the abundance of macrophages, and NF1 mutation or
deletion in TCGA -MES rich tumors increases the recruitment of
macrophages (Wang et al., 2017). Therefore, TCGA-MES is
related to the increased abundance of macrophages in tumors,
which may explain its advantage in recurrent diseases (Qzawa
et al., 2014; Hara et al., 2021) found that MES status of GBM was
closely related to macrophage expression, T cell abundance, and
increased cytotoxicity in both the mouse model and GBM globule
model. The results of this study show that OSM secreted on
macrophages induces the transition of MES like glioma cells to
MES like state. In addition, OSM-mediated induction mainly
comes from the regulation of STAT3, and MES-like tumor cells
are also associated with increased mesenchymal expression of
macrophages and increased cytotoxicity of T cells. This study
highlights the influence of changes in immunemicroenvironment
on tumor cell state, and the combination of changes in tumor cell
state and activation of the immune system has a good potential
therapeutic effect.

The local aggregation of the above immune cell subsets and
cytokines in glioma fully demonstrates that they jointly form an
immunosuppressive microenvironment in glioma and hinder the
production of anti-tumor immune response. Therefore, how to
reduce or reverse this state of inhibition, will continue to receive
attention.

GSCS AND GLIOMA IMMUNE
MICROENVIRONMENT

Tumor stem cells account for a small proportion of tumor cells,
and have the biological characteristics of self-renewal, multilineage
differentiation and tolerance to conventional therapy. GSCs are the
cells that play a tumor initiation role in glioma (Sundar et al., 2014).
With high heterogeneity, they can induce tumor angiogenesis,
promote tumor invasion and dissemination, and are highly
tolerant to radiotherapy and chemotherapy (Folkins et al.,
2007). Under the pressure of conventional treatment, they can
rapidly rebuild tumors, leading to rapid recurrence of glioma (Zhi
et al., 2010). The surface of GSCs can express different proteins,
which are closely related to the maintenance of their homeostasis.
These cell surface proteins are ideal markers for screening and
targeting GSCs, among which CD133 is the most classic (Sundar
et al., 2014). Other well-studied surface markers include SOX2,
KLF4, C-myC, Nestin, Oct4 and A2B5, etc. Early studies targeted

GSCs by preparing specific monoclonal antibodies targeting these
markers. Cells in the GSCs microenvironment can secret a variety
of cytokines, such as vascular endothelial growth factor (VEGF),
hypoxia-inducing factor (HIF), and fibroblast growth factor 2
(FGF2), to stimulate GSCs to self-renew, induce angiogenesis,
recruit immune cells, and promote tumor cell invasion and
metastasis (Hambardzumyan and Bergers, 2015).

Immunotherapy Targeting GSCs
Oncolytic Virus Targeting GSCs
Oncolytic viruses (OVs) are therapeutics designed to selectively
multiply and kill tumor cells. An important design principle is to
weaken or delete virulence factors so that the oncolytic virus
cannot replicate in normal tissues, but still retain the ability to
replicate and kill tumor cells in tumor cells, at the same time it
also can stimulate the immune response, attract more immune
cells to continue to kill residual cancer cells (Muik et al., 2014;
Fukuhara et al., 2016). However, the ability of oncolytic viruses to
spread, cross the host tumor and penetrate the blood-brain
barrier is very limited, which limits their application in
glioma. Neural Stem Cells (NSCs) are pluripotent progenitor
Cells derived from the developing and adult central nervous
system (Conti and Cattaneo, 2010). Preclinical experiments
have shown that NSC can cross the blood-brain barrier, reach
the tumor region, surround the tumor boundary, and migrate
within the brain to target glioma cells (Aboody et al., 2000). The
ability of NSCs to migrate and spread freely within tumors can be
used to deliver therapeutic molecules across the blood-brain
barrier to target glioma cells. Kim et al. modified an oncolytic
adenovirus (CRAd-S-pk7), which improved viral replication and
targeting to glioma cells, and increased the anti-tumor activity
and survival rate of mice (Kim et al., 2016). By combining the
tumor propensity of NSCs with the ability of CRAd-S-pk7 to
target GSCs, they engineered an NSC-provided engineered
oncolytic virus (NSC-CRAd-S-pk7), which extended the
median survival of mice treated with it by 50%. In a recently
published phase one trial, NSC-CRAd-S-pk7 injection was shown
to be safe and effective in patients with newly diagnosed GBM
during surgery (Fares et al., 2021). The results also suggest that
multi-site injection in the brain can increase virus coverage and
improve treatment efficiency, and that concurrent use of
chemoradiotherapy can enhance the replication capacity of
oncolytic adenovirus, which is expected to further improve
treatment effectiveness. Neurotropic viruses as oncolytic
viruses in the treatment of brain tumors have become the
focus of attention because of their ability to cross the blood-
brain barrier. The Zika virus (ZIKV) outbreak in 2015 became a
global public health emergency. This latest study shows that
ZIKA virus can target glioblastoma stem cells through the
SOX2-integrin αVβ5 axis to exert antitumor effect (Zhu et al.,
2020). They found that ZIKV was more likely to infect GSCs from
the patient’s source. At the same time, ZIKV could significantly
induce apoptosis and inhibit proliferation of GSCs. SOX2 is an
important regulator of GSCs with high expression, which can
induce cell pluripotency and maintain the characteristics of stem
cells. After knocking down SOX2, GSCs are less susceptible to
ZIKV infection. Integrin αVβ5 was associated with the expression
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of SOX2 and other GSCmarkers. Inhibition of αVβ5 significantly
reduced viral infection and inhibited the effect of ZIKV on
neuroglobulogenesis. Integrin αVβ5 plays an important role in
ZIKV infection and cell damage. Therefore, the results of this
study confirmed the oncolytic activity of ZIKV against GSCs and
correlated with αVβ5 expression. Friedman et al. found that the
modified HSV-1 oncolytic virus (G207) is highly sensitive to
treating high-grade gliomas in children. The results showed that
G207 could transform immunologically “cold” tumors into “hot”
tumors (Friedman et al., 2021). In addition, because the GSCs are
highly enriched in integrins such as αVβ3 or αVβ5, the oncolytic
viruses designed by genetic engineering technology can enter the
glioma stem cells through these integrins and play an anti-tumor
role, of which DNX⁃2401 is an oncolytic virus with tumor
specificity and strong infectivity. It has been used in phase I
clinical trials with good safety, significantly reduced tumor
volume and prolonged patient survival (Jiang et al., 2007; Lang
et al., 2018).

