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Abstract. To identify the membrane regions through 
which yeast mitochondria import proteins from the 
cytoplasm, we have tagged these regions with two 
different partly translocated precursor proteins. One of 
these was bound to the mitochondrial surface of ATP- 
depleted mitochondria and could subsequently be 
chased into mitochondria upon addition of ATP. The 
other intermediate was irreversibly stuck across both 
mitochondrial membranes at protein import sites. 
Upon subfraction of the mitochondria, both intermedi- 
ates cofractionated with membrane vesicles whose 
buoyant density was between that of inner and outer 
membranes. When these vesicles were prepared from 
mitochondria containing the chaseable intermediate, 
they internalized it upon addition of ATP. A non- 

hydrolyzable ATP analogue was inactive. This vesicle 
fraction contained closed, right-side-out inner mem- 
brane vesicles attached to leaky outer membrane vesi- 
cles. The vesicles contained the mitochondrial binding 
sites for cytoplasmic ribosomes and contained several 
mitochondrial proteins that were enriched relative to 
markers of inner or outer membranes. By immuno- 
electron microscopy, two of these proteins were con- 
centrated at sites where mitoehondrial inner and outer 
membranes are closely apposed. We conclude that 
these vesicles contain contact sites between the two 
mitochondrial membranes, that these sites are the en- 
try point for proteins into mitochondria, and that the 
isolated vesicles are still translocation competent. 

I 
N mitochondria, chloroplasts, nuclei, and Gram-negative 
bacteria, some proteins are transported across two bio- 
logical membranes. Mounting evidence suggests that 

these transport processes do not represent two successive 
translocafions across two separate, single membranes. In all 
four membrane systems mentioned above, sites of contact be- 
tween the two membranes have been observed and suggested 
to act as transport sites. The first detailed description of such 
sites and their possible involvement in protein translocation 
was provided for mitochondria (Hackenbrock, 1968; Hack- 
enbrock and Miller, 1975; Kellems et al., 1975) and Gram- 
negative bacteria (Bayer, 1979). More recently, import of 
proteins into the nucleus was found to occur through the nu- 
clear pore that connects the two membranes (reviewed by 
Dingwall and I_ask-y, 1986; Newport and Forbes, 1987). Fi- 
nally, a component involved in the import of proteins into 
chloroplasts was found (Pain et al., 1988) to be enriched at 
points on the chloroplast surface where the two membranes 
are in close apposition (see also Cremers et al., 1988). 

A role of the mitochondrial "contact sites" in protein im- 
port is suggested by two observations. First, mitochondria 
isolated from cycloheximide-inhibited yeast cells contain cy- 
toplasmic polysomes, which are selectively bound to those 
surface regions where the two membranes are closely ap- 
posed CKellems et al., 1975). Because these polysomes are 

enriched in mRNAs for imported mitochondrial proteins, 
they are probably bound to mitochondria by nascent, ar- 
rested chains of these proteins (Ades and Butow, 1980; 
Suissa and Schatz, 1982). Second, precursor proteins that 
have been synthesized in vitro and trapped during transloca- 
tion into isolated mitochondria by low temperature or anti- 
bodies become stuck across both mitochondrial membranes 
(Schleyer and Neupert, 1985; Schwaiger et al., 1987). How- 
ever, neither of these probes has provided direct evidence 
that mitochondrial contact sites contain import activity. 

In this study, we have used purified artificial mitochondrial 
precursor proteins to generate two translocation intermedi- 
ates which are trapped at different points along the import 
pathway. These proteins, which contain the first 22 residues 
of the cytochrome oxidase subunit IV precursor fused to the 
cytosolic enzyme, mouse dihydrofolate reductase (COXIV- 
DHFR) ~ (Hurt et al., 1984), can be purified in relatively 
large amounts, and are particularly useful tools for iden- 
tifying mitochondrial membrane components involved in 
protein impOrt. The first precursor protein studied was a 
chimeric protein composed of bovine pancreatic trypsin in- 
hibitor (BPTI) coupled to the COOH terminus of a COXIV- 

1. Abbroiations used in this paper: BPTI, bovine pancreatic trypsin inhibi- 
tor; COXIV-DHFR, cytochrome oxidase subunit IV fused to mouse di- 
hydrofolate reductase. 
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DHFR derivative. If this chimeric precursor is presented to 
energized mitochondria in the presence of ATE a transloca- 
tion intermediate is generated that is irreversibly trapped at 
a late step of the import pathway: its DHFR moiety is located 
in the matrix, its amino-terminal presequence is cleaved 
off by the matrix protease, and its carboxy-terminal BPTI 
moiety is still exposed on the mitochondrial surface (Vestwe- 
ber and Schatz, 1988b). Thus, the intermediate must span 
both mitochondrial membranes, which implies that it is 
stuck across membrane contact sites. Moreover, because this 
translocation intermediate inhibits import of several authen- 
tic mitochondrial precursors, it appears to be irreversibly 
trapped at sites through which proteins are imported into mi- 
tochondria. 

The second import intermediate used for these studies was 
also produced using the purified COXIV-DHFR fusion pro- 
tein. However, unlike the chimeric contact site marker de- 
scribed above, this intermediate is reversibly trapped along 
the import pathway. Previously, Eilers et al. (1988) reported 
that binding of the COXIV-DHFR precursor protein to iso- 
lated mitochondria is stimulated by a membrane potential, 
but does not require ATP. Thus, if the precursor is added to 
respiring mitochondria depleted of ATP, it becomes bound 
to the mitochondrial surface, and retains its amino-terminal 
presequence. Upon addition of ATP, this bound precursor 
can be chased into mitochondria, and cleaved to its "mature" 
form, even in the absence of a membrane potential. This 
"ATP-depletion intermediate" proved to be useful for assay- 
ing the translocation activity of submitochondrial fractions. 

