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Abstract: The present work describes an experimental investigation of the fatigue durability of AISI
304 and AISI 316L austenitic stainless steels, which have regular reliefs (RR) of the IV-th type, formed
by ball burnishing (BB) on flat surfaces, using a computer numerical control (CNC) milling center. The
methodology and the equipment used for obtaining regular reliefs, along with a vibration-induced
fatigue test setup, are presented and described. The results from the BB process and the fatigue
life experiments of the tested austenitic stainless steels are gathered, using the approach of factorial
design experiments. It was found that the presence of RR of the IV-th type do not worsen the fatigue
strength of the studied steels. The Pareto, t-test and Bayesian rule techniques are used to determine
the main effects and the interactions of significance between ball burnishing regime parameters.
A stochastic model is derived and is used to find when the probability of obtaining the maximum
fatigue life of parts made of AISI 304 or 316L reaches its maximum value. It was found that when the
deforming force, the amplitude of the sinewaves and their wavenumber are set at high values, and
the feed rate is set at its low value, the probability to reach maximum fatigue life for the parts made
of AISI 304 or 316L is equal to 97%.

Keywords: ball burnishing; regular reliefs; surface topography; austenitic stainless steel; fatigue life;
t-test; Bayesian rule

1. Introduction

Austenitic stainless steels, such as AISI 304 and AISI 316L, have wide usage in various
types of parts, mechanisms and constructions in many different industries. For instance,
they have wide application in chemical and food industries, pharmaceuticals, medicine, and
automotive, aircraft, and maritime industries, etc. The parts used in these industrial and
life care fields are subjected to many strict requirements, such as high corrosion and wear
resistance, surface hardness and mechanical strength, and must have high integrity contact
surfaces with little roughness asperity, etc., in order to achieve the intended operational
characteristics. Often, the operational conditions of their work include cyclic loads, which
could lead to fatigue failures, resulting in significant shortening of their operational lifetime.
While in some cases machine parts destroyed due to fatigue from mechanical devices are
relatively easy and not too costly to replace, in other cases, such as orthopedic prostheses [1],
this is not an easy and simple task. Therefore, the fatigue durability of such prostheses
is of great importance for the patient. Destruction of mechanical parts due to fatigue or
wear, for example, when food processing machines are used, can lead to small particles
(debris) getting into the food, thus endangering the health and even the lives of consumers.
Even an auxiliary part’s fatigue failure can cause severe operational issues, violation of the
whole mechanism or even destruction of the entire device or machine.

There are many approaches developed over the years in order to minimize fatigue
failures. They can be divided into two large areas: the first one is related to the design
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of the machine parts, and the second is related to the development of specific finishing
processing technologies, which have led to improvement of fatigue strength.

Among the design approaches the most notable is “Infinite-life design” [2] which keeps
all stresses below the limits of fatigue effects. This approach is used where safety and/or
long life are more important than space and weight limitations. “Safe-life design” [3]
allows fatigue cracks to occur during the operational period, but they never grow to a
critical length. Some structures subjected to high stresses, such as aircraft wings and hulls,
pressure vessels, and heavy duty bearings, employ this type of design. The designed
“safe life” usually is about one-fourth of the predicted fatigue life. “Fail-safe design”
allows cracks to occur, but they never lead to fatigue failure earlier than the scheduled
maintenance. The maintenance process must detect, repair, or replace the damaged parts.
This approach is employed mainly in the aircraft industry since the weight requirements are
crucial and there are strict regulations for maintenance in comparison with other industries.
“Damage-tolerant design” [4] includes fracture mechanics and takes into account the initial
imperfections in the material structure. The approach is based on the assumption that
imperfections (flaws, cracks, etc.) can exist in any structure, and these cracks propagate
(and grow) during the usage period. This approach is commonly used in civil engineering,
mechanical engineering, and aircraft engineering to manage the extension of cracks in
structures by using the principles of fracture mechanics. In this approach, a corresponding
specific maintenance program must provide detection and repair of accidental damage,
corrosion, and fatigue failure before the structure residual strength is reduced below an
allowable limit. Although the abovementioned fatigue-based design approaches have
been implemented for a long time in engineering practice, it is still possible for fatigue
failure situations to occur because of different shortcomings of design and omissions in
implementation. There are many influencing factors which affect fatigue behavior [5],
the most important of which are stress and strain concentrations; material properties and
metallurgical factors; surface finish and directional properties; and type and nature of
loading, etc.

Reduction of fatigue failures by using specific methods for parts production is the
second strategic approach [6–10]. By choosing an appropriate processing method, the
effect of various “defects”—caused by metallurgical factors, surface hardness, residual
compressive or tensile stresses in the surface layer, surface roughness and topography,
etc.—on fatigue endurance can also be significantly reduced. The surface roughness is of
great importance among the technological factors because it is well known that fatigue
failure usually originates on the surface of the part. There is evidence that, for steel, the
higher the tensile strength, the more critical is the surface finish [11,12]. Because the
surface condition has a significant effect on fatigue strength, some of the traditionally
used finishing processes of machine parts, such as milling, turning, grinding, polishing,
lapping, etc., cannot completely meet all requirements. The surface roughness after most of
these processes has a typical topography with notches due to imperfections that occurred
after removing the allowance. Residual tensile stresses and even cracks can occur after
grinding, for example, due to intensive heating of the surface layer, which is usual for this
finishing process [5,13,14].

A considerable increase of the fatigue strength can be achieved if finishing processes
such as shot peening, deep rolling, ball burnishing (BB), etc., which are based on plastic
deformation of the surface layer in a cold state, are applied [5,15,16]. After their application,
compressive residual stresses are obtained in the surface layer, combined with the removal
(or minimization of depth) of the notches from previous cutting operations [17]. Processes
based on plastic deformation also increase the hardness of the surface layer, which favors
wear resistance. When rolling or BB is applied to metastable austenitic stainless steels, such
as the aforementioned AISI 304 and AISI 316L, the austenite (γ-phase) transforms into
martensite (ε- and/or α’-) due to a recrystallization change caused by deformation energy,
even at ambient temperature. On the other hand, a smooth surface topography with very
little roughness (Ra criterion from 0.8 to 0.025 µm) can be achieved after rolling or BB is
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applied as a finishing process [18,19]. This way, two of the abovementioned negative effects
of the cutting finishing methods on fatigue resistance can be avoided.