Tumor Vaccines Targeting GSCs
Tumor vaccines can activate the host immune system to recognize
and kill tumor cells, which is an active immunotherapy. The best
way to activate the immune system is to stimulate multifunctional
antigen presenting cells (APC), such as DC, macrophages, and B
lymphocytes (B cells), among which DC is the best choice. GSCs
have the same ability to sensitize DC, so the direct targeting of this
tumor cell subpopulation and the establishment of tumor vaccines
against glioma are expected to be effective therapeutic programs
(Finocchiaro and Pellegatta, 2015). In recent years, SOX2, as an
important transcription factor for maintaining glioma stem cells,
has been considered as a new target for active immunotherapy.
SOX2 peptide vaccine can significantly enhance systemic and local
immune responses, and prolong the survival of tumor-bearing
animals in tumor models, with definite efficacy observed
regardless of whether combined with chemotherapy (Favaro
et al., 2014). Therefore, glioma stem cell-related vaccines
targeting SOX2 and other glioma stem cell-related genes may
provide a new regimen for active immunotherapy. Epidermal
growth factor receptor variant III (EGFRvIII), the most common
EGFR gene specific mutation in glioma and GSCs. In recent glioma
studies, it has been found that the EGFRvIII resulting from the in-
frame deletion of the EGF receptor gene is not only overexpressed
and carcinogenic, but also exists in tumor stem cells with high
immunogenicity. Therefore, it has great potential as a target for
immunotherapy. As a synthetic peptide that can specifically
recognize EGFRvIII, pepVIII has shown a good application
prospect in the test of glioma. In particular, in the latest glioma
study, a variant peptide vaccine (Y6-pepVIII) designed by the
researchers was found to significantly enhance the immune
response and improve survival in mice (Fidanza et al., 2021).
Their results showed an increased proportion of CD8+ T cells in
tumors of mice receiving Y6-pepVIII vaccine, and both CD4+ and
CD8+ T subsets were involved in antitumor responses.

Monoclonal Antibodies Targeting GSCs
Monoclonal antibodies (Mabs) play an important role in tumor
immunotherapy due to their direct cell-killing and

immunomodulatory effects (Guo et al., 2011). Previous clinical
studies on anti-EGFR antibody in glioma have found that
antibody-mediated therapy has a potential application prospect
(Herbst and Shin, 2002). However, bevacizumab, the first
monoclonal antibody against endothelial production factor
(VEGF) approved by the US Food and Drug Administration
(FDA) for the treatment of high-grade gliomas, has significant
anti-tumor angiogenesis. It will greatly improve the killing and
inhibition of glioma stem cells by other therapies (Calabrese et al.,
2007), but interestingly, no significant survival benefit has been
observed in subsequent clinical trials (Zhuang et al., 2016). Recent
studies have found that Semaphorin3A (SEMA3A), as an axon
guide factor, has carcinogenic effect in several cancers (Kigel et al.,
2008). Lee et al. found that SEMA3A was highly expressed in
human glioma specimens. The SEMA3A antibody developed by
them significantly inhibited the migration and proliferation of
GBM patient-derived cells and U87-MG cells in vitro, and
inhibited tumor by down-regulating cell proliferation
dynamics and tumor-associated macrophage recruitment in
PDX model (Lee et al., 2018). These different findings need to
be further explored.

