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Background: Recent developments in single-cell RNA sequencing (scRNA-seq) platforms have vastly increased the number
of cells typically assayed in an experiment. Analysis of scRNA-seq data is multidisciplinary in nature, requiring careful
consideration of the application of statistical methods with respect to the underlying biology. Few analysis packages exist
that are at once robust, are computationally fast, and allow flexible integration with other bioinformatics tools and
methods. Findings: ascend is an R package comprising tools designed to simplify and streamline the preliminary analysis of
scRNA-seq data, while addressing the statistical challenges of scRNA-seq analysis and enabling flexible integration with
genomics packages and native R functions, including fast parallel computation and efficient memory management. The
package incorporates both novel and established methods to provide a framework to perform cell and gene filtering, quality
control, normalization, dimension reduction, clustering, differential expression, and a wide range of visualization
functions. Conclusions: ascend is designed to work with scRNA-seq data generated by any high-throughput platform and
includes functions to convert data objects between software packages. The ascend workflow is simple and interactive, as
well as suitable for implementation by a broad range of users, including those with little programming experience.
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* ascend optimizes parallelization and algorithms for improv-
ing speed of each analysis step (e.g., differential expression
analysis).

® ascend implements Clustering by Optimal REsolu-
tion (CORE) for wunsupervised, robust hierarchical
clustering.

® ascend is a fast and easy-to-use software for thorough and
interactive analysis of single-cell RNA sequencing data.

* ascend’s streamlined workflow includes filtering, normaliza-
tion, dimension reduction, clustering, differential expres-
sion, and visualization.
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Single-cell RNA sequencing (scRNA-seq) has revolutionized the
way we understand the transcriptional programs of cells. Re-
cent advances in barcoding molecular biology techniques, cou-
pled with microfluidics, have yielded platforms such as 10x Ge-
nomics Chromium [1] and Drop-seq [2], which are capable of
capturing the transcriptomes of tens of thousands of single cells
simultaneously. The increased capacity of scRNA-seq has been
advantageous as larger sample sizes provide greater statistical
power and correspondingly higher resolution to determine dif-
ferences in cellular features. A consequence has been the in-
crease in the complexity of scRNA-seq data, creating new chal-
lenges for data management, statistical methods, data visual-
ization, and computing strategies. A number of scRNA-seq spe-
cific methods and toolkits have been developed to address these
challenges [3-5], but both the functionality and specific meth-
ods implemented vary. It is becoming apparent that for a given
scRNA-seq data set, the specific analysis steps need to be care-
fully considered in light of the underlying biology. For single-cell
analysis packages, flexibility in both the choice of methods im-
plemented and arguments passed to functions is therefore im-
portant.

Here we present ascend, an R package designed to create a
simple and streamlined workflow for the analysis of scRNA-seq
experiments. Fig. 1 ascend is designed to handle data generated
from any single-cell library preparation platform; this can in-
clude data from single and paired-end reads and, optionally,
with unique molecular identifiers (UMIs). ascend imports sScRNA-
seq data following the generation of an expression matrix con-
sisting of transcript counts from each cell and performs user-
friendly quality control, filtering, normalization, dimension re-
duction, clustering, differential expression, and visualization.
It includes functions to leverage multiple CPUs, allowing most
analyses to be performed on a standard desktop or laptop.

The foundation of the ascend R package is the Expression and
Metadata Set, a data container class that inherits from the
SingleCellExperiment superclass [6]. The SingleCellExperiment
class, from the Bioconductor R package of the same name, was
introduced as a container class specifically for single-cell ge-
nomics data. It is structured in the context of the gene-cell
expression matrix and contains slots that can hold data that
may be used in scRNA-seq analysis—specifically spike-in infor-
mation, normalization factors, transformations of the original
count data, metadata, and data related to cells and genes Fig. 1.

