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Abstract

Transposable elements (TEs) are genomic parasites that selfishly replicate at the expense

of host fitness. Fifty years of evolutionary studies of TEs have concentrated on the deleteri-

ous genetic effects of TEs, such as their effects on disrupting genes and regulatory

sequences. However, a flurry of recent work suggests that there is another important source

of TEs’ harmful effects—epigenetic silencing. Host genomes typically silence TEs by the

deposition of repressive epigenetic marks. While this silencing reduces the selfish replica-

tion of TEs and should benefit hosts, a picture is emerging that the epigenetic silencing of

TEs triggers inadvertent spreading of repressive marks to otherwise expressed neighboring

genes, ultimately jeopardizing host fitness. In this Review, we provide a long-overdue over-

view of the recent genome-wide evidence for the presence and prevalence of TEs’ epige-

netic effects, highlighting both the similarities and differences across mammals, insects, and

plants. We lay out the current understanding of the functional and fitness consequences of

TEs’ epigenetic effects, and propose possible influences of such effects on the evolution of

both hosts and TEs themselves. These unique evolutionary consequences indicate that

TEs’ epigenetic effect is not only a crucial component of TE biology but could also be a sig-

nificant contributor to genome function and evolution.

Transposable elements (TEs) are selfish genetic elements that can copy themselves and move

to another genome location. Because of TEs’ replicative nature and mobile behavior, they are

prevalent across eukaryotic genomes in both the transcriptionally silenced heterochromatin

and the gene-rich euchromatin [1]. This distribution of TEs, not surprisingly, could have sig-

nificant functional and fitness consequences, such as disrupting functional sequences [2–4]

and providing ectopic regulatory elements [5,6]. Ectopic recombination between nonallelic TE

insertions also leads to highly detrimental chromosomal rearrangement [7–9]. A common

thread among these well-studied deleterious consequences of TEs is that they are mediated by

TEs’ “genetic” effects (e.g., disruption of DNA or changes of DNA sequences). On the other

hand, recent evidence suggests that TEs can also have potent “epigenetic” effects on host
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function and fitness. The term “epigenetics” has a wide variety of meanings [10], and we use a

more specific definition: changes in the heritable states of chromatin that are independent of

the underlying DNA sequences [11]. In this Review, we summarize the recent advances in

understanding the long-overlooked epigenetic effects of TEs in natural populations and how

these effects have shaped the evolution of both TEs and host genomes.

Epigenetic effects of TEs: Cause

In eukaryotes, genomic DNA and histones complex into chromatin, which can further fold

and compact into higher-order structures inside the cell nuclei. Biochemical modifications of

DNA or histones leave molecular markers that encode “instructions” for gene regulation [12].

Based on the distribution of these epigenetic modifications, the eukaryotic genome is grossly

categorized into gene-rich, transcriptionally active euchromatin and gene-poor, transcription-

ally silent heterochromatin. In organisms with monocentric chromosomes, constitutive het-

erochromatin is predominantly located around centromeres (pericentromeric) and at the ends

of chromosomes (peritelomeric) and is enriched with repressive epigenetic marks, such as

DNA methylation and specific modifications of histone tails, in particular, di- and tri-methyla-

tion on lysine 9 of histone H3 (H3K9me2/3) [13–15] (but see [16,17] for the heterochromatin

of “holocentric chromosomes,” which has similar but also many different properties from the

heterochromatin of monocentric chromosomes). These repressive epigenetic marks promote

the packaging of chromatin into compacted nuclear compartments. In addition, these hetero-

chromatic compartments can phase separate from the euchromatic genome, making constitu-

tive heterochromatin inaccessible to various cellular processes, such as transcription,

replication, and DNA damage repair (reviewed in [18]). Outside the transcriptionally silenced

heterochromatin, the repressive epigenetic marks are also found in the gene-rich and tran-

scriptionally active euchromatin [19–22], particularly around euchromatic TE sequences.

To safeguard the genomes from the harmful effects of TEs, both animals and plants can epi-

genetically silence TEs through small-RNA–mediated mechanisms (Fig 1) (reviewed in [23]).

Specifically, PIWI-interacting RNAs (piRNAs) or small interfering RNAs (siRNAs) guide the

RNAi protein complex to euchromatic TEs with complementary sequences. The complex then

recruits DNA and/or histone methyltransferases to modify the DNA or histone tails associated

with the TE sequences, resulting in an enrichment of repressive epigenetic marks at TEs (Fig

1). This epigenetic silencing of TEs reduces the selfish increase of TEs, ultimately benefiting

the host. However, several early studies on the genetic basis of a wide array of phenotypic traits

hinted at how the epigenetic silencing of TEs could, in turn, influence nearby host genes (Fig

2, [24–27]). A common feature of the observations in Fig 2 is that the presence of a TE inser-

tion, irrespective of TE type, was associated with the silencing of nearby genes. A reporter

transgene study in Drosophila melanogaster provides a clue for the potential mechanism

underlying this phenomenon [28]. It was observed that the strength of silencing a randomly

inserted transgene in the euchromatic genome inversely correlates with the distance between

the transgene and a DNA-based TE family named 1360. This observation is consistent with

the predictions of the “mass action model” [29], which has been applied to explain the dis-

tance-dependent spreading of repressive epigenetic marks from pericentromeric and peritelo-

meric heterochromatin [13,30,31]. This model proposed that the extent of heterochromatin

assembly depends on the concentration of heterochromatic structural and enzymatic proteins,

whose destiny is expected to be the highest at heterochromatin and decreases with distance.

