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The role of chromatin dynamics under global
warming response in the symbiotic coral
model Aiptasia
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Extreme weather events frequency and scale are altered due to climate change. Symbiosis
between corals and their endosymbiotic-dinoflagellates (Symbiodinium) is susceptible to
these events and can lead to what is known as bleaching. However, there is evidence for coral
adaptive plasticity in the role of epigenetic that have acclimated to high-temperature envir-
onments. We have implemented ATAC-seq and RNA-seq to study the cnidarian-
dinoflagellate model Exaptasia pallida (Aiptasia) and expose the role of chromatin-
dynamics in response to thermal-stress. We have identified 1309 genomic sites that
change their accessibility in response to thermal changes. Moreover, apo-symbiotic Aiptasia
accessible sites were enriched with NFAT, ATF4, GATA3, SOX14, and PAX3 motifs and
expressed genes related to immunological pathways. Symbiotic Aiptasia accessible sites
were enriched with NKx3-1, HNF4A, IRF4 motifs and expressed genes related to oxidative-
stress pathways. Our work opens a new path towards understanding thermal-stress gene
regulation in association with gene activity and chromatin-dynamics.
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oral reefs are one of the most diverse and important

marine ecosystems, providing a home to hundreds of

thousands of species!, including almost a third of the
world’s marine fish species?. Coral reefs support more species per
unit area than any other marine ecosystem, making them an
important reservoir for biological diversity and complexity. About
15% of the world’s population lives within 100 km of coral reef
ecosystems, with many people depending on coral reefs for their
livelihood. The importance of coral reefs for tourism, fishing,
building materials, coastal protection, and drug discovery cannot
be underestimated.

Corals live in close association with a variety of eukaryotic and
prokaryotic micro-organisms, potentially providing additional
adaptive capacity to the holobiont. The most studied and well-
known endosymbiosis between corals and their dinoflagellate
algae (family Symbiodiniaceae) has a profound contribution to
coral reefs rapid ecological success over geological history>. Over
the past 200 million years corals have had a crucial role in
shaping tropical oceans, but yet they appear to be highly vul-
nerable to environmental stress in general, and specifically to
anthropogenic factors including climate change?. Over the past
several decades, reefs throughout the world have been affected by
local anthropogenic stressors and climate change—as much as
75% of the world’s coral reefs are threatened and as many as 95%
may be in danger of being lost by mid-century®. This can be
attributed to mass bleaching events that are tied to global
warming®’, but local stressors associated with overharvesting and
coastal development (urban and agricultural) are also major
contributors to this global declined. Bleaching occurs when the
coral host loses its symbiotic-partners, the dinoflagellate Sym-
biodinium®. The loss of these symbionts can have adverse effects
on the health of corals and eventually lead to their death.

Demystifying the fundamental mechanisms of symbiont pre-
sence or absence is important for future conservation efforts and
especially for attempts of assisted evolution!?. Today enormous
efforts are made involving transcriptomics studies to reveal the
potential mechanism of coral adaptation to a variable environ-
ment and stressors!1-12. At present there are only a few studies
trying to unravel epigenetic mechanisms in cnidarians including
DNA methylation in corals!®14; and histone markers like in the
brackish sea anemone Nematostella!®>. However, still a major
knowledge gap remains, especially in histone modifications, and
chromatin dynamics, regarding the regulatory and epigenetic
mechanisms controlling these cellular and molecular pathways in
corals!®17, partially due to the fact that in corals DNA methy-
lation levels correlate broadly and uniformly with expressed
‘housekeeping’ genes, whereas genes responsible for inducible or
cell-specific functions are weakly methylated!8.