The EMSet deviates from the SingleCellExperiment in which
it is a dynamic element. The object is always accompanied by a
set of quality control metrics thatis reflective of the data that are
currently stored in the counts slot of the object. These values are
automatically recalculated by the package whenever changes
are made to the count matrix, which occurs during batch nor-
malization and filtering. Another feature of the EMSet is the log-
ging of operations, ensuring analysis is performed in the cor-
rect order and allowing users to review changes. As metadata
can play a key role in functions such as plotting and differential
expression analysis, we have separated cell-related and gene-
related metadata from calculated values by storing them in ded-
icated slots introduced by the EMSet. Additional slots have also
been introduced to store objects related to clustering and differ-
ential expression analysis.

The EMSet retains the convenient row and column subsetting
operations of the SingleCellExperiment and introduces meth-
ods to manipulate the object based on conditions defined in the
cell metadata slot. To ensure compatibility with other software
packages that also use the SingleCellExperiment class, a con-
version function is supplied to preserve data stored in EMSet-
specific slots. These data can then be retrieved when converting
back to an EMSet.

Typically, samples comprising libraries of thousands of cells are
often processed in separate batches, and the resulting data re-
quire aggregation before analysis. This can introduce system-
atic biases due to technical variation in each batch. To address
this, ascend provides simple and fast methods to normalize be-
tween batches (normaliseBatches). To perform fast batch-to-batch
normalization, we calculate a scaling factor for each batch and
multiply the expression values to a batch-specific constant. The
batch scale factor is the ratio of the median sequencing reads
among all batches to the total reads of a batch. This scaling ap-
proach overcomes the limitation of reducing read depths in all
libraries to the lowest-depth library, which is commonly applied
in the global scaling method. We also introduce more cell-to-cell
normalization options in the later section.

Quality control (QC) is an important step of scRNA-seq data anal-
ysis, as it can be used to reduce poor-quality data that may mask
biologically significant variation [7]. Sources of technical noise
include low-quality cells that are generally defined as empty
droplets, droplets with multiple cells, and dead or dying cells
[8]. The quality of cells is described by a series of metrics, such
as total number of reads, number of genes expressed by a cell,
mean gene expression of a gene or a cell, and proportion of a
gene’s expression to total expression. Low-quality cells are iden-
tified as outliers in terms of library size and gene expression or
with expression dominated by controls that are usually defined
as mitochondrial and ribosomal genes. As the EMSet automat-
ically recalculates QC metrics when changes are made to the
count matrix, the quality of the data set can be monitored in
real time with the aid of QC plots (plotGeneralQC) Fig. 2. Users
can also review the EMSet log for a record of cells and genes re-
moved by filtering methods. Since these QC steps should allow
a user to filter cells or genes based on their own defined met-
rics, ascend’s QC functions allow arguments to be passed using
additional metadata.

Cell-cell normalization is another crucial step to remove tech-
nical variation between individual cells. The normalization of
scRNA-seq data is complicated by the zero-inflated count distri-
butions of genes, which may be due to either biological or tech-
nical factors. ascend addresses this issue by adapting the nor-
malization by the relative log expression (RLE) method [9] for
zero-inflated data by estimating size factors from the geometric
means based on true count values that are greater than zero. For
each gene, a gene-specific geometric mean is estimated across
all cells, not including cells with zero values. The cell-specific
size factor is then calculated based on the expression of the
gene in a cell relative to the geometric mean of that gene. The
size factors for all genes in a cell are used for calculating the
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Figure 1 A summary of the typical analysis workflows and major function groups available in ascend.

cell-specific size factor. We introduce the use of a scran wrapper
function as the default normalization method and recommend
this method if the computation time and memory are not lim-
iting factors. Alternatively, the RLE approach introduced here is
the faster and more memory-efficient option for cell-to-cell nor-
malization. Users can review the impact of normalization on the
counts by generating a series of plots with the plotNormQC func-
tion Fig. 2, which compares prenormalized and normalized li-
brary sizes and individual gene counts.