These two import intermediates allowed us to tag and iso- 
late the mitochondrial membrane regions with import activ- 
ity. In confirmation of previous studies (Schleyer and Neu- 
pert, 1985; Schwaiger et al., 1987), we find that partly 
translocated precursors are enriched at sites of contact be- 
tween the two mitochondrial membranes. In addition, we 
find that the submitochondrial membrane fraction that co- 
fractionates with the contact and import site marker (a) is 
composed of attached inner and outer membrane vesicles, 
(b) remains productively associated with intermediates in the 
import pathway, (c) retains the capacity to transport proteins 
across membranes, (d) is associated with cytoplasmic ribo- 
somes, and (e) is enriched in specific mitochondrial proteins. 

Generation or manipulation of these intermediates was carried out in im- 
port buffer (0.6 M sorbitol, 20 mM Hepes-KOH pH 7.4, 40 mM KCI, 25 
mM KPi, pH 7.4, 10 mM MgCI2, 0.5 mM EDTA, 1 mM DTT, 1 mg/mi 
fatty acid-free BSA). For reactions driven by a membrane potential in the 
absence of ATP, samples were incubated in import buffer in the presence 
of succiuate and malate (10 mM each), 12.5 U/mi potato apyrase (Pfanner 
and Neupert, 1986), and 2.5 #g/ml efrapeptin under conditions that allowed 
for sufficient aeration of the mitochondrial suspension. For ATP-driven 
reactions, samples were incubated in import buffer containing ATP and an 
ATP-regenerating system (1 mM ATE 9 mM creatine phosphate, 28 U/ml 
creatine kinase). 

Submitochondrial Fractionation 
Submitochondrial membrane vesicles were produced and fractionated using 
a modification of the procedure of Riezman et al. (1983). Mitochondria 
were resnspended to 10 mg/ml in breaking buffer and swollen by incubation 
for 30 rain at 0°C in 9 vol of 20 mM Hepes-KOH (pH 7.4) containing 1 
mM PMSF and 0.5 mM EDTA. Mitochondria were condensed by addition 
of sucrose to 0.45 M and incubation for 10 rain at 0°C. Samples were then 
sonicated in a cell disruptor (Heat Systems-Ultrasonic, Inc.) equipped with 
a microtip for 90 s at 0°C at 80% duty cycle and maximum power. Residual 
intact mitochondria and large fragments were removed by centrifugation at 
32,000 g for 20 rain at 4°C, and submitochondrial membrane vesicles in 
the supematant were collected by centrifugation at 200,000 g for 45 rain, 
at 4oc. 0.2-ml aliquots of the vesicles (15 nag; equivalent to 100 tog of start- 
ing mitochondria) were layered onto linear sucrose gradients (4 ml, 0.85-1.6 
M sucrose in 10 mM KCI and 5 mM Hepes-KOH, pH 7.4) and centrifuged 
at 100,000 g for 16 h at 4°C. 

Electron Microscopy 

To stain for the inner membrane marker protein cytochrome oxidase (sclig- 
man et al., 1968), submitochondrial membrane vesicles were fixed in 2% 
highly purified glutaraldehyde (Electron Microscopy Sciences, Fort Wash- 
ington, PA) in 0.1 M sodium dimethylarseuate (pH 7.4) for 1 h at 4°C. Sam- 
pies were then washed repeatedly by centrifugation and resuspension in 
0.1 M sodium dimethylarseuate, pH 7.4, over a period of 24 h and incubated 
with 1 mg/ml reduced cytochrome c, 0.2% (wt/vol) 3,3'-diaminobenzidine, 
50 mM KPi, pH 7.4 at 37°C for 1 h with occasional agitation. The mixture 
was then chilled to 0°C, and washed by centrifugation and resuspension 
once with 50 mM KPi, pH 7.4, and once with 0.1 M dimethylarsenate, pH 
7.4. Samples were then incubated in 1% OsO4 for 1.5 h at 4°C, washed 
with 0.1 M dimethylarsenate, pH 7.4, immobilized in agar (2% wt/vol), de- 

Materials and Methods 

Isolation of Mitochondria and Generation of 
Intermediates in the Import Pathway 

Mitochondria were isolated (Daum et al., 1982) from the wild-type Sac- 
charomyces cerevisiae strain D273-10B (ATC 25657, American Type Culture 
Collection, Rockville, MD; MAT c0. To produce EDTA-washed mitochon- 
dria, spheroplasts were homogenized in brea~ng buffer (0.6 M sorbitui, 20 
mM Hepes-KOH, pH 7.4) containing .10 mM EDTA. EDTA-free buffers 
were used for all other steps in the mitochondrial preparation. MgCi2- 
treated mitochondria were prepared using buffers containing 2 mM MgCI2 
throughout. 

Import intermediates were produced using two different polypeptides, 
both of which are derived from the COXIV-DHFR fusion protein. The ATP 
depletion intermediate was generated with 35S-labeled fusion protein puri- 
fied from an Escherichia coil strain harboring the expression plasmid 
pKK223-pCOXIV-DHFR (Eilers and Schatz, 1986). The chimeric translo- 
cation intermediate was generated from the 35S-labeled purified DVI2- 
COXIV-DHFR derivative (Vestweber and Schatz, 1988a), which was cova- 
lently coupled via its COOH-terminal cysteine residue to BPTI (Vestweber 
and Schatz, 1988b). 

Figure I. The effect of MgCI2 
on preparation of submito- 
chondrial membrane vesicles. 
Submitochondrial membrane 
vesicles were prepared from 
isolated yeast mitochondria by 
sonication and separated by 
centrifugation through sucrose 
density gradients as described 
in Materials and Methods. 
(Left) Vesicles prepared from 
EDTA-treated mitochondria  
in MgCle-free buffers; (right) 
vesicles prepared from un- 
treated mitochondria in buffers 
c o ~  2 mM MgC12. OM, 
IDF, and IM, outer membrane, 
intermediate-density fraction 
and inner membrane, respec- 
tively. 
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Figure 2. Distribution of inner and outer membrane marker pro- 
teins (A and B), of cytoplasmic ribosomes (Cand D), and of a con- 
tact site labeling translocation intermediate (E and F)  in submito- 
chondrial membrane vesicles produced in the presence of EDTA or 
MgCI2. Mitochondria were prepared either in the presence of 10 
mM EDTA or 2 mM MgC12 and incubated with the chimeric pre- 
cursor protein as described in Fig. 3. A and B show the distribution 

hydrated in an ethanol series, and embedded in white resin (London Resin 
Company, Limited) according to the manufacturer's instructions. Embedded 
samples were sectioned with a Reichert microtome equipped with a dia- 
mond knife. Sections were contrasted for 5 min in a 3:1 mixture of KMnO4/ 
uranyl acetate, jet-washed with water, incubated with lead acetate for 1.5 
min (Millonig, 1961), jet-washed with water, and viewed in a transmission 
electron microscope (model EMI09; Carl Zeiss, Inc., Thornwood, NY). 