Epigenetically silenced TEs are likely another kind of heterochromatin-nucleation center and

could similarly result in distance-dependent enrichment of repressive epigenetic marks around

TEs. Another nonexclusive mechanism that may mediate the observed spreading effects of
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TEs is the generation of small RNAs that target both TEs and neighboring sequences. Indeed,

in Drosophila, euchromatic TEs become de novo piRNA generating loci, and the generation of

small RNAs can extend into TE-flanking regions [32]. In plants, targeting of small RNAs can

fuel the production of additional small RNAs from the neighboring sequences, a phenomenon

known as “transitivity” [33,34]. In both scenarios, the probability of TE-flanking sequences

being targeted by the epigenetic silencing pathway dwindles with the increased distance to TE.

Recent waves of epigenomic studies further support the idea that the spreading of repressive

marks from euchromatic TEs is not an isolated event and is surprisingly prevalent within

genomes and across taxa. A study in Arabidopsis thaliana first demonstrated that 500 bp win-

dows flanking TEs are enriched with suppressive DNA methylation [35]. Similarly, in mice, it

was observed that there is not only an enrichment of H3K9me2 around TEs, but the enrich-

ment level decreases with increased distance from TEs, demonstrating a striking distance-

dependent effect [36]. Up to now, genome-wide evidence for TE-associated spreading of

Fig 1. Mechanisms for the epigenetic silencing of TEs in animals and plants. To portray the similarities of the mechanism underlying TE epigenetic silencing

between species, this figure only shows core proteins involved in the processes for four representative eukaryotic species. Detailed mechanisms and involved proteins

could be found at other detailed reviews (e.g., [134,134–136]). In mammals, piRNAs are loaded onto MIWI2, which promotes a chromosomal environment that

ultimately recruits the mammalian DNMT3 to methylate TE sequences [137,138]. Complementarily, KAP1, also called TRIM28, recognizes retroviral TE sequences by

binding to a conserved primer binding site [139] and recruits H3K9 methyltransferase SETDB1 and HP1 to form a repressive heterochromatic environment at TE

sequences [140–142]. Drosophila lacks DNA methylation, but TEs can still be epigenetically silenced through histone modifications. Nascent TE transcripts are

targeted by piRNA loaded PIWI, which complexes with Asterix (Arx, also known as Gtsf1) and Panoramix (Panx, also called Silencio) [143–146]. This complex

recruits Su(var)3-9, a key H3K9 methyltransferase, to lay down repressive H3K9me2/3 at TE sequences [147]. A similar mechanism is also observed in

Schizosaccharomyces pombe, where RITSC binds to nascent TE transcripts through base-pairing with siRNAs and recruits histone methyltransferase complex to

methylate H3K9 histone tails [148]. In plants, euchromatic TEs are silenced through the RdDM pathway [168]. AGO4 or AGO6 are guided by siRNA [149,150] and

targeted to siRNA-matching regions through scaffolding RNA that were transcribed by Pol V [151–153]. This double-stranded RNA further recruits

methyltransferases DRM1 and DRM2 (homolog to the mammalian methyltransferase DNMT3 [154]), resulting in methylation of TE sequences [155,156]. AGO4,

argonaute 4; DNMT3, DNA methyltransferase 3; DRM,1, domains rearranged methylase 1; KAP1,; KRAB-associated protein 1 KRAB, Krüppel-associated box;

MIWI2, mouse piwi 2; pRNA, PWI-interacting RNA; RdDM, siRNA-directed DNA methylation; RITSC, RNA-induced transcriptional silencing complex; siRNA,

small interfering RNA; TE, transposable element.

https://doi.org/10.1371/journal.pgen.1008872.g001

PLOS GENETICS

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008872 July 16, 2020 3 / 21

https://doi.org/10.1371/journal.pgen.1008872.g001
https://doi.org/10.1371/journal.pgen.1008872


PLOS GENETICS

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008872 July 16, 2020 4 / 21

https://doi.org/10.1371/journal.pgen.1008872


repressive marks has been documented in a wide variety of species, including A. thaliana
[37,38], rice [39], maize [40–43], Drosophila [44–46], and mice [36]. In specific cases, this

spreading of repressive marks can extend beyond 20 kb from euchromatic TE insertions and is

detected in a large proportion of euchromatic TEs (e.g., more than 50% in Drosophila) [46].