Ball burnishing has several different varieties, depending on the purposes for which
it is applied [20]. They are all related to the plastic deformation of the surface layer, but
can differ in the way the deforming element moves along the parts’ surface. When the
goal is to achieve only surface smoothing, the classic BB schemes can be used [21], in
which the trajectory of the deforming element is the same as that of the cutting tools
in drilling, turning, and milling cutting operations. Recently, there has emerged more
and more evidence that the BB process can be successfully implemented using computer
numerical control (CNC) equipment, which allows application of different strategies and
toolpaths [22–25]. Some authors [26] report improvements in BB tools that allow the
simultaneous use of multiple deforming elements to increase the process productivity.
Other authors [27] apply ultrasonic artificial vibrations to the deforming element in order
to intensify the plastic deformation in the surface layer.

The BB process also can be applied in order to create a specific surface roughness
(or so-called “regular reliefs”) in addition to improving the other aspects of surface layer
integrity [28]. Regular reliefs (RR) are formed by the traces of plastic deformation that
are left on the surface as result of the passage of the deforming element, which is pressed
with a certain deforming force. Here the deforming tool must perform a more complex
trajectory (in contrast to the classical one), involving additional oscillation with a certain
frequency and amplitude. As a result, this type of BB process is called “vibratory ball
burnishing” (VBB) [28]. The RR obtained by vibratory ball burnishing can be five different
types, according to the classification given in [28], the most interesting of which is the
IV-th type, which covers all of the processed surface and forms a completely new surface
roughness. Depending on the regime parameters of the VBB, the RR of the IV-th type can
have specific rectangular or hexagonal cell patterns, which significantly increase the ability
to retain lubricants and micro debris and stop them from wearing the surfaces burnished
by this method, in comparison with smoothed ones [29–31]. Although the roughness of the
RR is greater than that of the smoothed surfaces, they offer better contact conditions, such
as reaching liquid friction at lower speeds [32], optimizing the contact spots, and increasing
the wear resistance, while the other advantages of the BB process remain the same.

When VBB is adapted for implementation by using a CNC lathe or milling machine,
the complex toolpath for obtaining RR can be achieved by interpolation between the
machine axes [33]. In this case, the additional reciprocating movement (or the “vibration”
component) of the ball tool is not needed, which significantly simplifies its construction.
The preliminary mathematical modeling [34,35] of the tool path and the higher precision of
the CNC equipment give opportunity to obtain full or partial RR with higher dimensional
precision and repeatability of the cells. In the present work this variant of the BB process
was used in order to obtain RR of the IV-th type on flat surface of the test parts subjected
to fatigue failure tests. This type of RR is expected to have no worse fatigue-failure
behavior than the smoothed surfaces after applying other (traditional) variations of the BB
process. The results from earlier conducted experiments with AISI 304 steel [36] support
this expectation, but the obtained experimental data concern only few of the BB process
conditions, and the statistical analysis used to evaluate the significance of the regime
parameters of the process can be improved by using the Bayesian approach [37].

Based on the investigated sources, the current work’s main goal is to investigate the
effect of RR of the IV-th type obtained by BB on the fatigue life of AISI 304 and AISI 316L
austenitic steels. Secondly, it aims to study the effects of the main BB process regime and
relief parameters and their interactions over fatigue life.

Finally, it aims to create a stochastic model for calculation of the probabilities of
reaching a certain number of cycles until fatigue failure, for the possible combinations of
“low” and “high” levels of the BB regime’s parameters for both investigated steels.



Materials 2021, 14, 2529 4 of 22

2. Materials and Methods
2.1. Materials

The materials used in this work were rolled sheets of austenitic stainless steels: AISI
304, provided by SARITAS Celik Sanayi ve Ticaret A.S. (Istanbul, Turkey) and AISI 316L,
provided by Acerinox Europa SAU (Los Barrios, Spain), both with 4 mm thickness. The
chemical compositions of these austenitic steels and their basic mechanical properties are
given in Table 1.

Table 1. Chemical compositions and mechanical properties of austenitic stainless steels AISI 304 and
AISI 316L.

Chemical Compositions %

Material C Cr Mn Mo N Ni P S Si Co

AISI 304 0.021 18.20 1.550 - 0.059 8.100 0.031 0.001 0.380 -

AISI
316L 0.022 16.63 1.285 2.031 0.050 10.065 0.030 0.004 0.340 0.226

Mechanical Properties

Material Yield
Strength, MPa

Tensile
Strength, MPa

Elongation
A5, % HRB

AISI 304 324.00 626.00 55.00 188.0
AISI
316L 353.15 628.58 49.18 82.0

2.2. Obtaining RR of the IV-th Type by BB Process, Implemented on CNC Milling Machine
2.2.1. Calculating the Toolpath Trajectory of the Ball Tool

Because RR were formed onto planar surfaces in the present work, the needed kine-
matics for the BB process could be borrowed from the classical vibratory BB process [34],
but adapted for implementation with a contemporary CNC milling machine. This way the
needed complex toolpath of the deforming tool (shown in Figure 1a,b), which is essential
for the formation of RR of the IV-th type (see Figure 1c), could be achieved much more
efficiently, and with a greater accuracy.
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Figure 1. (a) Ball burnishing (BB) toolpath trajectory basic parameters; (b) BB toolpath distribution
within the burnished surface boundaries; (c) resulting regular reliefs (RR) of the IV-th type with
rectangular cells.

If we take into account the principle of the CNC equipment programming (i.e., ISO
code) that the tool moves from its current position to the coordinates of the next posi-
tion according to the NC code, the complex toolpath needed in the BB process can be
divided into a relatively large number of short rectilinear segments that interpolate it with
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a sufficient accuracy. The end point X and Y coordinates of each segment were calculated
using the following system of functions [34] (see Figure 1a):∣∣∣∣∣∣∣∣
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where p is the number of the toolpath points; n is the index of the current point from
the toolpath (n = 0, 1, 2, . . . p); m is the index of the current segment of the toolpath
(m = 0, 1, 2, . . . q); q = L/d f n is the number of all toolpath segments; D0, mm is the
toolpaths’ segment diameters; e, mm is half of the amplitude of the sinewaves; dfn, mm
is the linear distance between the toolpath segments; ip is the fractional part of the ratio
i = π·D0/λ.