Therapeutic Strategies for
Immunosuppression of GSCs
Microenvironment
Recent studies have shown that there is a mechanism in the
immune microenvironment of tumor stem cells that inhibits the
immune response and interferes with the surveillance role of the
immune system. Immune checkpoints play a key role in the
immunosuppressed tumor stem cell microenvironment, and the
intervention of these immune checkpoints has become an
important target of tumor immunotherapy (Pardoll and Drew,
2012; Topalian et al., 2015). During tumorigenesis, the immune
checkpoint interaction between GSCs and immune cells changes
from stimulating to inhibiting (Zhai et al., 2020).

The most representative immune checkpoints are cytotoxic T
lymphocyte-associated protein antigen-4 (CTLA-4) and
programmed cell death-1 (PD-1) (Buchbinder and Desai, 2016).
CTLA-4 is a negative regulator of T cells and has a high affinity with
T cells, which leads to depletion and inhibits their activation (Four
et al., 2016; Chikuma, 2017). Anti-CTLA-4 treatment can remove
the inhibitory effect of T cells, thus supporting the anti-tumor
immune response (Fecci et al., 2014). PD-1 is expressed in
various immune cells (Alsaab et al., 2017) and is highly expressed
in malignant tumor tissues, which is associated with T cell depletion
(Ohaegbulam et al., 2015). The interaction between CTLA-4 and
PD-1 significantly inhibited the secretion of IFN⁃c by activated
T cells and impaired the function of T cells (Que et al., 2017).
Therefore, joint blocking of CTLA-4 and PD-1 signal transduction
pathway may be an effective way to rescue immunosuppression of
malignant tumors including glioma and maintain anti-tumor
immune response (Castro et al., 2014). Microrna (miRNA)
regulate multiple gene transcripts and may involve multiple
immune checkpoints, so they have potential as immunotherapies.
Wei et al. found that mir-138 could bind the 3′ untranslated regions
of CTLA-4 and PD-1, and mir-138 transfected human CD4+ T cells
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could inhibit the expression of CTLA-4 and PD-1 in transfected
human CD4+ T cells (Wei et al., 2016). Immune checkpoint
inhibitors that block the molecule CTLA-4 (2011) and PD-1
(2014) have been approved by the FDA. Among the
immunotherapy drugs against PD-1 antibody, Nivolumab has
attracted the most attention. In clinical efficacy observation, it
was found that combined radiotherapy, chemotherapy and
electric field therapy can improve the survival of some glioma
patients to a certain extent (Preusser et al., 2015), improve
prognosis and reduce adverse drug reactions (Chandran et al., 2017).

In addition, GSCs reduce T cell cognition and evade systemic
immune monitoring by downregulation or defect of major
histocompatibility complex I (MHC-I) molecules and antigen-
processing mechanism (APM) components. Improving tumor
surface antigens of GSCs may be an effective strategy for
triggering adaptive immune responses and activating cytotoxic
T cells (CTLs) to inhibit gliomas. A new research found that
inhibition of histone deacetylase (HDAC) increased the
expression of MHC-I and APM components, and enhanced
the antitumor effect of tumor lysate vaccine by activating the
destruction of CTLs (Yang et al., 2020). The enhanced T cell
immune response induced by HDAC inhibition may provide a
new direction for targeting GSCs-based immunotherapy.

CONCLUSION

GSCs and glioma immune microenvironment are the key factors
in the development and progression of glioma. The complex
multidirectional interactions between GSCs, various immune

cells and cytokines eventually form a tumor-supporting
immune microenvironment that promotes tumorigenesis,
proliferation and invasion initiated by GSCs. The study on the
immunosuppression mechanism of GSCs and glioma
microenvironment will help us to further explore the
immunotherapy strategies targeting GSCs and point out new
directions for establishing effective therapeutic targets. We always
believe that immunotherapy is the “ultimate killer” of glioma.
Oncolytic virus immunotherapy targeting GSCs is the blade of
this “sharp weapon” (Figure 1). In the context of the global
COVID-19 pandemic, while we conquer it, its research in tumor
and even glioma is worth paying close attention and thinking.

AUTHOR CONTRIBUTIONS

XW and LZ initiated the work, designed the idea. XY, TR, and
XW prepared and collected material and data. XL, ML, and JZ
wrote the paper. All authors reviewed the article. All authors read
and approved the final authors.

FUNDING

This work is supported by grants from Liaoning Provincial
Natural Science Foundation of China (No.2019-BS-056),
Science and Technology Innovation Fund Project of Dalian
(No.2021JJ13SN55), and the Youth Scientific Research guiding
Project of Fujian Provincial Health Commission (No.2018-
ZQN-80).

FIGURE 1 | Schematic diagram of a simple simulation of the mechanism by which oncolytic viruses (OVs) targeting glioma stem cells (GSCs) exert glioma-inhibiting
action. GSCs infected by genetically engineered oncolytic viruses that target dry-associated genes (e.g., SOX2-integrin αVβ5 axis) can be cleaved directly to destroy
GSCs, and additional immune cells are recruited and chemotaxis around gliomas through the release of inflammatory factors to kill and inhibit gliomas.
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