Several of these studies characterized the epigenetic landscapes around polymorphic TEs in

multiple individuals of the same species [36–38,40,46], which allowed the comparison of epige-

netic states of homologous sequences in the presence and absence of TEs. These analyses sup-

port that the enrichment of repressive marks around TEs are mediated by TEs themselves,

instead of resulting from TEs’ preferential insertions into genomic regions that are already

enriched with repressive marks (but see [43] for an exception in maize).

Together, these taxonomically diverse studies reveal similarities but also interesting differ-

ences in TE-mediated spreading of repressive marks. Within species, the level of spreading var-

ies greatly between TE families, with long terminal repeat (LTR) families showing the most

dominant spreading effects in multiple taxa [36,43,46]. Because of the involvement of small

RNAs in the epigenetic silencing of TEs, it is not surprising that there is a positive association

between small RNAs targeting and the extent of TE-mediated spreading effects in both plants

[47] and flies [45,46]. However, even for TE families that overall show the strongest spreading

effects, some of their insertions have limited spreading of repressive marks [36,43,46]. Interest-

ingly, the average extent of spreading varies between species, with an average of a hundred base

pairs in A. thaliana [37,38], about 1 kb in maize [40,42], and up to 4–5 kb in mouse and Dro-
sophila [36,45,46]. While it is possible that differences in experimental techniques and analysis

methods might have contributed to some of the observed between-taxa differences, these find-

ings raise the important question of what evolutionary processes underlie the variability of TE-

mediated spreading of repressive marks within and between species, which we discuss below.

Epigenetic effects of TEs: Known consequences to date

Can the spreading of repressive marks from TEs (i.e., “TEs’ epigenetic effects”) extend into

functional sequences and influence host fitness? In Drosophila, TEs with spreading effects are

associated with higher enrichment of H3K9me2 at their neighboring genes when compared to

homologous alleles without nearby TEs [46]. Similarly, in A. thaliana wild populations, TEs

are major associates of differentially methylated regions (DMRs), many of which cover genes

[37,38,48–50]. These observations support the notion that the spreading of repressive marks

from TEs can extend into nearby functional elements. Analysis of the genome-wide distribu-

tion and population frequencies of TEs further reinforces the possibility that TEs’ epigenetic

effects can reduce host fitness and consequently must have functional impacts. If the spreading

of repressive marks from TEs into genes is deleterious, there should be a dearth of silenced

TEs near genes due to purifying selection removing these TEs. Consistent with this prediction,

across several plant species, methylated TEs are more distant from genes than unmethylated

TEs [39,40,51,52]. Another approach to infer the fitness impacts of TEs is through analyzing

Fig 2. Phenotypic variation hints TEs’ epigenetic effects. (A) In mice, an IAP retrotransposon inserted upstream of agouti locus

results in ectopic transcription of the gene that was initiated within the IAP, leading to yellow fur [157]. Curiously, isogenic mice with

this IAP insertion were observed to display a wide spectrum of coat color, from yellow, mixture of yellow and agouti, to agouti, which

was attributed to the varying epigenetic states of the IAP element [24]. Similar observations are also abundant in plants. (B)

Variegated methylation of the promoter of Dfr-B, a flower color gene, results in color streaks in morning glory, and this is associated

with the presence of a nearby MuLE DNA element [25]. (C) A LINE element in the 3’ noncoding regions causes the hypermethylation

of bonsai gene, which silencing the gene and leading to bonsai-like A. thaliana [26]. (D) In muskmelon (Cucumis melo), the sex

determination of flowers is associated with an insertion of GynohAT DNA element in the proximity to WIP1, which encodes a

transcription factor that promotes male flower development. The presence of the TE leads to hypermethylation of WIP1 and thus

female flowers [27]. IAP, intracisternal A-particle; LINE, long interspersed nuclear elements; TE, transposable element.

https://doi.org/10.1371/journal.pgen.1008872.g002
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TEs’ population frequencies, which negatively correlate with the strength of natural selection

removing TEs from the population [53–55]. Compared to other TEs, low-frequency TEs,

which should be more strongly selected against, are more likely to be methylated in A. thaliana
[51]. Similarly, in D. melanogaster, low-frequency TEs are associated with more extensive

spreading of H3K9me2 [46] as well as higher enrichment of H3K9me3 at neighboring genes

across multiple developmental stages [45]. Importantly, these studies not only provide support

for the deleterious fitness consequences of TEs’ epigenetic effects but also paint a picture

where the magnitude of impact on the host fitness is determined by the extent and strength of

TE-mediated spreading of repressive marks.

The most obvious functional consequences of TEs’ epigenetic effects that could impact host

fitness is the perturbation of neighboring gene expression. Genetic manipulations that dis-

rupted the epigenetic silencing of TEs result in a lowered enrichment of repressive epigenetic

marks and increased expression of TE-neighboring genes in Drosophila [44,56], indicating

that TE-mediated spreading of repressive marks reduces the expression of neighboring genes.

Studies using individuals derived from natural populations suggest a similar picture. A pio-

neering study in A. thaliana first reported negative correlations between the methylation den-

sity of TEs and the expression of their adjacent genes [51]. A follow-up study further found

that silenced TEs are associated with divergence in gene expression between A. thaliana and

the closely related A. lyrata [57]. Associations between silenced TEs and lower expression at

adjacent genes were also reported within the genomes of maize [40], flies [45], and rice [39].