The parameter ip determines the phase shift between sinewaves of the successive
toolpath segments and can have values between 0 and 0.5. When ip ≈ 0.15, the RR have
cells that resemble a hexagonal shape, and when ip ≈ 0.45 the cells are close to having a
rectangular shape. The integer part of the parameter i sets the number of the sinewaves
within each of the toolpath segments, thus determining their period λ, mm. It has an
impact on the resulting RR cells’ size along the Y axis (see Figure 1a).

The parameters e and dfn from Equation (1) have a significant impact on the RR cells’
size along the X axis. One of the important requirements to be met is that dfn must be equal
or less than e (i.e., dfn ≤ e) in order to guarantee obtaining RR of the IV-th type. Otherwise,
if dfn > e there is a possibility of obtaining RR of types I-st, II-nd or III-th, which can be
formed onto burnished surfaces, which contain “isles” with initial roughness obtained by
the previous operation. This is undesirable because it can lead to non-uniformity of the
physical and mechanical properties in the burnished surface layer. When the values of
these parameters are set in the Equation (1), the results for the imprint diameter also must
be taken into account.

Another important condition is that the toolpath points must be generated only
within the burnished area boundaries, because there is no reason for the deforming tool
to process the space outside the material. In [34] an algorithm is presented which is
based on additional logical conditions to prevent generation of points outside the material
boundaries. It also connects the sinewave segments with each other (see Figure 1a) and
this way ensures the overall length of the toolpath is as short as possible. The outcome of
the algorithm is a single polyline, defined by the points calculated by Equation (1), with
an optimal length that depends on the shape and size of the area processed by the BB
operation. The polyline created in this way can then be exported as a two-dimensional
drawing (in DXF or DWG format), and be used in suitable CAM for further modeling of
the BB operation.

2.2.2. Preparing the NC Code for the BB Operation

Unfortunately, the numerical control (NC) code cannot be written by hand in this
case, because of the great number of points (sometimes several hundred thousand points)
that the BB operation toolpath usually contains. The numerical control system of the most
widespread milling machines also do not have preinstalled appropriate canned cycles that
can be used for that purpose. However, the NC code needed to perform the BB operation
in a suitable CNC milling machine can be obtained automatically, using appropriate CAM
software. What particular CAM software is used is not of a great importance as long as it
has a suitable milling component that allows the tool to be guided along a predetermined
curve (in the present case the polyline, generated in the previous step), and a suitable
postprocessor for the specific CNC milling machine that will be used.

After postprocessing the modeled toolpaths in CAM for all the BB operations accord-
ing to the experimental designs, the corresponding NC codes were obtained.
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2.3. Fatigue Failure Test Setup
2.3.1. Description of the Experimental Method and Setup

A reversal bending fatigue test similar to that in [36] was performed on a vibration
exciter (see Figure 2). The test specimen was mounted as a cantilever beam on the exciter’s
vibration table. Two accelerometers were mounted: one at the free end of the specimen
and the other at the exciter table. The vibration exciter was harmonically excited with
a frequency close to the fundamental resonance mode shape of the specimen.
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Figure 2. Components of the fatigue failure experimental setup.

As the difference between the tip and base acceleration is proportional to the applied
stress, the load was controlled by adjusting the amplitude and the frequency of the shaker
signal during testing. An algorithm similar to those realized in [38] was developed and
installed in the MyRio 1900 (National Instruments, Austin, TX, USA) for automatic adjust-
ment of the excitation signal frequency in order to keep the applied stress constant during
the test. The test was stopped automatically when the algorithm was unable to maintain
the preset stress amplitude by adjusting the frequency of the exciting signal. In order to
ensure the stable working of the self-adjustment algorithm, the frequency of the exciting
signal must be a little greater than that at the resonance. This way, the possibility of the
exciting signal frequency starting the amendment in the wrong direction is eliminated.
Using a personal computer and the LabView (National Instruments, Austin, TX, USA)
visual programing environment, software was developed to monitor the experimental
parameters and to count the cycles until fatigue failure of the specimens. The software
saved incoming data from MyRio 1900 as logs, which were used for further analyses
of the results.

All the specimens in the current experimental investigation were tested at equal
loading, in order to investigate the impact of the BB regime parameters on fatigue failure.

2.3.2. Determining Experimental Conditions of the Fatigue Failure Test Using FE Analysis

The purpose of the conducted finite element (FE) analysis (see Figure 3a–d) was
to determine the vibration fatigue test setup parameters, in order to assure invariable
conditions of the fatigue failure experimental investigation. A linear dynamic study was
carried out for the investigated materials. It was based on natural frequencies and mode
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shapes to evaluate the response of the test specimens to dynamic loading, caused by
shaker’s table.
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acceleration” (amplitude) obtained after FEA and experimental study conducted.

To conduct the FE analysis study, a SOLIDWORKS Simulation module (Education
edition 2020–2021, SolidWorks Corporation, Waltham, MA, USA) was used. The in-
put parameters in the FE model included the test specimens’ material properties (see
Table 1) and applied uniform excitation (acceleration) of 10 m/s2 which was restrained
only in the vertical direction (see Figure 3a). The masses of the test specimens and the used
acceleration sensor at the cantilever’s free end were set in the FE model, based on weight
measurements of the real items, using a precise scale. The global damping ratio for each
mode was set to be 0.01.

As the 3D components participating in the assembly had relatively simple geometric
shapes, a standard high-quality mesh was used with the global size of the elements being
2.0 mm, and tolerance 0.1 mm. As a result, the total number of the obtained mesh elements
was 66,382, and they had 99,510 nodes.