For immunoelectron microscopy studies, isolated yeast mitochondria 
were incubated in buffer S (1.2 M sorbitol buffered with 20 mM Hepes- 
KOH, pH 7.4) for 10 rain at 4°C, and fixed by incubation in buffer S contain- 
ing 0.5% glutaraldehyde and 3% paraformaldehyde for 2 h at 0°C. After 
several washes, samples were immobilized in agarose, dehydrated in an eth- 
anol series at progressively lower temperatures (-20--40°C),  and embed- 
ded in Lowicryl K4M resin at -40"C according to the manufacturer's in- 
structions. Postembedding immunogold decorations using commercially 
available goat anti-rabbit immunoglobulins coupled to colloidal gold (Jans- 
sen Life Sciences, Beerse, Belgium) were carried out according to the 
manufacturer's instructions: grids containing ultrathin sections were pread- 
sorbed on a drop of 1% ovalbumin and 1% BSA in TBS (10 mM Tris-HCl 
pH 8.2, 150 mM NaCI, 20 mM NaN3, and 0.1% BSA) for 10 min. There- 
after, samples were incubated with affinity-purified antibodies in TBS sup- 
plemented with 1% ovalbumin and 1% BSA for I h. After three washes with 
TBS containing 0.1% Tween 20 and 0.1% Triton X-100, grids were incubated 
with gold-coupled second antibody, as described above. Unbound material 
was removed by washes, as above, and sections were contrasted with 4% 
uranyl acetate for 10 min and lead acetate for 1.5 min. 

Misce l laneous  

Protein concentration was assayed by the BCA-procedure described in a 

of (zx) cytochrome oxidase subunit II (Poyton and Schatz, 1975) 
and the outer membrane porin (o) from MgClz-treated (A; closed 
symbols) and EDTA-treated (B; open symbols) samples as deter- 
mined by immunoblotting, decoration with specific antisera and 
scanning densitometry. For C and D, sucrose gradient fractions 
from MgCl2-treated (C) and EDTA-treated (D) samples were ana- 
lyzed by immunoblotting with antisera raised against cytoplasmic 
ribosomes. The distribution of the transmembraneous, cleaved 
translocation intermediate (D) was determined by SDS PAGE and 
fluorography, and quantified by scanning densitometry for MgCI2- 
treated (E) and EDTA-treated (F) samples. Ordinates are given in 
arbitrary units. 

Figure 3. A membrane-spanning 
translocation intermediate gener- 
ated from a COXIV-DHFR de- 
rivative COOH-terminally cou- 
pled to bovine trypsin inhibitor 
accumulates exclusively in inter- 
mediate-density submitochondrial 
particles. Mitochondria (6 mg) 
were incubated with 7.5 #g of the 
chimeric protein (6-7 × 1@ dpnd 
#g) in the presence of an ATP- 
generating system for 20 min at 
30°C as described in Materials 
and Methods. They were sepa- 
rated from unbound material by 
centrifugation, mixed with 12 mg 
of carrier mitochondria, and con- 
vetted to submitochondrial parti- 
cles. These particles were sepa- 
rated in a sucrose gradient and 
each gradient fraction was ana- 

lyzed for radiolabeled uncleaved (p) and cleaved (m) chimeric protein by SDS-PAGE and fluorography. The peaks of inner membrane (IM), 
intermediate-density fraction (IDF), and outer membrane fraction (OM) (see Fig. 2) are indicated on the top. Std., 24 ng of radiolabeled 
chimeric protein. 
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Figure 4. The intermediate-den- 
sity fraction is composed of at- 
tached inner and outer membrane 
vesicles. Submitochondrial mem- 
brane vesicles were stained for 
cytochrome c oxidase using 3,3'- 
diaminobenzidine and examined 
by transmission EM. A, B, and C: 
outer, inner, and intermediate 
density membrane vesicles, re- 
spectively. D, vesicles from the in- 
termediate density fraction at high- 
er magnification. Bars, I00 nm. 

company brochure by Pierce Chemical Co. (Rockford, IL). SDS-PAGE and 
immune blotting were described by Haid and Snissa (1983). Radiolabeled 
bands on dried polyacrylamide gels were visualized by fluorometry (Cham- 
berlain, 1979) and quantified by scanning of the exposed x-ray films with 
a CAMAG TLC scanner coupled to an integrator. Antisera against mito- 
chondrial proteins were prepared according to Knudsen (1985). Briefly, pro- 
teins were separated by preparative SDS-PAGE, transferred to nitrocellulose 
and visualized using Ponceau S stain. Bands containing '~}.05-0.1 mg of 
protein were excised, dried, solubilized in DMSO and used for antibody 
production. Antisera raised against cytoplasmic ribosomes were prepared 
according to Daum et al. (1982). Subcellular fractionation and isolation of 
ribosomes were carried out as described by Hurt et al. (1984) and Suissa 
and Schatz (1982). 