These single-genome analyses support an overall dampening effect of TE-mediated spreading

of repressive marks on gene expression. However, studies that jointly analyzed mobilomes,

epigenomes, and transcriptomes of multiple individuals from the same species suggest a more

convoluted relationship between TEs’ epigenetic effects and the expression of neighboring

genes. In A. thaliana, comparisons between homologous alleles with and without TEs found

that the methylation status of TEs results in not only the expected decreased but also quite fre-

quently increased expression of TE-adjacent genes [37,38]. Similarly, associations between

gene expression levels and the extent of TE-mediated spreading of H3K9me2 in a Drosophila
study were weak [46]. These observations could result from the complex role of epigenetic

modifications in gene regulation. For instance, large-scale population epigenomic studies in A.

thaliana reported a limited effect of naturally varying levels of DNA methylation on gene

expression [50,58]. The sensitivity of transcription to repressive epigenetic marks also varies

between genes. In Drosophila, genes within a local euchromatic neighborhood respond very

differently to the ectopic enrichment of heterochromatic marks, with only some genes showing

strongly reduced expression [59]. In fact, the enrichment of key heterochromatic proteins, par-

adoxically, has been shown to be necessary for the proper transcription of some genes located

in not only the pericentromeric heterochromatin [60–62] but also the euchromatic genome

[63,64]. Still, the transcriptional consequences of TEs’ epigenetic effects could depend on other

factors that have yet to be jointly studied, such as insulator sequences, other histone modifica-

tions, or other types of variants (single nucleotide polymorphisms (SNPs) or copy-number

variants). It is worth noting that TEs with epigenetic effects that strongly silence their neigh-

boring genes are unlikely to be sampled because selection against their harmful effects would

have resulted in their low frequencies in natural populations. Even if sampled, selection against

the recessive deleterious effects of these TEs could also lead to their removal during the estab-

lishment of inbred strains or homozygous accessions in the lab. The transcriptional effects of

TE-mediated silencing that are left for investigators would thus be much weaker and require

more sensitive assays.

Alternatively, other genetic effects of TEs could also contribute to perturbed gene expres-

sion. For instance, in D. melanogaster, random hopping of foreign TE families (i.e., TE families
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that are not naturally present in the focal species) successfully recovered many gene expression

mutants in which TEs are inserted at a distance from the impacted genes [65,66]. These foreign

TE families are unlikely targeted by the small-RNA–mediated silencing (e.g., [67]), and their

transcriptional influence should have been mediated by mechanisms other than the spreading

of repressive marks from TEs, such as the disruptions of regulatory sequences. TEs also con-

tain various regulatory elements (e.g., enhancers and insulators) that can disrupt or enhance

neighboring gene expression (reviewed in [5]). In addition, epigenetically silenced TEs are

recently found to change the higher-order structure of genomes, which also has the potential

to influence the transcription of TE-adjacent genes [68]. The same study, however, found that

most TEs that changed the 3D genome structure also lead to the spreading of repressive

marks. These transcriptional effects of TEs and TE-mediated spreading of repressive marks all

act in cis to TE-neighboring genes, making it challenging to disentangle their effects on gene

expression. Nevertheless, evolutionary studies still reveal that TEs with epigenetic effects are

more strongly selected against than TEs without the effects (see above), supporting the func-

tional importance of TE-associated spreading effects.

Selection against the epigenetic effects of TEs influences TE evolution

From the studies highlighted above, it is apparent that TEs’ epigenetic effects impair host fit-

ness. Selection against the deleterious impacts of TEs has been widely demonstrated to play a

critical role in the evolutionary dynamics of TEs [53–55]. Based on the molecular mechanisms

of epigenetic silencing, we propose that selection against TEs’ effects could have several unique

influences on TE evolution, which we discuss below.

A central question in the evolutionary dynamics of TEs is how TEs are contained in host

populations over evolutionary time. Selection against TEs’ epigenetic effects may play a previ-

ously underappreciated role in ensuring a stable containment of TEs. Classical theory predicts

that reducing the transposition rate to equal the rate of TE removal alone is not sufficient to

have a stable equilibrium of TE copy number [69,70]. Slight changes in the rate of TE replica-

tion or removal could lead to drastic changes in TE copy number (Box 1 and Fig 3). On the

other hand, when the deleterious effects of TE insertions are interdependent and each addi-

tional TE exacerbates host fitness with a larger effect than the last TE, or synergistic epistasis of

TEs’ fitness effects (Box 1 and Fig 3), a stable equilibrium of TE copy number is possible [69].

While classic mutation accumulation experiments ([71], reviewed in [72]) and recent popula-

tion genetic studies [73] support synergistic epistatic effects of deleterious mutations, whether

the fitness effects of TE insertions conform to those of simple mutations is still an open ques-

tion. In fact, only ectopic recombination between TEs (one of the many genetic effects of TEs)

has been indirectly supported to have synergistic fitness effects [7,74]. Nevertheless, the depen-

dency of TE silencing on small RNAs and the key role of TE transcripts in the generation of

small RNAs have invited the predictions that the deleterious epigenetic effects of TEs poten-

tially provide the required synergism for the stable containment of TE copy number (Box 1).