The obtained FE model results for maximum (Von Misses) stress (218.1 MPa) at the
concentrator of the fatigue specimen, along with displacement (2.36 mm), and acceleration
(569.1 m/s2) at its free end (shown in Figure 3b–d), were calculated for the resonant
frequency (77.326 Hz). The last two parameters were determined in the mesh model with
the number 45,628, which was located as near as possible to the center of gravity of the
accelerometer (see Figure 3c) in order to bring the simulation analysis as close as possible
to the actual experimental conditions.

Using real test specimens (without RR formed by ball burnishing) and adjusting the
electromagnetic shaker to sweep the frequency diapason around the obtained resonance
frequency, a “frequency-acceleration” (amplitude) response graph was obtained. A similar
response graph also was obtained from the FE model. Both graphs are shown together
in Figure 3d for illustration. The comparison between them shows that the FE model
gave results close to those obtained after the physical test. The resonant frequencies of the
measured (77.75 Hz) and the calculated (77.33 Hz) response graphs differ by only 0.5%.
The difference in respect to the maximum acceleration values at resonance between the
measured (531 m/s2) and the calculated (557.7 m/s2) response graphs did not exceed 5%.
Therefore, the results derived from the FE model can be considered as adequate.
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Due to the algorithm implemented to automatically adjust the frequency of the ex-
citation load of the exciter, which was used to control the acceleration at the free end of
specimen and thus to keep the stresses obtained in the concentrator constant during the
fatigue test, it was not advisable for the exact resonant frequency (i.e., the peak of the
response graphs) to be chosen as a work point. In order to guarantee stable working of the
auto-adjusting algorithm, the work frequency of the shaker had to exceed the resonant one.
Using the FE model, and the obtained response graph, it was possible to specify previously
the suitable initial working frequency and the corresponding acceleration at the free end,
which defined the resulting stress at the concentrator of the fatigue specimens. This way
the FE model facilitated the preparation of the fatigue failure experimental investigation,
and allowed us to reach optimal experimental conditions without the need of carrying out
many preliminary physical tests.

3. Experimental Research

In order to investigate the impact of the main regime parameters of the BB process on
fatigue failure effects, an experimental investigation was conducted according to the first
goal. Its purpose was to reveal the main effects and interactions between the BB regime
parameters: deforming force—F, N and feed rate—f, mm/min, which were expected to
a have major influence on the degree of the plastic deformation in the surface layer of
the material, and the toolpath trajectory parameters: e, mm and i, which are known to
determine the shape and the size of the RR cells. The experimental research was based on
the approach of the full factorial designs [39]. The selected four factors (i.e., the BB regime
parameters F, f, i, and e) varied on two levels—“low” and “high”. The experimental design
executed is shown in Table 2.

Table 2. Levels of factors (i.e., regime parameters of the BB operation).

Factor Code Low Level (−1) High Level (+1)

Deforming force, F, N A 1060 1735
Number of sinewave wavelengths, i B 600.15 1200.15

Amplitude, e, mm C 1.0 2.5
Feed rate, f, mm/min D 150 300

As a response criterion, the number of cycles until fatigue failure was used. For every
trial, included in the experimental design, two replicates were performed. The obtained
results were subjected to several different analysis techniques, including the Pareto, t-test,
and Bayesian rule.

The natural values of i, and e were selected on the basis of the previous research
of the authors [40]. Their low and high levels were set to obtain RR with different size
cells. In Table 3, the four toolpath types which had different unfolded lengths, derived
by using Equation (1), are illustrated. The unfolded toolpath length gives the relief
degree of imbrication, which is proportional to the number of passes in conventional
burnishing technology.

Table 3. Unfolded length of the toolpaths at chosen factor level combinations.

Factor Level Low Number: B = −1 High Number: B = +1

Low amplitude:
C= −1
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The values for F and f were selected from the operational capabilities of the ball bur-
nishing tool [41], and those of the CNC milling machine (3-axes HAAS TM-1,
USA [42]) used.

The rest of the BB parameters, which were not varied during the experiments, were
fixed as follows: diameter of the deforming element was dc = 14, mm; number of points of
the toolpath p = 10,000; the distance between toolpath segments dfn was set to be equal of
half of the sinewave amplitude e. In order to avoid jamming of the ball tool, Mobil DTE 25
was used as a lubricant for all ball burnished experimental specimens.

The test specimens were made of austenitic stainless steels AISI 304 and AISI 316L,
described in Section 2.1. They had a specific shape and dimensions, shown in Figure 4a,b.
The specimens had two stress concentrators whose purpose was to guarantee the fatigue
cracks developed in the narrowest section of the material (see Figure 4b), i.e., where the RR
were formed after applying the BB operation. According to the experimental design shown
in Table 2, 16 × 2 = 32 specimens were processed by BB for AISI 304 steel and another
32 specimens with the same characteristics for AISI 316L steel, respectively. Fourteen
additional specimens (without RR) were also made of both of the steels (see Figure
4c,d). Their purpose was to adjust the fatigue test setup, as well as to compare the results
obtained for the number of cycles to fatigue failure with and without the application of the
BB operation.
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Figure 4. (a) Fatigue test specimens’ shape and dimensions; (b) BB area with RR of the IV-th type; (c) arrangement of
the specimens within the plates of AISI 304 and AISI 316L. (d) Physical BB-operation for obtaining the real RR from
the IV-th type.

The BB operation was applied on both sides of the plates, with one and the same
combinations of the regime parameter values, according to experimental design, shown in
Table 2. Thus, each specimen processed by BB had two-sided RR. After all RR were formed
onto both sides of the plate, the different specimens were cut off the plate using a CO2
laser cutting machine MAZAK SUPER X48-Champion. In order to avoid the impact of the
sharp edges after the laser cutting operation at the stress concentrator on fatigue life of the
specimens, they were subjected to electropolishing.

4. Results
4.1. Preprocessing Data

As a result of the experiments, the fatigue testing number of cycles to failure (Nf )
was obtained. According to the experimental plan, specimens of 304 and 316L steels were
burnished with 16 combinations. Low and high levels of the factors were coded with
−1 and 1. Levels of two- and three-factor interactions were calculated as a multiplication
of main factor levels.