Resul ts  

Preparation of  a Submitochondrial Membrane 
Vesicle Fraction that Contains Marker Proteins from 
the Inner and Outer Mitochondrial Membranes and Is 
Associated with Cytoplasmic Ribosomes 

Our aim was to use different import intermediates to identify 
and to characterize a submitochondrial membrane fraction 
with import activity. Subfractionation of mitochondria was 
strongly influenced by MgC12. When isolated yeast mito- 
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Figure 4. 

cbondria were osmotically shocked, further disrupted by 
sonication and the resulting vesicles were separated by cen- 
trifugation through a sucrose density gradient, submitocbon- 
drial vesicles produced in the presence of MgC12 separated 
into two bands, whereas those produced from EDTA-washed 
mitocbondria in MgCl2-free buffers separated into three 
bands (Fig. 1). 

When MgCI~ was present throughout the preparation, the 
densest vesicle band contained an inner membrane marker 
protein, low, but detectable levels of an outer membrane 

marker protein, as well as proteins found in cytoplasmic 
ribosomes. In contrast, the less dense band was ribosome 
free and contained an outer membrane marker protein (Fig. 
2, A and C). When the mitochondria were washed with 
EDTA and subfractionated in the absence of MgC12, the 
dense band was enriched in inner membrane markers, the 
light band was enriched in an outer membrane marker, and 
the intermediate-density band contained both inner and outer 
membrane markers (fractions 8-11, Fig. 2 B). Moreover, 
both the relative amounts and localization of cytoplasmic 
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Figure 5. The intermediate-density fraction is composed of right- 
side-out, sealed inner membrane vesicles and leaky outer mem- 
brane fragments. Intermediate-density vesicles were incubated with 
50 #g/nil trypsin for 10 min at 0°C in the presence or absence of 
0.5 % (vol/vol) octylpolyoxyethylene (OPOE). Trypsin was inacti- 
vated by addition of a 10-fold excess of soybean trypsin inhibitor 
and 1 mM PMSF and all samples were analyzed by immunoblotting 
using antisera against the MASl-encoded subunit of the matrix pro- 
tease and the 70-kD outer membrane protein. Antigens were quan- 
tiffed by densitometric scanning and are given in arbitrary units. 

ribosomes were affected by preparation in the presence or 
absence of MgC12: EDTA treatment resulted in a loss of 
membrane-associated cytoplasmic ribosomes from the den- 
sest membrane band; those that were still associated with the 
submitochondrial particles cofractionated with the interme- 
diate-density fraction (Fig. 2, C and D). This suggests the 
existence of a mitochondrial membrane fraction that con- 
tains both inner and outer membrane markers, associates 
with cytoplasmic ribosomes, and becomes lighter if attached 
cytoplasmic ribosomes are removed. 

A Transmembraneous IntermediateArrested at 
a Late Step ofTranslocation Cofractionates with the 
Intermediate-density Vesicles and with 
Mitochondrial-associated Cytoplasmic Ribosomes 

Kellems et al. (1975) had observed that cytoplasmic ribo- 
somes are associated with mitochondria at membrane con- 
tact sites. Our findings that the intermediate-density fraction 
contains proteins from both mitochondrial membranes as 
well as associated cytoplasmic ribosomes are consistent with 
the possibility that this membrane fraction may be derived 
from mitochondrial membrane contact sites. To determine 
the submitochondrial localization of this membrane fraction, 
we used a translocation intermediate which labels contact 
sites as well as import sites. This intermediate was produced 
using a COXIV-DHFR derivative covalently coupled to BPTI 
(Vestweber and Schatz, 1988b). When EDTA-treated mito- 
chondria that had accumulated this intermediate were sub- 

fractionated in the absence of MgCh, both the cleaved and 
uncleaved forms of the chimeric protein were recovered with 
the submitochondrial particles. The uncleaved forms of both 
the BPTI-coupled fusion protein and of residual free (uncou- 
pled) COXIV-DHFR were detected in both outer membranes 
and in intermediate-density vesicles. In contrast, the cleaved 
form (which must span both mitochondrial membranes) was 
detected almost exclusively in the intermediate-density frac- 
tion (Fig. 3). 

The buoyant density of this contact site marker was in- 
fluenced by the presence of MgCl2 (Fig. 2, E and F): in 
EDTA-treated samples, this marker was found in the inter- 
mediate-density fraction; in vesicles prepared with MgCl2, 
it was found in the densest band. In all cases, this marker 
for protein import sites cofractionated with the mitochon- 
dria-bound cytoplasmic ribosomes. We conclude that mito- 
chondria-bound cytoplasmic ribosomes are associated with 
the same submitochondrial fraction that also contains a part- 
ly translocated precursor protein, and that this fraction con- 
tains sites of close contact between the two mitochondrial 
membranes. 

The Intermediate,density Fraction Contains Inner and 
Outer Membrane Vesicles Attached to Each Other 

To determine the morphology of different submitochondrial 
vesicles, samples from inner, outer, and intermediate-den- 
sity vesicles were stained for cytochrome c oxidase by 3,3'- 
diamino-benzidine, and visualized as thin sections by EM. 
Inner membrane vesicles were identified by being filled with 
the electron dense cytochrome c oxidase reaction product 
(Fig. 4 B); they were clearly distinct from outer membrane 
vesicles that were not appreciably stained by this reagent 
(Fig. 4 A). The intermediate-density fraction was composed 
of unstained and stained vesicles (Fig. 4, C and D). Identifi- 
cation of a membrane fraction containing associated inner 
and outer membranes was not particularly surprising: our in- 
terest was the nature of association of these vesicles. In con- 
trast to reports from Ohlendieck et al. (1986), we did not de- 
tect any vesicles encapsulated within other vesicles, hut 
inner and outer membrane vesicles attached side-by-side. Al- 
though the frequency of attached vesicles within a given sec- 
tion varied with the orientation of the sample relative to the 
plane of sectioning, the morphology of the attachment site 
between some vesicles (arrow in Fig. 4 D) suggested that the 
vesicles were in fact attached to each other rather than simply 
in close proximity. 