Eukaryotic DNA is wound around histone proteins in a
complex called nucleosome. This complex is vastly regulated as
histones are removed to expose regulatory sites, such as cis-
regulatory elements (CREs) and promoters, to allow binding of
transcription factors and other regulatory proteins. Identification
of enriched motifs within these active CREs can, therefore, reveal
genes associated with a transcriptional regulatory network!®.
Genome-wide mapping of transcription factors binding to chro-
matin is frequently done by chromatin immunoprecipitation
(ChIP) based methods, such as ChIP-seq?0. Conversely, these
techniques are expensive and require a significant amount of
tissue and extensive processing of the sample. The Assay for
Transposase-Accessible ~ Chromatin ~ with  high-throughput
sequencing (ATAC-seq) is a novel technology that favors the
sequencing of accessible chromatin loci?! and holds promise to
overcome these limitations. While ATAC-seq is a powerful and
promising approach for epigenetic regulation research, it is

relatively new and has primarily been applied within well-
characterized model systems.

In this study, we aim to elaborate an understanding of cni-
darian gene expression and regulation by revealing the interplay
between chromatin accessibility aligned with gene expression
dynamics, and its relation to the symbiotic state of the animal
under temperature elevation reflecting global warming. For this
goal, we choose to work with the symbiotic sea anemones Aip-
tasia pallida (sensu Exaiptasia pallida). The relationship with
Symbiodinium is facultative, making this a convenient laboratory
surrogate for studying coral and other cnidarians symbiosis?2. We
optimized an ATAC-seq protocol to detect accessible chromatin
regions in the symbiotic and apo-symbiotic morph of Aiptasia
gradually introduced to thermal stress. By integrating chromatin
accessibility profiles with transcription profiles (RNA-seq) we
revealed 1309 genomic sites that change their accessibility in
response to thermal changes. Moreover, apo-symbiotic Aiptasia
accessible sites were enriched with NFAT, ATF4, GATA3, SOX14
and PAX3 motifs and expressed genes related to immunological
pathways. Symbiotic Aiptasia accessible sites were enriched with
NKx3-1, HNF4A, IRF4 motifs and expressed genes related to
oxidative-stress pathways. This work opens a new avenue towards
understanding thermal stress gene regulation with the association
of gene activity and chromatin accessibility. The work presented
here shows that chromatin structure may act as a mechanism for
adaptive response in regulating gene expression in cnidarian
symbioses under global warming.

Results

Chromatin accessibility profiles of Aiptasia. To sensitively
measure high-resolution chromatin accessibility at different sym-
biotic states of Aiptasia in response to heat-stress, we used the Assay
for Transposase Accessible Chromatin using sequencing (ATAC-
seq). We optimized the ATAC-seq protocol?!23 for Aiptasia by
including a step of symbiotic algae removal and native nuclei iso-
lation by mechanical homogenization before the transposition step
(see methods). We generated and sequenced ATAC-seq libraries, as
well as input control, to a median depth of 8 million unique, high-
quality mapping reads per sample. The experimental design
included a total of four groups, in which two were introduced to
heat-stress and two to constant temperature conditions serving as
the control, over a period of 28 days. This was done for both
symbiotic (symbiosis with Breviolum (ie., clade B)**) and apo-
symbiotic state. The two heat-stress groups were exposed to gra-
dually rising temperatures (40.5 °C per day to a max temperature
of 34°C) and sampled at four designated temperature steps (n =3
per time point) as shown in Supplementary Table 1. The photo-
synthetic yield (Fv/Fm) was measured along with the experiment as
an indicator of symbiosis state as presented in Fig. 1. Control
groups that were held under constant temperature showed no sig-
nificant change in photosynthetic yield, while the symbiotic Aiptasia
groups that were introduced to stress showed a significant change
(One-way ANOVA: P-value <0.001) in photosynthetic yield in
response to the stress (symbiotic control Fv/Fm was at the rage of
0.6-0.67 and treated symbiotic anemones Fv/Fm was 0.25 at the end
of the experiment) (Fig. 1b). The apo-symbiotic Aiptasia photo-
synthetic yields were measured, including algae count in addition
(no detectable algae were notified), to ensure their apo-symbiotic
state (see Fig. la, c¢). Morphological changes, mainly the body
expansion of Aiptasia, were observed during the experiment
between day 21 (34 °C) and after 1 week at this temperature (day 28
of the experiment, temperature 34 °C). The anemones showed more
contraction behavior (both tentacles and body) indicating a high-
stress state?>.
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Fig. 1 IPAM Fv/Fm measurements of symbiotic and apo-symbiotic Aiptasia prior to sampling for symbiosis state validation: a IPAM image as captured prior
to sampling color scale indicates Fv/Fm value, and infra-red (IR) image indicates the apo-symbiotic Aiptasia position in the frame. b Quantitative results of
Fv/Fm as measured with IPAM for symbiotic Aiptasia n =5, One-way ANOVA: P-value < 0.001, Post-hoc Tukey-HSD: P-value < 0.001. ¢ Quantitative