The specimens of both steel batches were tested successively at each combination
(replication r = 4), resulting in a total of 16 × 4 = 64 specimens (32 specimens of each kind
of steel). The descriptive statistics of the fatigue data are shown in Table 4. Considering
that unlike AISI 316L, specimens of AISI 304 were notched, the fatigue life results were as
expected. The 316L specimens’ fatigue life lay predominantly in the 106 range, while the
fatigue life of 304 specimens lay predominantly in the 105 range.
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Table 4. Results from the fatigue tests (descriptive statistics).

Steel
Cycles to Failure (Nf)

Count Mean std min 25% 50% 75% max

304 32 152,909 101,099 23,929 61,192 152,450 234,882 419,450
316L 32 1,353,132 1,422,401 138,868 418,176 694,903 1,807,082 6,022,466

The fatigue life, even at constant stress amplitude, showed stochastic behavior. The
materials’ fatigue resistance due to the randomness of microdefect distribution, loading
condition variations, and specimen preparation were the main sources of uncertainty. To
model fatigue life, Normal and LogNormal distributions are commonly used.

Of particular interest in this study was the increase of the fatigue life due to burnishing
operation with different combinations of regime parameters. To identify the characteristics
of fatigue life gain, additional experiments with non-burnished specimens were carried
out at the same loading conditions. The mean result for 304 steel was 2 × 104 cycles
(tested four specimens). For 316L steel, the mean result was 14 × 104 cycles (tested three
specimens). Based on these results, value logCycles representing gain of the fatigue life
due to burnishing were formed. Cycles to failure of burnished specimens are divided into
base cycles of non-burnished specimens and ones, converted to logarithmic scale, using
the decibel rule to get more physical meaning, (Equation (2))

logCycles = 20·log
(

cycles to f ailure o f burnished specimen
cycles to f ailure o f base specimen

)
(2)

Descriptive statistics of data converted to log scale are shown in Table 4. These data
are considered as primary data for the statistical analysis.

To ensure comparability of the data for different materials, the logCycles were scaled
using a robust scaler from the Python library “SciKit Learn” [43]. This type of scaler uses
the first and third percentile values and is more robust to outliers Equation (3). This kind
of scaling can be applied to additional data (if replication of the experiment is made). The
histograms of scaled data are shown in Figure 5.

yscaled =
yi − q1(0.25)

q3(0.75)− q1(0.25)
(3)

Materials 2021, 14, x FOR PEER REVIEW 11 of 22 
 

 

 

Figure 5. Scaled data histogram. 

Most of the data were in the unit range (−1; ±1). The whole range of data was (−1.5; 

±1.5). As shown in Table 5, for the particular materials included in this research, mean and 

q1(0.25) and q3(0.75) quantiles were quite similar and scaling just centered the data and 

converted standard deviation to 1. 

Table 5. Results from the fatigue tests, converted to log scale (descriptive statistics). 

Steel 
logCycles (dB) 

Count Mean std min 25% 50% 75% max 

304 32.0 15.35 6.98 1.56 9.71 17.64 21.39 26.43 
316 32.0 15.45 8.81 −0.07 9.50 13.68 22.22 32.67 

4.2. Effects and T-Test 

The main effect of a given factor is the mean difference in the level of response as the 

input moves from the low to the high level [44]. Combined two- and three-factor effects 

(interactions) are calculated by multiplication of the main factor levels. For example, two-

factor interaction is positive when the inputs move in the same directions and negative 

when the inputs move in opposite directions. To visualize these effects, linear regression 

plots are presented on Figures 6–8. Each kind of steel is treated separately for comparison. 

 

Figure 6. Regression plots representing the main effects. 

Figure 5. Scaled data histogram.

Most of the data were in the unit range (−1; +1). The whole range of data was
(−1.5; +1.5). As shown in Table 5, for the particular materials included in this research,
mean and q1(0.25) and q3(0.75) quantiles were quite similar and scaling just centered the
data and converted standard deviation to 1.
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Table 5. Results from the fatigue tests, converted to log scale (descriptive statistics).

Steel
logCycles (dB)

Count Mean std min 25% 50% 75% max

304 32.0 15.35 6.98 1.56 9.71 17.64 21.39 26.43
316 32.0 15.45 8.81 −0.07 9.50 13.68 22.22 32.67

4.2. Effects and T-Test

The main effect of a given factor is the mean difference in the level of response as
the input moves from the low to the high level [44]. Combined two- and three-factor
effects (interactions) are calculated by multiplication of the main factor levels. For example,
two-factor interaction is positive when the inputs move in the same directions and negative
when the inputs move in opposite directions. To visualize these effects, linear regression
plots are presented on Figures 6–8. Each kind of steel is treated separately for comparison.

In previous research [36], only the results of fatigue testing of AISI 304 steel were
analyzed. It was found that the main factors A and D, and the interactions AC and AD,
had the greatest impact. The new data from the 316L steel fatigue testing showed similar
behavior, according to the main factors. In contrast, interaction AD was very strong, but
the slope was different, comparing steel types (positive for 316L and negative for 304),
as shown in Figure 7. From the three-factor interactions, ACD seems to be important
(Figure 8).
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Figure 8. Regression plots representing three-factor interactions.

Since steels were burnished within the same experimental plan, and the fatigue testing
procedure was the same, similar effects should be expected, so the new effects calculation
was made considering the whole dataset. The main effects and interactions are given in
descending order of their absolute values in Table 6. A Pareto chart (see Figure 9) shows
that the first seven factors from the table should be considered significant (D, A, ACD, AD,
AC, BCD, BD), because they covered about 80% of the total effect.

Table 6. Main effects, two- and three-factor interactions and p values.