Since scRNA-seq data are typically multiple orders of magnitude
larger than bulk RNA-seq data (n-cells x m-genes), dimension-
ality reduction is vital. Moreover, the expression levels of many
genes are likely to be correlated, and therefore the problem of
collinearity is common, while additional factors such as dropout
rate and high expression variation increase noise in the data
[10]. ascend contains functions to perform principal component
analysis (PCA) to reduce the dimensions of the normalized count
data and preserve the data structure (i.e., explain the majority of
the variance between cells) Fig. 2. t-Distributed stochastic neigh-
bor embedding and multidimensional scaling are only used to
visualize cells in a low-dimensional space, supplemented by in-
formation supplied by the user or generated by downstream
analysis.

Clustering cells into subpopulations or subtypes provides struc-
ture to the data set by grouping transcriptionally similar cells.
ascend implements our previously published Clustering by Op-
timal REsolution (CORE) method [11], which identifies the most
stable clustering identity. First, a Euclidean distance matrix be-
tween cells is calculated from the first 20 principal components
of the PCA-reduced normalized count matrix. An unsupervised
dendrogram is then constructed by applying hierarchical clus-
tering. Outlier cells identified by this initial round of clustering
are removed from the data set, although their identifiers are re-
tained in the EMSet logs. The dendrogram is then dynamically
reclustered by a top-down split and merging process over mul-
tiple iterations with changing tree-height thresholds. This ap-
proach merges smaller clusters into larger consensus clusters
and uses an adjusted Rand index to compare different cluster-

ing results to identify the most stable number of clusters. The
method is fast and scalable, enabling the analysis of small clus-
ters at high resolution or larger clusters for more general classi-
fication with simpler downstream analysis.

In a heterogeneous data set, such as scRNA-seq data, analyz-
ing the differentially expressed (DE) genes between 1 cluster
and the combined remaining clusters can reveal signature genes
that can be used to assign identity to a population of cells or to
more clearly understand cell transition states. After decompos-
ing the data into subpopulations, ascend provides a combined
likelihood ratio test (LRT) to compare these subpopulations by
finding biological signatures that distinguish them, taking into
account subpopulation-size imbalance and high dropout rates.
Introduced as a method for single-cell qPCR data [12], the com-
bined LRT has been adapted in ascend such that it takes into
account genes with zero variance. LRT is particularly suitable
for the cases where the number of cells in 2 clusters is very
different. In these cases, most dispersion estimation methods,
such as those in DESeq, do not result in a convergence. The
imbalance issue becomes exaggerated for the cases of smaller
clusters, where the high dropout rates have a higher impact.
LRT uses a combined distribution assumption consisting of both
discrete (on/off) and continuous (low/high expression) compo-
nents, which helps overcome the issues in dropout and small
number of cells. LRT applies chi-square approximation for like-
lihood differences and thus is fast and less memory intensive.
A similar LRT test approach that optimizes a 2-part general lin-
earized model to estimate parameters that account for bimodal-
ity and stochastic dropout (cell detection rate) implemented in
the MAST package is more computationally intensive, especially
for data sets with large cell numbers [13]. The LRT applied in
ascend does not model cell detection rate to use as a covariate
when comparing subpopulations. The resultingimplementation
is fast, scalable, and robust, even in situations where standard
DE methods fail. Wrapper functions are also provided for DE
analysis based on negative binomial tests from DESeq [9]. We
introduced several modifications that allow (i) more accurate es-
timation of fold change (adjusted fold change) and (ii) more effi-
cient multiprocessing, using a divide-and-conquer approach, to
handle large data sets and substantially reduce computational
time.
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Figure 2 Graphics generated by ascend during different stages of analysis. (A) Quality control plots include a boxplot representing distribution of library sizes across each
batch, a boxplot representing the expression of the top 25 most abundant transcripts, and violin plots representing proportion of mitochondrial-related transcripts
to total expression per sample. (B) Normalization quality control plot represents the expression of the SOX2 gene before and after RLE normalization. (C) Scree plot
related to principal component dimensionality reduction. (D) Clustering plots include a cluster-labeled dendrogram and a line plot depicting the relationships between

cluster numbers and stability.