results of Fv/Fm as measured with IPAM for apo-symbiotic Aiptasia n=5. d ATAC-seq signal within consensus ATAC-seq peaks was compared between
all samples using Spearman'’s p to cluster samples
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Table 1 Correlation between ATAC-seq biological replicates

Group? rep 1 vs. rep 2b< rep 1 vs. rep 3b< rep 2 vs. rep 3bc Average R2 SD
DayO_apo_24°C 0.815 0.872 0.827 0.838 0.025
Day9_apo_24°C 0.864 0.798 0.857 0.840 0.030
Day21_apo_24°C 0.829 0.672 0.833 0.778 0.075
Day28_apo_24°C 0.827 0.869 0.882 0.859 0.023
Day0O_sym_24°C 0.952 0.820 0.838 0.870 0.058
Day9_sym_24 °C 0.969 0.977 0.968 0.971 0.004
Day21_sym_24°C 0.966 0.949 0.922 0.946 0.018
Day28_sym_24°C 0.860 0.934 0.882 0.892 0.031
Day9_apo_28 °C 0.934 0.942 0.906 0.927 0.015
Day9_sym_28 °C 0.978 0.993 0.996 0.989 0.008
Day21_apo_34°C 0.797 0.883 0.720 0.800 0.067
Day28_apo_34°C 0.700 0.738 0.966 0.801 onmz
Day21_sym_34°C 0.676 0.938 0.698 0.771 0.119
Day28_sym_34°C 0.661 0.952 0.659 0.757 0.138
aGroup name format: sampling day/symbiosis state/temperature

bPearson product-moment correlation coefficient

€P-value < 0.01 for all results

As presented in Table 1, the biological replicates ATAC-seq
libraries were highly similar (average adj. R®>=~0.86 with
SD =0.073 and P-value < 0.001), demonstrating highly reprodu-
cible data from Aiptasia, whole animal sampling. The ability to
cluster samples by their stress stage also shows that chromatin
accessibility is strikingly different between the two morphs during
the response to heat stress (Fig. 1d). These differences between
heat-stress stages are likely due to changes in accessibility within
host cell populations in response to heat and symbiotic state.
Furthermore, the significant peaks (36,999-83,061 peaks with
—log(p-value) > 5) from all test groups were clustered around
transcriptional start sites (TSSs, see Supplementary Fig. 1).
Together, these results indicate that reproducible high-
resolution chromatin accessibility can be obtained from small
amounts (at least an order of magnitude less than standard ChIP-
seq or DNase-seq) of complex, whole animal Aiptasia samples.