Factors Effect abs(Effect) p-Value

D −3.654 3.654 0.084
A 2.984 2.984 0.108

ACD −2.824 2.824 0.222
AD 2.707 2.707 0.206
AC 1.927 1.927 0.371

BCD 1.885 1.885 0.316
BD −1.750 1.750 0.417
AB −1.426 1.426 0.541
CD −0.886 0.886 0.705

ABD 0.715 0.715 0.742
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The obtained results were confirmed by t-test. This test checks the null hypothesis
if the mean values of the two groups of samples are identical. The p-values, calculated
from the t-test, are given in the last column of Table 2. All of them were greater than
5% (p > 0.05), which means that the null hypothesis cannot be rejected with 95% level of
confidence for all the factors and interactions. If value p = 0.1 (90% confidence) is taken as
a significance level, the null hypothesis can be rejected for D and A factors and these factors
are considered significant for the regression model. The values of these factors confirm
the general findings for the burnishing processes: that higher force (A) and low federate
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(D) guarantee a higher degree of plastic deformation, thus benefiting the fatigue life [28],
but give no information about the influence of the regular relief degree of imbrication,
connected with factors B and C.

More detailed statistical inference from such noisy data can be obtained, using the
Bayesian approach. Bayesian models are called probability models, since as a result
distribution rather than the point estimates for the unknown parameters are obtained.
According to the Bayesian rule Equation (4), the posterior probability of parameters of
interest θ, based on the observed data y, can be estimated, using our prior knowledge about
these parameters (θ). The term P(y|θ), called likelihood, is a probabilistic model for the
data. The denominator term P(y) is the marginal probability of the data, called evidence.
Since it is just a normalizing constant, it can be omitted and stated that posterior probability
is proportional to likelihood times, prior probability.

P(θ|y) = P(y|θ)·P(θ)
P(y)

, (4)

where P(θ|y)—posterior; P(θ)—prior; P(y|θ)—likelihood;
P(y) =

∫
P(y|θ)·P(θ)dθ—evidence.

P(θ|y) ∝ P(y|θ)·P(θ)

For the continuous random variables, P(θ|y) is a probability density function (PDF)
of a certain distribution. So, Bayesian modeling requires first setting the appropriate
likelihood distribution, which describes how the data can be generated, and second,
choosing the prior probability distributions for all the unknown θ parameters. Prior
distributions can be constructed as non-informative, i.e., diffuse or even improper, which
PDF does not integrate to 1. If too informative (strong) prior distributions are used, there is
a risk in ignoring the experimental data. Of course, in the presence of enough data, the
prior choice is ignored, and likelihood dominates the posterior distribution. The Bayesian
probabilistic model can be updated if new data are available just by setting the posterior
distributions to prior for the new data.

For some of the simple cases, a closed form solution for the posterior density is given
in the literature [37]. Nevertheless, for all probabilistic models, Bayesian inferences can
be made just by simulation. To ensure random, non-correlated samples covering the
whole distribution, Markov chain Monte Carlo (MCMC) sampling algorithms are used.
Nowadays, numerous statistical packages and libraries for “R” and Python are available.
Some of the most popular are WinBUGs, JAGS, Stan, and PyMC.

4.3. Regression Model
4.3.1. Ordinary Least Square Regression (OLS).

Ordinary least square linear regression Equation (5) assumes Gaussian distribution of
the noise.

y = Xβ + ε, (5)

where y ∈ Rn×1—column vector of parameter of interest (regressors); X ∈ Rn×k+1 =
[{1}, {x1}, {x2} . . . {xk}] , predictors (or design matrix); β ∈ Rk+1×1—column vector of
regression coefficients; ε ∼ N

(
0, σ2 I

)
—Gaussian noise.

As the effects and interactions are calculated, a linear regression model can be formed
as Equation (6), where the first term is a mean of the dependent variable y, and to calculate
the other coefficients ith effect or interaction value should be divided by 2, since it shows
the amount of change of the regressor as predictor xi moves 2 steps, from −1 to +1.

ŷ = Xβ = y +
1
2

k

∑
i=1

∑ e f f ecti × xi (6)
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The probabilistic model of linear regression can be expressed as Equation (7). Data
yi comes from Normal distribution with a mean equal to OLS estimation ŷ and variation
σ2 = ε.

yi v N
(

Xβ, σ2
)

, (7)

where i = 1,2, . . . ,n is the number of data points
From a Bayesian perspective, each regression coefficient can be treated as a ran-

dom variable, coming from a Normal distribution with unknown mean and variance
Equation (8).

βi ∼ N
(

µi, s2
i

)
, (8)

Under a non-informative Jeffrey’s prior, this problem has a closed form solution [37].
The resulting parameters of posterior are dominated by experimental data. The marginal-
ized distribution for mean µ, with the integrated s2 is a non-centered Student-t distribution
Equation (9).

µi | y ∼ tn−k−1

(
mi, S2

i

)
(9)

The location parameter mi is equal to the least squares estimation of regression coeffi-
cients, the scale parameter S2

i is equal to the standard error, and the degrees of freedom are
equal to the degrees of freedom of the regression model. From this distribution, credible
intervals CI and/or high-density intervals (HDI) with a certain probability can be formed.

Results from the OLS regression, including the first seven factors from the Pareto
plot, are given in Table 7. To perform this regression, the Python library Statsmodels
was used [45].

Table 7. Ordinary least square (OLS) regression results.

βi
Effect

βi
Mean

βi
std err

βi 95% HDI

[0.025 0.975]

Intercept 15.4010 0.937 13.524 17.278
D −1.8272 0.937 −3.704 0.050
A 1.4918 0.937 −0.385 3.369

ACD −1.4118 0.937 −3.289 0.465
AD 1.3537 0.937 −0.524 3.231
AC 0.9636 0.937 −0.913 2.841

BCD 0.9427 0.937 −0.934 2.820
BD −0.8748 0.937 −2.752 1.002

Looking at the 95% HDI, again the conclusion is that there was no significant factor
with a significance level α = 5%.

4.3.2. Robust Regression

To decrease the influence of the outliers, a new probabilistic model was built. The
response variable were modeled with a Student-t distribution. This distribution has the
3rd parameter ν (degrees of freedom), which controls the tails [46]. Lower values of ν lead
to the distribution high tails and the regression is more robust to outliers. At about ν >30,
the Student-t distribution coincides with the normal (Figure 10).