The CPU time of the ascend package was compared to 2 other
toolkits developed for scRNA-seq analysis: Seurat [14] and scater
[4]. Using a data set that comprises 1,272 retinal ganglion
cells from the study by Daniszewski et al. [15], these pack-
ages were used to perform quality control, normalization, di-
mensionality reduction, clustering, and differential expression
using equivalent methods. As shown in Supplementary File
1, ascend’s processing time is comparable to Seurat [14] and
scater [4].

In summary, ascend is a user-friendly and computationally ef-
ficient package for analyzing scRNA-seq data from all experi-
mental platforms. ascend implements quality control and filter-
ing approaches that are highly customizable, as well as a un-
supervised clustering method (CORE), and optimizes speed for
implementing established analysis techniques for normaliza-
tion and differential gene expression. Statistical methods for
single-cell analysis are constantly evolving. Here we have imple-
mented a series of current cutting-edge approaches, although
the flexibility of ascend allows it to adapt as future methods
are developed. The ascend package and context-specific tutori-
als addressing a range of analytical scenarios are available at
https://github.com/powellgenomicslab/ascend. We expect that
ascend is especially useful for biologists who wish to explore
their own data sets using expert domain knowledge and an easy-
to-use and complete toolkit.

Here we present an application case study of ascend using
scRNA-seq data from undifferentiated human induced pluripo-
tent stem cells generated as described by Nguyen et al. [11]. The
raw 10x Chromium Single Cell 3’ Gene Expression data set con-
sists of 20,448 cells that are divided into 5 samples. Raw (FASTQ
or aggregated count matrix) and processed data can be down-
loaded from ArrayExpress (accession number: E-MTAB-6687).

The raw expression data from each sample were combined into
a single data set using Chromium’s Cell Ranger 1.2.0 aggr func-
tion. This function performs 2 tasks: batch normalization and
transcript count aggregation. Cell Ranger first normalizes the se-
quencing depth between the 5 samples by subsampling reads
for each sample until their median depth equals the sample
with the shallowest read depth. Once normalized, the transcript
counts from each sample are combined into a single matrix.
The rows of this matrix were labeled with ENSEMBL gene identi-
fiers; to simplify analysis, these were replaced with correspond-
ing gene names that were stored in the Cell Ranger outputs.

ascend was run in RStudio (R Version 3.5.0), and analysis of data
from quality control to differential expression (LRT) took 95 min-
utes on a MacBook Pro laptop with a dual-core Intel Core i5 2.7
GHz and 8 GB of RAM. To minimize memory use, the raw expres-
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sion matrix was converted into a sparse matrix using the Matrix
R Package [16]. The sparse matrix and accompanying cell-related
metadata were loaded into an EMSet.

library(ascend)

library(Matrix)

# Read in file downloaded from ArrayExpress
counts <- read.csv(’’raw_expMat_cellbarcodes.tsv’’,
sep = ”\t’ )

# Convert counts to a sparseMatrix
counts <- as(as.matrix(counts), ’’dgCMatrix’’)

# Create colInfo dataframe
batches <- sapply(strsplit(colnames(counts),
>7[.1°°), function(x) x[2])

colInfo <- S4Vectors::DataFrame (
cell_barcode = colnames(counts),
batch = batches)

# Define controls
mt_genes <- grep(’’NMt—",
rownames (counts) ,
ignore.case = TRUE,
value = TRUE)

rb_genes <- grep(’’Rps|Rpl”,
rownames (counts) ,
ignore.case = TRUE,

value = TRUE)

controls <- list(Mt = mt_genes,
Rb = rb_genes)

# Create a new EMSet
EMSet <- EMSet(counts,
colInfo = collnfo,
controls = controls)

The quality of the expression data was assessed with the aid
of QC figures generated by the plotGeneralQC function from the
ascend package.

raw_qc_plots <- plotGeneralQC(EMSet)

The data then underwent quality control. First, cells were fil-
tered based on library size, number of detected genes, and reads
mapped to mitochondrial and ribosomal genes using the default
threshold of 3 x Median Absoulte Deviation (MAD) range. Next,
cells were removed if 20% of reads were mapped to mitochon-
drial transcripts and 50% of reads were mapped to ribosomal
transcripts. Finally, genes were removed if they were expressed
in less than 0.1% of the cell population.