Selection against the deleterious epigenetic effects of TEs may also be a potent evolutionary

force shaping divergent TE profiles between species. A comparison between Drosophila species

found that D. simulans TEs have stronger epigenetic effects than TEs in its closely related D.

melanogaster [46]. This is expected to result in stronger selection removing TEs in D. simulans,
which is consistent with the reported lower genomic TE content in the species than in D. mela-
nogaster [75,76]. A similar negative association between TE abundance and the strength of

TEs’ epigenetic effects is also observed within the Arabidopsis family. Compared to its sister

lineage A. lyrata, A. thaliana has a smaller genome that is depauperate of TE sequences [77].

TEs in A. thaliana are also targeted by more siRNAs and have stronger transcriptional
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Box 1. Synergistic epistasis of the deleterious epigenetic effects of
Tes

General models for the evolutionary dynamics of TEs predict that the copy number of a

TE family is determined by processes that increase (transposition) and decrease (exci-

sion and selection) TE copy number in an outbreeding host population [69,70]. When

the transposition and excision rates are independent of TE copy number (n), the approx-

imate change in TE copy number per generation (Δn) depends on the mode by which

host fitness changes with respect to TE copy number. Under the additive model, the fit-

ness impact of all TEs is simple additivity of their individual effect, and a linear model

describes the relationship between host fitness and TE copy number (Fig 3A). Epistatic

interactions among the fitness effects of TEs lead to a deviation from this linear relation-

ship, and different modes of the interaction could have distinct impacts on the evolu-

tionary dynamics of TEs (Fig 3B). Specifically, theories have suggested that synergistic

epistasis among TEs’ deleterious effects leads to a stable containment of TE copy number

(Fig 3B, [69]).

The epigenetic silencing of TEs implicates two possible mechanisms by which synergistic

epistasis among TEs’ deleterious epigenetic effects could arise.

Mechanism I

In both plants and animals, the generation of TE-targeting small RNAs depends on the

transcription of TEs. In plants, Dicer-like3 (DCL3) processes TE transcripts into 24nt

siRNAs [158,159]. In mammals and insects, TE transcripts play an important role in

ping-pong cycle for the generation and amplification of piRNAs [160–162]. The amount

of small RNAs targeting a TE family should thus depend on the copy number of the very

same family, which is supported by empirical studies in Drosophila [163]. Consistent

with the fact that these small RNAs initiate the epigenetic silencing of TEs, the strength

of TEs’ epigenetic effects has been observed to positively correlate with the amount of

small RNAs targeting a TE family [45,46].

A simple linear relationship between the amount of small RNAs targeting a specific TE

family (r) and copy number of that family (n) can be expressed as:

r ¼ an; ð1Þ

where a captures the rate of small-RNA generation from each TE. Assuming that the

amount of small RNAs is in excess and the targeting of a TE by small RNAs will not

influence the probability of another TE insertion being targeted, the probability of epige-

netically silencing a TE (Psilenced) depends on the amount of small RNAs (r in e.q., 1)

and, accordingly, increases with the copy number of that TE family. The number of

silenced TEs can be described as:

nsilenced ¼ Psilencedn ¼ brn ¼ ðabÞn2: ð2Þ

Here, b summarizes the effect of a unit of small RNAs having on the epigenetic silencing

of TEs. If each epigenetically silenced TEs have probability c to result in the spreading of

repressive marks, which reduces host fitness by s, the host fitness (w) can be expressed

as:

w ¼ 1 � sðcnsilencedÞ ¼ 1 � ðsabcÞn2: ð4Þ
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consequences on adjacent genes, both of which suggest more substantial epigenetic effects of

TEs [57]. Future investigations that extend to more species across the phylogeny would help

test the generality of these observations and evaluate the role of TEs’ epigenetic effects in the

evolutionary divergence of genomic TE content.

The nature of purifying selection against TEs’ deleterious epigenetic versus genetic conse-

quences may also differ. Epigenetic silencing varies throughout development and changes

depending on environmental conditions [13,78,79]. TEs’ epigenetic effects may also show

these variabilities, which is evidenced by TE-induced mosaic phenotypes (Fig 2) and the differ-

ing extent of TE-associated spreading of repressive marks documented across developmental

stages [45] and at different temperatures [49]. The deleterious phenotypes arising from TEs’

Host fitness will decrease faster than linearly with respect to an increase in family copy

number. In other words, each additional TE would impose a larger detrimental effect

than the last TE, leading to synergistic epistasis among TEs’ deleterious epigenetic

effects.