The parameters of the distribution were random variables, for which the appropriate
prior distributions should be given. For regression coefficients, non-informative (Normal
with high variance) were chosen. The degrees of freedom can be fixed or if treated as
a random, variable exponential prior can be given.

y ∼ t
(

ŷ, σ2 , v
)
,

σ2 ∼ Hal f Cauchy( s0)
v ∼ Exp( λ0)

βi ∼ N
(
µ0i, σ0

2
i
) (10)
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where v degrees of freedom; s0, λ0, µ0, σ0—known parameters.
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Figure 10. Student-t and normal distributions.

For sampling this Bayesian model, the PyMC3 Python library was used [47]. This
probabilistic programming language uses clear and easy to understand syntax. In particular,
the PyMC3 generalized linear model module (GLM) is used to define this model. It, by
default, sets the non-informative priors for the regressors βi ∼ N

(
0, 106). The model

was defined just in 1 row with a string for the regression formula, data, and the family
parameter, which set the likelihood to Student-t distribution (default was Normal). The
degrees of freedom were fixed to ν = 1. To sample from the mode, two independent
Markov chains with length of 6000 samples were generated. The first 1000 samples of each
chain were “burned” to avoid correlated samples. By default, PyMC3 uses the gradient
based No-U-Turn-Sampler (NUTS).

After sampling the trace, a plot of posterior distributions was available. On the right,
the generated Markov chains were presented, and on the left, the posterior distribution
density of the model parameters. As can be seen from Figure 11 they converged well. There
were no abrupt changes, patterns, or other weird observations.

More detailed inferences about sampling can be made by reviewing the summary
statistics (Table 8). First, the r-hat for all parameters was 1.00, indicating that simulated
chains came from one distribution. Effective sample size (ess_mean) shows the number of
non-correlated samples in the chains. They should be more than 10% of draws. It is seen
that for all the parameters, the values were in the range of 5000–7000 from 10,000 draws.

Table 8. Bayesian regression model summary.

Predictors
Summary Statistics of Posterior

Mean sd hdi_2.5% hdi_97.5% mcse_mean ess_mean ess_sd ess_tail r_hat

Intercept 15.007 0.991 13.007 16.883 0.012 0.008 7124.0 7105.0 1.0
A 2.074 1.035 −0.013 4.002 0.012 0.009 6936.0 6707.0 1.0
D −1.964 0.978 −3.935 −0.077 0.011 0.008 8201.0 7225.0 1.0

AD −0.251 1.117 −2.454 1.914 0.015 0.011 5470.0 5470.0 1.0
AC 1.133 1.000 −0.775 3.147 0.012 0.009 7253.0 6608.0 1.0
BD −1.403 1.104 −3.508 0.844 0.014 0.010 6169.0 6169.0 1.0

ACD −1.873 1.084 −3.873 0.352 0.014 0.010 6311.0 6311.0 1.0
BCD 1.545 1.045 −0.461 3.669 0.012 0.009 7049.0 6335.0 1.0
lam 0.063 0.023 0.026 0.109 0.000 0.000 5794.0 4586.0 1.0
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Figure 11. Trace plots (left—distributions; right—chains)

Intercept’s posterior mode was very close to the data mean (15.4). Posteriors of
the regression coefficients were significantly away from zero, with the exception of AD
coefficient posterior. It was centered close to zero, which indicates that it should be excluded
from the model, unlike the previous OLS model, where its mean was positive with 95%
HDI, predominantly on the positive side. To inspect other coefficients’ posteriors in detail,
histogram plots with a highlighted 95% HDI and vertical line at zero as a reference value
were plotted (Figure 12).
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The posterior distributions of the regression coefficients AC and BD were not clearly
on one of the sides (16% and 7.3% of the posterior lay below or above the reference value,
respectively). Since these two factor interactions (AC, BD) were correlated with the three-
factor interactions ACD and BCD, they can be considered excluded from the model due
to overfitting.

The proposed probabilistic model can be further improved by centering the data by
using the scaled data, setting the weakly informative priors to regression coefficients and
the degree of freedom. The weakly informative is a prior distribution that covers the data
behavior and generates the data at a reasonable scale but is not so strong as to influence
the posterior. In addition, statements such as “weakly informative” depend crucially on
what questions are being asked [48].

ycentered ∼ t
(

Xβ, σ2 , v
)

σ2 ∼ Hal f Cauchy( s0)
v ∼ Gamma(2, 0.1) + 1

β0 ∼ N
(
0, 12)

βi ∼ N
(
0, 12), for i = 1, 2 . . . k

(11)

Following some of the recommendations in [49], the Normal distributions with vari-
ance 12 for the regression coefficients and Gamma (2, 0.1) prior for the degrees of freedom
were chosen Equation (11). By trying different numbers of regression coefficients, the final
model consisted of four regression coefficients A, D, BD, ACD. The posterior histograms
with a 90% HDI are given in Figure 13.
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5. Discussion

The proposed probabilistic model can be used for decision making. For example, in a
lot of applications, a relief with certain parameters is needed, i.e., length and amplitude
of the sinewave (B and C factors) are chosen due to technological requirements. So, the
probabilistic question could look like: “Which force-feed rate (A–D) combination will
give higher probability of reaching fatigue life gain of more than mean value (15 dB)?” To
answer the question, the posterior distribution for the data (y) is formed by reversing the
scaled data, fixing the regressors at a certain point, and incorporating the uncertainties of
regression coefficients and data. For a relief with finer sells or a high degree of imbrication
(B = 1, C = 1) the posteriors are shown in Figure 14. The probabilities p(y > 15) calculated
from the posteriors, for all combinations of relief parameters, are given in Table 9.
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Table 9. Probability of reaching fatigue life gain of more than 15dB, p(y > 15) for all combinations of
relief parameters.