# Remove cells that are outliers

EMSet <- filterByOutliers(EMSet,

cell.threshold = 3,

control.threshold = 3)

# Remove cells where mitochondrial-related

# transcripts account for at least 20% of reads
EMSet <- filterByControl(EMSet,

control = ’’Mt’’,

pct.threshold = 20)

# Remove cells where ribosomal-related

# transcripts account for at least 50% of reads

EMSet <- filterByControl(EMSet,

control = ’’Rb’’,

pct.threshold = 50)

# Remove genes that are expressed in less than

# 0.1% of the cell population

EMSet <- filterLowAbundanceGenes(EMSet,

pct.threshold = 0.1)

QC removed 1,683 cells and 16,272 genes, leaving 18,765 cells
and 16,466 genes for further analysis. The UMI counts for the
remaining cells and genes were normalized with the normalise-
ByRLE function. The effectiveness of the normalization method
was assessed with the aid of figures generated by the plotNormQC
function. Mitochondrial and ribosomal gene transcripts were re-
moved from the data before proceeding with further analysis.

# Normalize dataset using RLE

EMSet <- normaliseByRLE(EMSet)

# Plot normalisation quality control plots
norm_gc <- plotNormQC(EMSet,
gene_list = c(’’GAPDH’’, ’>’MALAT1’’))

# Remove controls from dataset

EMSet <- excludeControl (EMSet,

control = c(’’Mt’’, ’’Rb’’))

To reduce the dimensions of the data, the normalized UMI
count matrix was reduced using the ascend function runPCA.
This function is a wrapper for the prcomp function from the irlba
R package.

# Reduce dataset with PCA

EMSet <- runPCA(EMSet, ngenes =
1500, scaling = TRUE)

The scree plot generated by ascend’s plotPCAVariance function
revealed the first 10 principal components explained 88.70% of
the variance in these data. These 10 principal components were
passed to the CORE algorithm function to build a cell distance
matrix and subsequently a dendrogram that was used to identify
clusters.

EMSet <- runCORE(EMSet,

conservative = FALSE,

remove.outliers = TRUE,

nres = 40,

dims = 10)

Using the default arguments, the CORE method generated
clustering results for 40 different resolutions, and based on the
Rand index, the function identified 3 clusters of cells that repre-
sent the most stable result. Clusters 1, 2, and 3 comprised 9,046,
6,436, and 3,283 cells, respectively.

To characterize the biological properties of the 3 clusters, dif-
ferential expression was performed using ascend’s runDiffExpres-
sion function. The expression of each cluster was compared to
the expression of the other clusters.

# Comparison of cluster 1 vs other clusters

clusterl vs_all <- runDiffExpression(EMSet,

group = ’’cluster’’,
condition.a = 1,

condition.b c(2, 3))

# Comparison of cluster 2 vs other clusters
cluster2_vs_all <- runDiffExpression(EMSet,
group = ’’cluster’’,

condition.a = 2,

condition.b c(1, 3))



# Comparison of cluster 3 vs other clusters
cluster3_vs_all <- runDiffExpression(EMSet,
group = ’’cluster’’,
condition.a = 3,
condition.b = c(1, 2))

Using a Bonferroni-corrected P-value threshold (P < 3.1 x
1077) and an absolute log, fold change greater than 2, differen-
tial expression analysis revealed clusters 1, 2, and 3 had 230, 7,
and 47 DE genes, respectively.

® Project name: ascend

* Project home page: https://github.com/powellgenomicslab/a
scend

® Operating system(s): Platform independent

® Programming language: R

® Other requirements: R 3.5, Bioconductor 3.7

* License: GPL 3.0

* RRID: SCR.017257

The data supporting the results of this article are available in
ArrayExpress at accession E-MTAB-6687 [17]. An archival copy of
the code and supporting data is also available via the GigaScience
repository, GigaDB [18].

None declared.