This nonlinear relationship between the number of silenced TEs and copy number of TE

family has been hinted in some empirical studies. The strength of epigenetic silencing of

a TE family positively correlates with family copy number in plants [164–166]. Similarly,

in Drosophila, the proportion of TEs with cis-spreading of repressive marks also

increases with family copy number [46]. Yet, several assumptions of this model still need

further empirical investigations (e.g., the amount of small RNAs is in excess). Future

experimental analyses will help evaluate these assumptions as well as test the generality

of the observed relationship between family copy number and the number of silenced

Tes and the link of that to host fitness.

Mechanism II

In most animals, the generation and amplification of piRNAs are mediated through the

“ping-pong cycle” (reviewed in [167]). Using ping-pong cycle in Drosophila as an exam-

ple, transcripts of euchromatic TEs are targeted and cleaved by PIWI/AUB, which are

guided by antisense piRNAs, leading to the generation of sense piRNAs. These sense

piRNAs are then loaded onto another Piwi protein, AGO3, which targeted and cleaved

the primary transcripts of “piRNA clusters” (TE-dense loci in heterochromatin) to gen-

erate even more antisense piRNAs (reviewed in [160–162]). This positive feedback loop

of piRNA amplification suggests that the amount of piRNA targeting a TE family may

grow quadratically or even exponentially with family copy number and can also lead to

the synergism of the deleterious epigenetic effects of TEs. This nonlinear relationship

between the amount of piRNA and family copy number has been long predicted [54].

However, alternative scenarios (such as the amplification of piRNAs has a regulated

maximum or the amount of primary transcripts of piRNA clusters are limited—and

thus limiting an important component of the ping-pong cycle) are also possible and

would result in different predicted dynamics. Quantification of the absolute amount of

piRNAs in relation to TE copy number and empirical investigations of the dynamics of

ping-pong cycle will help further test the predicted nonlinear relationship between the

amount of piRNAs and TE copy numbers and the synergistic epistasis arising from TEs’

epigenetic effects.
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epigenetic effects, and selection against these effects, would thus vary depending on context

and condition, which is similar to selection against deleterious mutations under fluctuating

environment. Theoretically, when the fitness effects of a mutation change over various envi-

ronmental conditions an organism experiences, selection is less effective at distinguishing

alleles that are, on average, deleterious from other mutations [80]. Accordingly, selection may

be overall less effective at removing TEs with harmful epigenetic effects when compared to

TEs with similar magnitude of genetic effects that are context independent. This is an attribute

that needs to be further incorporated into theoretical modeling to define its influence and

importance on the evolutionary dynamics of TEs.

Epigenetic effects of TEs on host genome evolution: Impacts on

recombination

TEs were recently proposed as potential modifiers of the recombination landscape [81], which

is especially plausible with TE-mediated local enrichment of repressive epigenetic marks.

Recombination is strongly reduced at pericentromeric and peritelomeric heterochromatin

[82–84]. The enrichment of repressive epigenetic marks and the associated compacted phase-

separated chromatin structure (see above) are likely explanations for this observation. The dis-

tribution of double-stranded breaks (DSBs), which are generated by Spo11 and initiate recom-

bination [85,86], is strongly associated with open chromatin across the genomes of both

animals [87–89] and plants [90,91]. Increased Spo11 localization [92] and elevated recombina-

tion events [93] at pericentromeric heterochromatin have been observed in A. thaliana
mutants that abolished H3K9me2/3 and/or DNA methylation (but see [94]). Similarly,

mutants leading to loss of H3K9me2/3 have an increased number of DSBs in the pericentro-

meric regions in Drosophila oocytes [95] and in fission yeast [96]. These studies indicate that

DSB initiation is suppressed in genomic regions enriched with repressive marks. In addition,

other steps of the recombination pathways could similarly be influenced by repressive

Fig 3. Impacts of the epistatic interactions among TEs’ deleterious effects on TEs’ population dynamics. (A) Three possible models for the interactions among TEs’

deleterious effects: additive (green), multiplicative (blue), and synergistic (orange) models (reviewed in [54]). (B) The per-generation change in TE copy number (Δn)

under these models when the transposition rate of TEs holds constant. Theories predict that Δn is determined by the rate of TE replication (increases copy number) and

the rate of changes in host fitness (decreases copy number by selection against TEs’ deleterious effects) [69]. Additive model: When the deleterious effects of TEs are

independent, host fitness is determined by summing the effects of individual TE in the host genome. In this case, host fitness declines linearly with respect to TE copy

number (green in A), and the rate of fitness change with every additional TE holds constant (the slope of green line in A). Unless the rate of fitness change is exactly the

same as the rate of increase in TE copy number through transposition, no equilibrium could be reached (B left panel). On the contrary, with epistatic interactions among

TEs’ deleterious effects (multiplicative or synergistic), the relationship between host fitness and TE copy number is nonlinear, and equilibrium in TE copy number is

possible. Multiplicative model: The deleterious effects of TEs weaken with each additional TE in a host genome (blue in A), and the rate of fitness change decreases with

increased TE copy number (slope of blue line in A). While TE copy number could reach equilibrium (i.e., when Δn = 0, B middle panel), this equilibrium is unstable. A

slight decrease in TE copy number leads to an even faster decline in TE copy number (arrow [1]) while a slight increase has the opposite effects (arrow [2], B middle

panel). Synergistic model: Each additional TE imposes a larger fitness cost than the last TE, and the rate of fitness change escalates with more TEs in a host genome

(slope of orange line in A), which accelerates the removal of TEs from the population. A stable equilibrium is possible because slight perturbations always lead back to

the equilibrium (arrow [3] and [4], B right panel). TE, transposable element.

https://doi.org/10.1371/journal.pgen.1008872.g003
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chromatin states, although studies in mitotic cells currently suggest a positive effect of hetero-

chromatin marks on homologous recombination [97,98].