A glimpse into Aiptasia genome regulatory regions. ATAC-seq
favors accessible sites of chromatin and thus, we expected to find
more regulatory related genomic features enriched within the
sequenced libraries!®. Indeed, the libraries showed on average
that Promoters-TSS (defined as 1500 bp upstream to 400 bp
downstream from the first nucleotide of the gene) features were
enriched by over 40%, as shown in Fig. 2a, b. In addition, many
open chromatin regions identified by ATAC-seq were within
proximal (5000 bp-1501 bp upstream from the first nucleotide of
the gene) or distal (>5000 bp downstream from the first nucleo-
tide of the gene) intergenic regions, suggesting these regions may
act as distant regulatory elements. Moreover, the accessible
landscape between the symbiotic to the apo-symbiotic sea ane-
mones was different (20-40% difference), suggesting the immense
influence of symbiont presence within the anemone tissues, as has
been shown before by our group?® - Fig. 2c-f. We have observed
that differences in the regulatory landscape may appear already in
the basal condition (Fig. 2¢), and by that, we can assume that they
are dependent on symbiont presence. We performed a motif
enrichment analysis flowed by GO enrichment of biological
processes (Supplementary Fig. 2). We have found that under
basal conditions, symbiotic morphs top pathways were related to
symbiosis establishment and maintenance (Positive regulation of
transport, modulation by host of genome replication, regulation
of symbiosis). The apo-symbiotic morphs, however, showed
enriched pathways related to organism homeostasis (Positive

regulation of mRNA catabolic process, regulation of sphingolipid
mediated signaling pathway, TRIF-dependent toll-like receptor
signaling pathway).

The regulatory landscape of DNA dynamics during heat-stress.
The analysis of the regulatory DNA landscape under heat-stress
response was mapped displaying genomic sites that change in
response to the rising temperature of both symbiotic and apo-
symbiotic sea anemones. We identified 853 heat responsive sites
in apo-symbiotic Aiptasia, which clustered into five accessibility
patterns (Fig. 3a, b), while 787 heat responsive sites in symbiotic
Aiptasia clustered into four accessibility patterns (Fig. 4a, b).
Between the two morph-types only 331 overlapping sites were
identified varying in response to rising temperature, implying
different response pathways taken by each morph. Moreover,
many sites within the clusters resided in proximity to genes
previously associated with heat response (Figs 3¢ and 4c). For
example, in apo-symbiotic Aiptasia the site overlying the pro-
moter of AP_hsp90.al was identified (Fig. 3¢c), while in symbiotic
Aiptasia, the site overlying the promoter of AP_hspal2a (Heat
Shock Protein Family A (Hsp70) Member 12 A) was recognized
(Fig. 4c). Heat Shock Proteins are molecular chaperones that
regulate protein structure and function during and after stress,
including heat-stress2”-28, To further explore the transcription
factors mediating the response to heat in association to accessible
sites found, we performed motif enrichment analysis among
clusters (Figs 3d and 4d). In apo-symbiotic Aiptasia it was found
that NFAT motifs were enriched within cluster IV sites. In
symbiotic Aiptasia SMAD motifs were enriched within clusters I,
II and III, which cover all temperature ranges of this experiment
(Fig. 4b, d). Further examination of transcription factors
expression with RNA-seq showed that expression levels were
correlated with extended promoter (0-1500bp downstream to
TSS) accessibility of each enriched transcription factors (Fig. 5).
Remarkably, the expression changes of transcription factors were
indicative of the expression profiles in the respective clusters,
further supporting an association of these transcription factors to
the heat stress response.

Functional pathways analysis reveals response to heat-stress.
The canonical pathways enrichment analysis was performed to
identify differences in morph response to heat stress. Thus, we
chose the top pathways (by -log;o (P-value)) enriched for each
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Fig. 2 Genomic features mean distribution across ATAC-seq libraries. a The average percentage. of genomic features of Apo-symbiotic Aiptasia calculated
from replicates from all groups and sampling points (n = 7). b The average percentage of genomic features of symbiotic Aiptasia calculated from replicates
from all groups and sampling points (n = 7). c-f Venn diagrams of overlap of apo-symbiotic Aiptasia (gray) and symbiotic Aiptasia (brown-green) ATAC-

seq peaks at different temperatures

morph and paralleled the results of the two groups (Fig. 6). In the
symbiotic morph, samples were more enriched with pathways
related to oxidative stress such as RAR activation (—log;o
(P-value) >2 at day 21 and day 28), Oxidative stress (—log;o
(P-value) >3.6 at day 21 and day 28), NRF2-mediated Oxidative
Stress Response (—log;o (P-value) >2.46 at day 21 and day 28)
and Genes upregulated in response to oxidative stress (—log;o
(P-value) >3 at day 28). While the apo-symbiotic morph samples
were more enriched with pathways related to immune response
such as TGF-f Signaling (—log;, (P-value) >3.9 at day 21 and day
28), NF-kB signaling (—log;o(P-value) >1.45 at day 21 and day
28) and p53 signaling pathway (—log;, (P-value) >1.69 at day 21
and day 28).