Orientation and Integrity of  the Membranes 
in the Intermediate Density Vesicles 

We determined the sidedness and integrity of the inner and 
outer membrane in the intermediate-density vesicles by check- 
ing the accessibility of several marker proteins to externally 
added trypsin (Fig. 5). The markers were the MAS/-encoded 
subunit of the matrix protease CYaffe and Schatz, 1984; WiRe 
et al., 1988; Yang et al., 1988), and the 70-kD protein which 
protrudes from the outer face of the outer membrane (Reiz- 
man et al., 1983). The matrix marker was trypsin inaccessi- 
ble in the absence of detergent, and accessible in the pres- 
ence of detergent, suggesting that it is encapsulated within 
intact inner membrane vesicles (Fig. 5 A). In studies analo- 
gous to those reported previously (Hwang et al., 1989), we 
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Figure 6. The ATP-depletion in- 
termediate specifically accumu- 
lates in an intermediate-density 
submitochondrial membrane frac- 
tion. The intermediate was pro- 
duced by incubating 12 mg of 
mitochondria in import buffer in 
the absence of ATP (see Mate- 
rials and Methods), but in the 
presence of respiratory substrates 
and with purified, radiolabeled 
COXIV-DHFR precursor protein 
(0.018 rag; 3 × l0 s cpm/mg) at 
30°C for 10 vain. After separation 
of mitochondria from unbound 
precursor by centrifugation, half 
of the sample was chased by incu- 
bation in import buffer containing 

ATP and an ATP-generating system at 30°C for 10 min. Samples containing nonchased or chased COXIV-DHFR protein were then mixed 
with 12 mg of carrier mitochondria and converted to submitochondrial particles. These were separated by centrifugation on sucrose density 
gradients. The distribution of the precursor (p) and mature (m) forms of the COXIV-DHFR fusion protein relative to the peaks of mitocbon- 
drial outer membrane (OM), inner membrane (IM), and intermediate-density fraction (IDF) (determined as described in Fig. 2 and 3) 
are shown for samples produced from mitochondria containing the bound precursor protein (top) and from mitochondria whose bound 
precursor had been chased by incubation with ATP before vesicle preparation (bottom). 

established a membrane potential in the isolated intermedi- 
ate-density vesicles by incubating them with respiratory sub- 
strates (succinate or ascorbate) in the presence of cytochrome 
c. Because generation of a potential was absolutely depen- 
dent upon addition of cytochrome c, an intermembrane space 
protein (not shown), the inner membrane component of the 
intermediate density fraction must be right-side-out. In con- 
trast, 77 % of the 70-kD outer membrane marker was trypsin- 
sensitive under all conditions (Fig. 5 B). Thus, three-fourths 
of the outer membranes were either right-side-out, or inside- 
out and leaky. As this vesicle fraction appears to contain in- 
ner and outer membranes attached side-to-side (Fig. 4), we 
favor (but have no direct evidence for) the possibility that the 
vesicles contain rightside-out, sealed inner membranes at- 
tached to inside-out, outer membranes that are mostly leaky. 
The data reported below support this view. 

The ATP-depletion Intermediate Cofractionates with 
the Intermediate-density Membrane Fraction 

In previous studies from this laboratory, Eilers et al. (1988) 
observed that ATP-depleted mitochondria bound the COXIV- 
DHFR fusion protein at their surface; a potential across the 
inner membrane increased binding fourfold. Upon addition 
of ATP, 73% of the precursor that had bound to energized 
mitochondria was translocated across both membranes and 
converted to mature form by the matrix-located processing 
protease. Because this chase occurred even with uncoupled 
mitochondria, the ATP-depletion intermediate is a true im- 
port intermediate. To characterize further the intermediate- 
density fraction, we generated submitochondrial membrane 
vesicles from mitochondria that had accumulated the ATP 
depletion intermediate. This intermediate cofractionated al- 
most exclusively with the intermediate-density vesicle frac- 
tion (Fig. 6, top; Fig. 7 B). 

To confirm that the precursor found in the intermediate- 
density fraction was derived from the ATP-depletion inter- 

mediate which had been productively bound to mitochon- 
dria, mitochondria containing the intermediate were chased 
with ATP before being converted to submitochondrial parti- 
cles. This chase, which releases the intermediate from its 
surface-bound state and transports it into the mitochondrial 
matrix in whole mitochondria, decreased the amount of 
precursor in the intermediate density fraction by 60% (Fig. 
6, bottom; Fig. 7 B). The low amount of mature COXIV- 
DHFR retained by the vesicles cofractionated with matrix- 
and inner membrane markers (Fig. 7 A) and presumably 
represented imported, cleaved protein that had been encap- 
sulated along with some matrix components within inner 
membrane vesicles. 

Isolated Intermediate-density Vesicles 
Internalize Bound ATP-depletion Intermediate upon 
Addition of ATP 

When intermediate-density vesicles were isolated from mito- 
chondria that had bound the radioactive ATP-depletion inter- 
mediate, '~70% of the intermediate was recovered with the 
vesicles accessible to externally added trypsin (Fig. 8 and Ta- 
ble I). This agreed with the observation that, in these vesi- 
cles, 77 % of the 70-kD mitochondrial surface protein was 
trypsin accessible. The ATP-depletion intermediate associ- 
ated with the intermediate-density vesicles was thus still out- 
side the inner membrane. The trypsin-inaccessible fraction 
of the intermediate, like that of the 70-kD outer membrane 
protein, was probably encapsulated in inside-out, closed 
outer membrane vesicles. 

When the intermediate density vesicles were incubated 
with ATP, ,~40% of their bound, trypsin-accessible ATP- 
depletion intermediate was chased into a trypsin-resistant 
compartment (Table I). The protease-protected COXIV- 
DHFR protein retained its presequence. Our interpretation 
of this observation is that protease protection resulted from 
ATP-dependent translocation of the intermediate across an 
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Figure 7. Quantitation of the distribution of membrane marker pro- 
teins and of bound and chased ATP depletion intermediate in sub- 
mitochondrial membrane vesicles. Mitochondria that had bound 
the ATP-depletion intermediate were incubated without additions, 
or chased by addition of ATP before vesicle preparation and separa- 
tion of vesicles by sucrose density gradients as described in Fig. 6. 
Sucrose gradients were separated into 17 fractions and each fraction 
was analyzed for marker proteins cytochrome oxidase subunit IV 
of the inner membrane (~), citrate synthase of the mitochondrial 
matrix (n), and the 70-kD outer membrane protein (o) as described 
in Fig. 2 (Fig. 7 A). The distribution of the ATP-depletion inter- 
mediate (A), and of residual precursor (e) and mature (,,) forms 
of the COXIV-DHFR fusion protein recovered from mitochondria 
that had been treated with ATP before vesicle preparation were de- 
termined as described in Fig. 3 (Fig. 7 B). 

intact vesicle membrane. Translocation of the uncleaved 
precursor form suggests that vesicles did not catalyze the 
proteolytic removal of the presequence, most probably be- 
cause the matrix protease had been inactivated. The inter- 
mediate density vesicles are thus deficient in presequence 
processing activity, but contain an active machinery for 
translocation of prebound ATP-depletion intermediate. 