CORE: Clustering at Optimal REsolution; DE: differentially ex-
pressed; LRT: likelihood ratio test; PCA: principal component
analysis; QC: quality control; RLE: relative log expression; scRNA-
seq: single-cell RNA-sequencing; UMI: unique molecular identi-
fier.

Not applicable.

Not applicable.

The authors declare that they have no competing interests.

This work was supported by the National Health and Medical
Research Council grants 1107599 and 1083405.

A.S. wrote the software; all authors contributed to software de-
velopment; A.S., SSW.L., QH.N,, and J.E.P. wrote the manuscript.
Q.H.N. and J.E.P. oversaw the project.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Zheng GXY, Terry JM, Belgrader P, et al. Massively parallel
digital transcriptional profiling of single cells. Nat Commun
2017;8(206):14049.

Macosko EZ, Basu A, Satija R, et al. Highly parallel genome-
wide expression profiling of individual cells using nanoliter
droplets. Cell 2015;161(5):1202-14.

Butler A, Hoffman P, Smibert P, et al. Integrating single-cell
transcriptomic data across different conditions, technolo-
gies, and species analysis. Nat Biotechnol 2018;36(5):411-20.
McCarthy DJ, Campbell KR, Lun ATL, et al. Scater: pre-
processing, quality control, normalization and visualiza-
tion of single-cell RNA-seq data in R. Bioinformatics
2017;33(8):1179-86.

Lun ATL, Bach K, Marioni JC. Pooling across cells to normal-
ize single-cell RNA sequencing data with many zero counts.
Genome Biol 2016;17:75.

Lun A, Risso D. SingleCellExperiment: S4 classes
for single cell data. 2018, R package version 1.3.6.
https://doi.org/10.18129/B9.bioc.SingleCellExperiment
Bacher R, Kendziorski C, Auer P, et al. Design and computa-
tional analysis of single-cell RNA-sequencing experiments.
Genome Biol 2016;17(1):63.

Ilicic T, Kim JK, Kolodziejczyk AA, et al. Classification of
low quality cells from single-cell RNA-seq data. Genome Biol
2016;17(1):29.

Anders S, Huber W. Differential expression analysis for se-
quence count data. Genome Biol 2010;11(10): R106.

Hicks SC, Townes FW, Teng M, et al. Missing data and tech-
nical variability in single-cell RNA-sequencing experiments.
Biostatistics 2018;19(4):562-78.

Nguyen Q, Lukowski S, Chiu H, et al. Single-cell RNA-seq
of human induced pluripotent stem cells reveals cellular
heterogeneity and cell state transitions between subpopu-
lations. Genome Res 2018;28(7):1053-66.

McDavid A, Finak G, Chattopadyay PK, et al. Data explo-
ration, quality control and testing in single-cell qPCR-
based gene expression experiments. Bioinformatics
2013;29(4):461-7.

Finak G, McDavid A, Yajima M, et al. MAST: a flexible sta-
tistical framework for assessing transcriptional changes and
characterizing heterogeneity in single-cell RNA sequencing
data. Genome Biol 2015;16:278.

Satija R, Farrell JA, Gennert D, et al. Spatial reconstruc-
tion of single-cell gene expression data. Nat Biotechnol
2015;33(5):495-502.

Daniszewski M, Senabouth A, Nguyen Q, et al. Single
cell RNA sequencing of stem cell-derived retinal ganglion
cells. bioRxiv 2017; http://biorxiv.org/content/early/2017/09/
22/191395.

Bates D, Maechler M. Matrix: sparse and dense matrix
classes and methods. 2018. https://CRAN.R-project.org/pac
kage=Matrix.

Supporting ArrayExpress scRNA-seq data https://www.ebi.
ac.uk/arrayexpress/experiments/E-MTAB6687/.
5525/100615, Senabouth A, Lukowski S, et al. ascend: R pack-
age for analysis of single cell RNA-seq data. GigaScience
Database 2019. http://dx.doi.org/10.5524/100615.


https://github.com/powellgenomicslab/ascend
http://biorxiv.org/content/early/2017/09/22/191395
https://CRAN.R-project.org/package=Matrix
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB6687/
http://dx.doi.org/10.5524/100615