However, the enrichment of heterochromatic marks and the associated recombination sup-

pression at pericentromeric and peritelomeric regions are of Mb scale. With the much smaller

footprint of enrichment of repressive epigenetic marks, it is still an open question whether a

silenced euchromatic TE is sufficient to suppress recombination and alter the recombination

landscape. Some evidence suggests that recombination can be suppressed by the presence of

repressive marks at a much smaller scale than that of constitutive heterochromatin. For

instance, de novo DNA methylation of a 7.5 kb nonrepetitive region in fungus results in over a

hundred-fold reduction in cross-over frequency [99]. In mice, recombination of a transgene

targeted by the V(D)J recombinase is also inhibited by ectopic DNA methylation [100]. In

addition, it was observed that the recombination rate in an intergenic, nonrepetitive sequence

was reduced by the insertion of a TE in maize [101,102], and TEs’ epigenetic effect is a tenta-

tive explanation. Other evidence comes from studies that experimentally manipulated the

chromatin states of TEs. Loss of DNA methylation at TEs leads to an elevated number of DSBs

forming inside TEs in mouse meiotic cells [103]. Increased Spo11 occupancy at TEs is also

observed in A. thaliana DNA methylation mutants, although this effect is restricted to a subset

of TEs [92]. These observations suggest that TE-induced enrichment of repressive epigenetic

marks, even at a kb scale, can potentially modify local recombination rates.

Recombination plays a crucial role in genome evolution. It influences the efficacy of both

positive and negative selection, significantly shaping genome-wide patterns of genetic varia-

tion and adaptive evolution [104]. Within euchromatic genomes, recombination rates fluctu-

ate along chromosomes [105–108] and the epigenetic effects of TEs could be an important

contributor to such patterns. It is worth noting that there is a great variability in the insertion

positions of TEs not only between species [76,77] but also within populations. In fact, the

majority (more than 90%) of the TEs that are inserted at a specific genomic location are not

present in all individuals in both animal [109–112] and plant [37,38,113,114] populations.

Although generally selected against, deleterious TEs could persist in host populations for an

appreciable amount of time (e.g., [115,116]). If the magnitude of TEs’ suppressing effects on

recombination is at a similar order of magnitude to other evolutionary processes (e.g., selec-

tion), the prevalent polymorphic TEs may result in varying recombination landscapes that

could profoundly shape genome evolution within and between species, which is a hypothesis

worthy of further investigation.

Evolution of the epigenetic effects of TEs

Host-directed silencing of TEs reduces TEs’ selfish replication, minimizes the harmful impacts

of TEs, and ultimately benefits hosts. However, such silencing also triggers inadvertent and

harmful spreading of repressive marks from TEs. In other words, TEs are deleterious because

of host silencing mechanisms evolved to reduce TEs’ detrimental impacts. Then, why have

organisms failed to curb the associated spreading effects?

The spreading of repressive marks from TEs is likely under host control in some systems.

In A. thaliana, demethylation genes (DML2, DML3, and ROS1) actively maintain the bound-

aries of DNA methylation between TE-induced heterochromatin and euchromatin [117,118].

In particular, ROS1 specifically targets TEs that are in close proximity to genes and regulates

the extent of methylation spreading [119]. Other epigenetic modifications and/or insulator

sequences could also restrict TEs’ spreading effects. In mice, the limited spreading of methyla-

tion from TEs into nearby genes is associated with the enrichment of active histone modifica-

tions combined with the presence of insulator elements at intervening sequences [98]. The
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same study also postulated that the expression of nearby genes, and, accordingly, the enrich-

ment and “spreading” of active epigenetic marks, may define the boundary of TE-associated

enrichment of repressive marks. Consistent with this prediction, it was observed that pericen-

tromeric heterochromatin-mediated silencing is highly sensitive to the promoter strength of

the impacted euchromatic genes [120].

Despite these known molecular mechanisms that limit the spreading of repressive marks,

TEs’ epigenetic effects are still widely documented in the very same taxa, suggesting hosts can-

not entirely prevent the inadvertent effects of epigenetically silencing TEs. To understand why

the deleterious spreading effects of TEs exist in the first place, the critical question to ask may

instead be “Is the spreading of repressive marks from TEs evolving? If so, how and why?”