Using this system, we also observed that ATP induced re- 
lease of the bound import intermediate from the vesicle 
membrane. When vesicles containing bound intermediate 
were incubated with ATP and then permeabilized (but not 
solubilized) with low levels of a nonionic detergent (Vestwe- 

ber and Schatz, 1988a) ,o30 % of the prebound intermediate 
was released into the soluble phase. No such release was 
seen if incubation was in the absence of ATP, or in the pres- 
ence of a nonhydrolyzable ATP analogue (Fig. 9). This re- 
suit, coupled with our previous finding, suggests that ATP 
causes prebound ATP-depletion intermediate to be translo- 
cated across the vesicle membrane, and to be released from 
the vesicle membrane. 

The Intermediate Density Fraction Is Enriched in 
Specific Mitochondrial Proteins 

We were interested in identifying components specific to the 
intermediate-density membrane fraction. Comparison of the 
proteins present in the inner membrane, outer membrane, 
and intermediate-density fraction revealed a number of pro- 
teins which were present in all three fractions, but enriched 
in the intermediate-density fraction (Fig. 10). For the studies 
described below, we focused primarily on two bands, which 
we refer to as contact site proteins I and 2 (CSP-1 and CSP- 
2). The apparent molecular masses of these proteins are 100 
and 64 kD, respectively. Polyclonal antibodies were made 
against each of these proteins. As shown in Fig. 11 A, an- 
tisera against each contact site protein recognized a single 
protein band that was similar in apparent molecular weight 
to the original antigen. Using these antibodies, we also ob- 
served that the distribution of each of the putative contact site 
proteins in sucrose gradient fractions of submitochondrial 

E 
- 3  

g .  

. O  
g .  
,< 

t -  

t~ 

to  

3 
t )  

O .  

6.0 
IM OM 

j controI - trypsin 

5.0 ~ i ~  ~ 

4.0 / A . \ , , ~ ,  chase + trypsin 

o , ~  . . . . .  " ~ ¢ , - , ,  : " - . - , -  
0 2 z, 6 8 10 12 14 16 1B 

Fraction 
Figure & The intermediate-density fraction has translocation activ- 
ity. Submitochondrial vesicles containing bound ATP-depletion in- 
termediate were prepared and fractionated on a sucrose gradient. 
Each of the 18 vesicle fractions collected from the gradient were 
incubated in the absence or presence of an ATP-generating system 
at 15°C for 45 rain and then treated with 50/~g trypsin/ml at 0°C 
for 10 min. Inactivation of trypsin, separation of proteins by SDS- 
PAGE, and analysis and quantification of the amount of radiola- 
beled protein were all carried out as described in Fig. 5. The 
amount of precursor protein in each fraction was quantified by scan- 
ning densitometry: (e) total precursor in unchased control vesicles; 
(x) trypsin-inaccessible precursor in unchased control vesicles; and 
(1) trypsin-inaccessible precursor in vesicles chased with ATP. 
The peaks of inner membranes (IM) and outer membranes (OM) 
in the sucrose gradient are indicated on the top. 
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Table I. Treatment of Vesicles 

Amount of radiolabeled protein 
Treatment of vesicles associated with vesicles 

f~ 

No chase 
Untreated 2.0 100 
+ Trypsin 0.61 30 
+ Trypsin + OPOE 0.27 13 

Chase with ATP 
Untreated 1.9 100 
+ Trypsin 1.1 58 
+ Trypsin + OPOE 0.24 13 

The ATP-depletion intermediate associated with intermediate-density vesicles 
is partly rendered trypsin inaccessible by incubation with ATP. Mitochondria 
containing bound ATP-depletion intermediate were fractionated into inner mem- 
branes, outer membranes, and intermediate-density vesicles. The intermediate- 
density vesicles were incubated in the absence or presence of ATP as in Fig. 
5 and analyzed directly, or first incubated with trypsin in the absence or pre- 
sence of octylpolyoxyethylene (OPOE) as in Fig. 5. Values are expressed as 
arbitrary units derived from densitometric scans. To estimate chase efficien- 
cies, the amount of radiolabeled proteins in untreated controls was defined a s  

100%. 

membrane vesicles was quite different from that of either in- 
ner or outer membrane marker protein: CSP-1 and CSP-2 
were present in the inner membrane fraction, detectable in 
low levels in the outer membrane fraction, and enriched in 
the intermediate density fraction (Fig. 11 B). Quantitation of  
the enrichment of  each of  these proteins and of  inner and 
outer membrane marker proteins is shown in Table H. 

The vesicle populations originally used to identify and 
characterize proteins enriched in the intermediate-density 
fraction were produced from EDTA-treated mitochondria 
and were therefore depleted of  cytoplasmic ribosomes. Fig. 
11 shows that CSP-1 and CSP-2 are mitochondrial proteins 
rather than proteins of  attached cytoplasmic ribosomes: an- 
tisera monospecific for these proteins detected the proteins 
in mitochondria, but not in a ribosomal fraction (Fig. 12). 
CSP-1 and CSP-2 are then mitochondrial proteins that are en- 
riched in the intermediate-density fraction. 