Relief Parameters (B, C).
Regime Parameters Values: Force Federate (A, D)

(1, 1) (1, −1) (−1, 1) (−1, −1)

(1, 1) 0.21 0.97 0.29 0.62
(−1, 1) 0.50 0.85 0.62 0.30
(1, −1) 0.55 0.83 0.07 0.89

(−1, −1) 0.82 0.55 0.26 0.66

As an amplitude of the sinewave (factor C) gives higher effect to the relief’s degree
of imbrication (see Table 9), for reliefs with high C value the feed rate should be kept low.
For these kinds of reliefs, the optimal burnishing parameters are high force and low feed
rate (A, D = 1, −1). For reliefs with low C value, the optimal burnishing regime is strongly
dependent on sinewave length (factor B). If relief with a high B is needed, the feed rate
(factor D) should be kept to a low value, unlike the relief with low B value, where high
force and feed rate (A, D = 1, 1) are needed. Of course, all kinds of relief, using A, D = 1, −1
combination, result in the probability of reaching more than 15dB fatigue life gain, more
than 50%.

The results from the proposed model support in general the published experimental
results for conventional ball burnishing. Travieso-Rodriuez et al. investigated the fatigue
life of burnished carbon steel specimens [50]. Their experimental results show that increas-
ing the burnishing force and number of passes benefits fatigue life of the specimens. Rich
experimental data for the influence of the burnishing regime on the fatigue strength is
presented by Swirad [6]. He used a diamond composite burnishing element on low-alloyed
carbon steel 40HM. The results showed that by increasing the burnishing force fatigue,
the strength increased only to a certain threshold value. Beyond the threshold value, the
fatigue strength decreased rapidly. Maximov et al. reported similar results for the influence
of the burnishing force [51]. They used a diamond tool on aluminum alloy specimens and
registered decrease of the fatigue life for the higher values of the burnishing force.

Other results of Swirad relate to the influence of feed rate and velocity. For burnishing
tools with higher diameters, increasing the feed rate slightly decreases the fatigue strength
after a certain value and the change of the velocity seems irrelevant.

The microstructural analysis of the burnished AISI 304 specimens given in [52] re-
ports the phase composition in the surface layer. After the fatigue testing, strain-induced
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martensite is developed. In specimens with a large content of the martensite phase, a
shortened fatigue life has been registered. Since for austenitic steels the martensite phase
is strain-induced, the higher martensite content in some of the specimens can be a result
of the local fluctuation of the material properties or the burnishing force (burnishing is
done on rolled sheets without annealing). In [53] the effect of strain-induced martensite on
fatigue behavior is investigated. Martensitic transformation is registered during the fatigue
tests. The more pronounced transformation is for prestrained specimens. In [54], a strong
influence of martensitic content on fatigue limit is emphasized and optimum martensite
content for a predeformed specimen of 26% is reported. These phenomena look like a
reason to adopt a two-side posterior distribution (p (ACcoeff < 0) = 16%) of AC regression
coefficient in the first robust regression model (see Figure 3). Obviously, the chosen high
value for burnishing force, combined with a high value of relief amplitude, is just below
the threshold level and small random fluctuations can shorten the fatigue life.

In the above cited reference [52], a comparison of microhardness profiles of two
burnished specimens is given, and the only difference in the relief is the sinewave length
(factor B). There is no difference in the hardened layer depth. The only difference is the
higher microhardness value, registered just below the surface in the specimen, burnished
with a high B value regime, resulting in a slightly higher fatigue life. This phenomenon is
captured by BD regression coefficient, whose posterior distribution lies on the negative
side. This means that a low feed rate (factor D) in combination with a high sinewave length
value (factor B) gives an additional improvement to the fatigue life.

6. Conclusions

The results from the conducted experiment show that the performed BB process on
the test specimens leads in general to increase of the number of cycles until fatigue failure
for both steels investigated. The gain in the fatigue life is more than 10 dB (about three
times) for 75% of the AISI 304 and AISI 316L specimens, in comparison with those which
had only preliminary plastic deformation, obtained after the steel sheets were rolled by
the manufacturer (i.e., those without formed RR after applying BB). Thus, the formatted
RR, after presenting a modification of the BB process, do not affect negatively the fatigue
life results for these two steels. This is because the ridges of the RR cells’ boundaries do
not play the role of stress concentrators which cause the formation of microcracks. This
can be reported as an important operational characteristic for those parts which have RR,
formed by using BB on their contact surface, in order to ensure a low slip resistance and a
low wear, due to increased abilities to retain lubricants, dust, and/or debris which causes
wear, in comparison with the smooth surface topographies, obtained after other traditional
finishing processes, such as grinding, polishing, traditional ball burnishing, etc. Surfaces
with RR could be part of equipment which works in highly dusty, abrasive or saltwater
environments in marine, mining, petroleum, or chemistry industries, etc., and for which
there are also requirements for high fatigue strength. The experimentally obtained results
give us grounds to recommend this variant of the BB process, in which a specific RR of the
IV-th type could be formed as a suitable finishing operation for such parts, subjected to
both cyclic loads, for work in high-wear operating conditions. Using the advances of the
contemporary CNC production equipment, and the presented approach for mathematical
modeling of the toolpath of the ball tool, allows BB to be carried out as a finishing operation
on the same machine, along with the previous cutting operations. This makes the BB
operation easy to add to standard (generic) sequences of manufacturing operations for the
production of such machine parts.

As can be seen from Table 9 and Figure 14, the optimal combination of the BB regime’s
parameter values, in order to maximize the probability (up to 97%) of obtaining the
maximum fatigue life of the parts made of AISI 304 or 316L, is A = 1, B = 1, C = 1 D = −1.
In other words, the deforming force F, N, the amplitude of the sinewaves e, mm, and their
number i must be set at their high values. However, the parameter feed rate f, mm/min
must be set at its low values.
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The presented approach for using the factorial experiment designs and Bayesian rule
for data analysis reveals some tendencies about the impact of the main regime parameters
of the BB process and their iterations on the fatigue life of the investigated steels. It
provides good enough results in case of experimental investigations, in which it is not
appropriate to perform a large number of trials, and the obtained results for the investigated
parameter (i.e., fatigue failure cycles in our case) can have comparatively high variance.
This can significantly shorten the time and facilitate the efforts for obtaining the needed
results, in order to determine the optimal combination of BB regime parameters values in
manufacturing conditions.

The methodological sequence for fatigue failure testing presented in the current
work can also be applied to other materials, processing methods, and experimental plans,
involving a different number of influencing factors. Our future work will be focused on its
development and improvement in future research, similar to that presented in this paper.
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