Although the survey for variation in the epigenetic effects of TEs between genomes is still

restricted to a few taxa, these studies unanimously support that the extent of TE-associated

enrichment of repressive marks varies within populations [50] and between closely related spe-

cies [46,57]. These observations indicate that TEs’ epigenetic effects, instead of being static, do

evolve. But what evolutionary mechanisms underlie these differences? Similar to the spreading

of repressive epigenetic marks from constitutive heterochromatin, the epigenetic effects of TEs

depend on the host machinery of epigenetic regulation [121]. Varying epigenetic effects of TEs

could thus be driven by variation at the coding sequences and/or regulatory elements of genes

that regulate the overall chromatin environment. Consistent with this hypothesis, the 1001 A.

thaliana consortium has identified associations between SNPs in genes involved in the methyl-

ation pathway (CMT2 and AGO9) and the level of methylation at TEs [50]. There is also a cor-

relation between the expression level of key heterochromatin regulator proteins (Su(var)s) and

the magnitude of TEs’ epigenetic influence between Drosophila species [46].

What evolutionary force might have driven the variation of these host genetic factors in the

first place? In other words, why would host genetic factors have evolved to escalate the harmful

epigenetic effects of TEs in some species but not the others? Genes involved in epigenetic regu-

lation are highly pleiotropic and are critical players in a wide array of cellular functions

[13,122–124]. Accordingly, selection could have acted on their other vital roles. Alternatively,

the difference in TEs’ epigenetic effects between species may be the consequence of varying TE

abundance, instead of the cause. A significant change in TE abundance in host genomes could

also be driven by changes in host effective population sizes [125], host mating systems

[126,127], or horizontal transfer of TEs between hosts [128]. This increase in TE copy number

could result in selection for weakening the epigenetic silencing of TEs to reduce the extent and

thus deleteriousness of the associated spreading effects. However, this reduced suppression of

TEs could lead to an increased rate of TEs’ selfish replication and, accordingly, even more TEs

in host genomes. On the other hand, in response to an increased abundance of TEs, selection

may instead favor stronger epigenetic silencing of TEs to prevent TEs’ selfish increase,

although theories predict that selection for reduced TE replication only happens under

restricted conditions [129]. In either scenario, the strength of silencing TEs and thus TEs’ epi-

genetic effects could fluctuate between states without reaching a stable equilibrium, leading to

hosts never having perfect control of the harmful spreading effects of TE silencing. Similar

ideas were put forward in the “auto-immunity” hypothesis, which was proposed to explain the

rapid evolution of proteins in the small-RNA pathway [130]. Specifically, in response to the

constant invasion of novel TE families through horizontal transfer, the small-RNA pathway

experiences oscillating selection that favors either increased sensitivity to target newly invaded

TE families or increased specificity to limit deleterious off-target effects from small-RNA–

mediated epigenetic silencing of TEs. In addition to varying host epigenetic environment, dif-

ferential targeting of TEs by the fast-evolving small-RNA pathway could be another driving

force for the differences in TE-mediated spreading effects between taxa.
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Future outlook

A preponderance of studies supports that TEs’ epigenetic effects are prevalent across both ani-

mal and plant genomes and can significantly influence host fitness. This spreading effect can

extend over substantial distances, potentially impacting more genes and functional elements

than some of the genic impacts of TEs. However, many unanswered questions about this previ-

ously overlooked effect of TE still await future investigations. Curiously, between species,

within genomes, or even among copies of the same TE family, there is considerable variability

in the epigenetic effects of TEs. Especially intriguing is how some genomes are infested with

TEs but still have quite extensive epigenetic effects of TEs (e.g., maize, approximately 1 kb),

while other species of low TE content show a more restricted spreading of repressive marks

(e.g., A. thaliana, much less than 1 kb). TE-mediated spreading of repressive marks generally

associates with reduced expression of neighboring genes, with many exceptional cases of this

overall trend. Furthermore, the transcriptional influence of TEs’ epigenetic effects is yet to be

disentengled from other cis effects of TEs. In fact, the relative importance of TEs’ epigenetic

and genetic effects in the evolution of both hosts and TE themselves is an important but still

largely unexplored question. One of the predicted evolutionary consequences of TEs’ epige-

netic effects is the impact on genome evolution through recombination suppression in the

vicinity of TEs. Beyond the TE neighborhood, TE-mediated spreading effects could potentially

broadly shape the evolution of an entire chromosome or even the whole genome on a long

evolutionary time scale, such as the formation of nonrecombining sex chromosome (reviewed

in [81]) or the subgenome dominance in allopolyploids (reviewed in [131,132]). When investi-

gating these unanswered questions regarding the causes and consequences of TE-mediated

spreading effects, integration of genetic and molecular experiment, phylogenetically informed

comparative epigenomic studies (e.g., a multispecies extension of [46]), and theoretical analy-

sis (including simulations, revision of classic TE models, or development of new models (e.g.,

[133])) will provide important novel insights to further push forward our understanding of

TEs’ epigenetic influences. The observed prevalence, fitness impact, and unique evolutionary

consequences highlighted by this Review emphasize that TEs’ epigenetic effects are a crucial

component not only for TEs’ biology but also for the function and evolution of host genomes.
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