F/gure 9. ATP-dependent trans- 
location of the prebound ATP- 
depletion intermediate causes 
release of the intermediate from 
the mitochondrial membrane. 
Submitochondrial membrane 
vesicles containing prebound 
ATP-depletion intermediate 
were prepared as described 
in Fig. 6. The intermediate 
density fraction was divided 
into three aliquots which were 
incubated for 1 h at room 
temperature without additions 

(con), with 0.1 mM ATP and an ATP-generating system (ATP), or 
with 0.1 mM beta, gamma-methylene-ATP (MeATP). Samples 
were then treated with 0.5% (vol/vol) octyl polyoxyethylene, and 
separated into a membrane pellet (p) and a soluble fraction (s) by 
centrifugation in an airfuge (Beckman Instruments, Fullerton, CA) 
for 30 rain at 30 psi at 4°C. The amount of precursor was deter- 
mined as in Fig. 3. 

Figure 10. Analysis of the pro- 
tein composition of submito- 
chondrial membrane vesicles 
by SDS-PAGE. Equal amounts 
of protein from outer mem- 
brane (OM), intermecfiate-den- 
sity fraction (IDF), and inner 
membrane (IM) were sepa- 
rated by SDS-8% PAGE and 
visualized using Coomassie 
blue stain. Numbers on the 
left are sizes (in kilodaltons) 
of the marker proteins (MW). 
Marks beside the sample from 
the intermediate density frac- 
tion identify proteins which 

appeared to be enriched in that fraction. The enriched bands la- 
beled "CSP-I ~ and "CSP-2" were selected for further studies. 

Localization of CSP-I and CSP-2 by 
Immune Electron Microscopy 

The biochemical evidence suggests that we have identified 
mitochondrial proteins that are present in all three sub- 
mitochondrial membrane fractions but are enriched in the 
intermediate-density fraction. Morphological studies using 
EM further support this view. 

To enhance the visualization of  the different mitochondrial 
compartments, isolated mitochondria were incubated in hy- 
pertonic medium before fixation and embedding. This treat- 
ment condensed the matrix, separated the inner and outer 
membranes, and differentiated two distinct regions of  the mi- 
tochondrial surface: "free" outer membrane (areas where the 
boundary membrane was visualized as a single membrane), 
and areas where the inner membrane and highly condensed 
matrix appeared to be in contact with the outer membrane 
(contact sites). Approximately 25 % of the outer membrane 
was present in such contact sites (Table IH). 

In these "shrunken" mitochondria, antisera against the 
outer membrane marker porin (Fig. 13 A, top, and Table IV) 
decorated the mitochondrial surface. Conversely, antisera 
against holocytochrome oxidase (Fig. 13 A, bottom, and Ta- 
ble IV) labeled the inner membrane, at the interface between 
the electron dense matrix and the electron translucent inter- 
membrane space. In both cases, membranes were uniformly 
labeled: within the limits of the error, the percentage of  each 
marker at contact sites reflected the relative contribution of 
each membrane to the contact site (Tables HI and IV). These 
two markers are then neither enriched in, nor excluded from 
the contact site. 

With respect to the putative contact site proteins, preim- 
mune sera gave negligible labeling, and antisera against CSP- 
1 and CSP-2 gave significant labeling of  mitochondria (Fig. 
13, B and C). Moreover, the distribution of  these proteins 
appeared to be distinct from that of either porin or cyto- 
chrome oxidase since contact sites contained as many gold 
particles as the "free" inner membrane (Table IV). Because 
only 9 % of the inner membrane was present in contact sites 
(Table IlI), the density of  both CSP-1 and CSP-2 in the con- 
tact site must be an order of  magnitude higher than in the in- 
ner membrane. These findings agree with the biochemical 
evidence described above. 
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Figure 12. Subcellular localization of the two contact site proteins. 
Yeast spheroplasts were homogenized and subcellular fractions 
were separated by differential centrifugation as described previ- 
ously (Hurt et al., 1984). To isolate cytoplasmic ribosomes, the 
rough microsomal fraction was extracted with 1% Triton X-100 and 
ribosomes in the particulate fraction were separated from soluble 
components by ultracentrifugation (150,000 g, for 1 h at 4°C) ac- 
cording to Suissa and Schatz (1982). Equal amounts of protein were 
separated by SDS-8 % PAGE, and analyzed by immunoblots with 
antisera against hexokinase (a cytosolic protein), cytoplasmic ribo- 
somal proteins (ribosomes), a major 45-kD protein of the outer 
membrane (45 kD OM), citrate synthase (CS, a matrix protein) as 
well as with antisera against CSP-1 and CSP-2. H, C, RM, R, and 
M, homogenate, cytosol, rough microsomes, cytoplasmic ribo- 
somes and mitochondria, respectively. 

Figure H. Polyclonal antisera raised against CSP-1 or CSP-2 recog- 
nize proteins that are enriched in the intermediate density fraction. 
For A, equal amounts of protein from the outer membrane (lane 1 ), 
intermediate-density fraction (lane 2), and inner membrane (lane 
3) were analyzed by immune blotting with polyclonal antisera 
raised against CSP-I and CSP-2, and antibody-antigen complexes 
were detected using ~25I-protein A and fluorography. Apparent mo- 
lecular weights of marker proteins are shown on the left. For B, the 
distribution of outer and inner membrane markers, porin, and COX 
IV, and of the contact site proteins in sucrose density gradient frac- 
tions of submitochondrial membrane vesicles were analyzed by im- 
munoblotting and quantified by densitometry. Total protein content 
in each of the gradient fractions was determined as described in 
Materials and Methods. With each ordinate, 100 is defined as the 
amount of a component in the gradient fraction which contains the 
peak of the component(s). The positions of inner membrane (IM), 
intermediate-density fraction (1DF), and outer membrane (OM) 
are shown above. 

Table II. Two Mitochondrial Proteins Are Enriched in 
Contact Site Vesicles 

Specific content 

Membrane Porin COX IV CSP-1 CSP-2 

OM 27 .6  1.9 1.9 2 .4  
IDF 9 .8  28 .4  14.0 12.7 

IM 1.9 36 .8  8.7 11.1 

The distribution of an outer membrane protein (porin), of the inner membrane 
marker (cytochrome oxidase subunit IV, COXIV), and of CSP-1 and CSP-2 
in sucrose density gradient fractions of submitochondrial membrane vesicles 
were determined and quantified as described in Fig. 11 B. The amount of each 
protein (in arbitrary units) was analyzed in each of the three peak gradient frac- 
tions. Specific content in each of these fractions is given as amount per milli- 
gram total protein. 

Discussion 

In this study we specifically tagged the contact sites between 
the two mitochondrial membranes with two different partly 
translocated precursor proteins; we separated these sites 
from the bulk of inner and outer membrane, determined the 
morphology of the isolated contact sites, and showed that 
they contain translocation activity and that they are enriched 
in specific proteins. These studies confirm previous findings 
that suggest that protein import into mitochondria (Schleyer 
and Neupert, 1985; Schwaiger et al., 1987) and into chlo- 
roplasts (Pain et al., 1988) occurs at membrane contact sites. 
Moreover, our observation, correlating ribosome binding 
sites with mitochondrial protein import sites, is in agreement 
with previous reports (Kellems et al., 1975; Ades and Butwo, 
1980; Suissa and Schatz, 1982) and suggests that both na- 
scent chains and full-length translation products are imported 
through the same region on the mitochondrial surface. Our 
finding that an import intermediate that binds to mitochon- 
dria in an energy-dependent manner cofractionates with 
contact sites suggests that membrane potential-dependent 
processes within the import pathway may occur at these 
membrane junctions. Finally, we provide evidence for pro- 
tein translocation in a membrane fraction which contains in- 

Table III. Percentage of  Outer and Inner Membrane 
Present in Contact Sites 

Total length Length of membrane Membrane in 
Membrane type of membrane not in contact site contact site 

urn 

Oute r  m e m b r a n e  142 107 25 
Inner membrane 384 349 9 

Isolated mitochondria were incubated in hypertonic media, fixed, and embed- 
ded in Lowicryl resins using the progressive low-temperature procedure. Total 
lengths of outer membrane, inner membrane, and contact site were measured 
in 53 mitochondrial profiles using a polarimeter coupled to a microprocessor. 
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Figure 13. Submitochondrial distribution of 
proteins enriched in the intermediate-density 
fraction. Samples of mitochondria were de- 
hydrated and embedded in Lowicryl resin using 
the progressive low-temperature technique de- 
scribed in Materials and Methods. Ultrathin 
sections were decorated with immunoglobulins 
raised against porin (A, top), holocytochrome 
oxidase (A, bottom), and CSP-I and CSP-2 (B 
and C, top and bottom); antibody-antigen inter- 
actions were detected using a gold-coupled 
second antibody and electron microscopy. O, 
outer membrane; I, inner membrane; CS, mem- 
brane junctions. Bars, 100 nm in A and C, and 
200 nM for B. 

ner and outer membrane junctions and describe two putative 
contact site proteins. 

Recently, we reported that isolated inner membrane vesi- 
cles which are essentially free of outer membrane carry out 
ATP- and membrane potential-dependent protein transloca- 
tion (Hwang et al., 1989). Several lines of evidence suggest 
that the translocation activity observed in the intermediate- 
density vesicles is distinct from that in inner membrane vesi- 
cles. First, mitochondria, whose import sites have been 
"jammed" with the BPTI-coupled fusion protein become im- 
port competent if the inner membrane is rendered accessible 
(Hwang et al., 1989). Secondly, neither of the import inter- 
mediates that "tag" the contact site cofractionates with the 
translocation-active inner membrane fraction (Figs. 3, 6, and 
7). Finally, import across inner membrane vesicles is mere- 

Table IV. Distribution of Gold Particles in Immune 
Electron Microscopy Studies 

No. of particles on 

Antibody No. of mito- Inner Outer Contact Particles at 
against choudria studied membrane membrane sites contact sites 

n 

Porin 50 25 331 186 34 
COX 64 790 37 153 16 
CSP-1 76 118 9 149 54 
CSP-2 50 70 4 86 54 

Porin (an outer membrane marker), holocytochrome oxidase (COX; an inner 
membrane marker), and both CSP-I and CSP-2 were visualized in embedded 
thin sections with the corresponding gold-labeled immunoglobulins (Materials 
and Methods) and the distribution of gold particles at contact sites, at contact 
site-free inner membrane and contact site-free outer membrane was quantified. 
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F/gure/3.  

brane potential dependent, whereas translocation of a pre- 
bound import intermediate in intact mitochondria and in the 
contact site fraction does not require a membrane potential. 
These findings suggest that there is translocation activity at 
contact sites (the physiological import site) and within the in- 
ner membrane (a nonphysiological system). 

The contact site fraction appears to be deficient in matrix- 
localized processing protease. Because the contact site vesi- 
cles are also depleted of citrate synthase (another matrix 

marker) and since the vesicles are prepared in the presence 
of EDTA (an inhibitor of the matrix protease), this lack of 
processing activity was not unexpected. However, the con- 
tact site vesicles still maintain productive association to the 
prebound import intermediate, translocate the intermediate 
upon addition of ATP, release the precursor protein from the 
membrane, and preserve attachment of the two mitochon- 
drial membranes. 

Ohlendieck et al. (1986), who worked with rat liver mito- 

The Journal of Cell Biology, Volume 109, 1989 2614 



Figure 13. 

chondria, suggested that many metabolic processes occur at 
inner and outer membrane junctions and that the formation 
of membrane contacts is controlled by the metabolic state of 
the mitochondria. Although we have identified two proteins 
which may be part of the contact site, the function of these 
proteins is unknown. Our finding that these proteins are 
present in the inner membrane, but enriched in the contact 
site is consistent with the view that contact sites are dynamic 
structures. The detection of "cryptic" import sites in inner 
membrane vesicles (Hwang et al., 1989) further support this 
possibility. However, this model will remain speculative un- 
til the components of the contact sites have been character- 
ized in greater detail. 
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