Discussion

Expression patterns of many protein-coding genes are orche-
strated in response to exogenous stimuli, as well as cell-type-
specific developmental programs. It has been shown that dynamic
chromatin movements and interactions in the nucleus play a
crucial role in gene regulation?’. To illuminate the chromatin
dynamic rearrangement in response to rising temperatures with
relation to the presence or absence of the symbiotic algae in A.
pallida, we undertook comprehensive analysis using ATAC-seq
and RNA-seq data obtained from one-month of experiment. The
experiment was designed to subject both apo-symbiotic Aiptasia
and symbiotic Aiptasia to gradually rising temperature as shown
in Supplementary Table 1. On the outside and during the
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Fig. 3 Dynamic chromatin changes during heat-stress in apo-symbiotic Aiptasia. a 853 ATAC-seq sites identified for each temperature were clustered,
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bellow tracks; sites of interest are highlighted in a matching color. d HOMER motif enrichment relative to background within each cluster is represented as

a word cloud

experiment, changes were distinguished in size and morphology
of both morphs types after reaching a temperature of 34 °C and
deteriorated during the following days at the same high tem-
perature as expected?” (these changes are temperature related as
salinity and water quality were kept stable).

To access chromatin level changes, we measured accessible
sites using ATAC-seq. We could identify 36,999-83,061 peaks
with —log(p-value) >5, enabling the prediction of transcription

factors binding sites within the accessible genome and specifically
identifying the sites that changed in response to rising water
temperature. As shown in Fig. 2, regulatory sites, such as pro-
moters and proximal intergenic regions, etc., were more repre-
sented in our data sets relative to their portion within the genome.
Comparison of data peaks between morphs highlighted stark
differences throughout the experiment (Fig. 2c—f), suggesting the
different physiological and metabolic requirements and survival
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strategies used, depend on symbiont presence within the host
tissue. In basal condition the two morphs invest their energy
differently while apo-symbiotic Aiptasia maintains homeostasis,
the symbiotic Aiptasia invest in symbiotic preservation (Supple-
mentary Fig. 2), this starting point farther affects the two morphs
heat response profile. With that observation in mind, we have
found sites that significantly change their accessibility in response
to heat (P-value < 0.05); around 800 sites changed their accessi-
bility throughout the experiment, with only 331 overlapping sites

between morphs (Figs 3 and 4). Those sites were clustered by
patterns (5 clusters for apo-symbiotic morph and 4 clusters for
symbiotic morph) and motif enrichment analysis revealed dif-
ferent motifs associated with each morph and clusters. The low
overlapping rate between the morphs accessible sites means a
different profile response to heat stress. Between the morphs, apo-
symbiotic clusters 5 and 4 (in Fig. 3) present the same pattern as
symbiotic clusters 3 and 4 respectively (in Fig. 4), although dif-
ferent sites and genes participate in those groups. That
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observation is a result of altered transcription factor networks
activated in response to the changing temperature and the pre-
sence (or absence) of the symbiont. Many cnidarians engage in
complex symbiotic associations, comprising the eukaryotic host,
photosynthetic algae, and highly diverse microbial communities;
together referred to as holobiont!8. The two symbiotic morphs of
Aiptasia construct different holobiont relationships where the
major symbiont of the symbiotic Aiptasia is the dinoflagellate
symbiodinium and the apo-symbiotic Aiptasia has its bacterial
and viral flora. This forces the host to respond differently and can
directly affect the individual tolerance potential. Several processes,
including DNA methylation, changes in histone density and
variants, including various histone modifications and chromatin
accessibility, have been described as regulators of various devel-
opmental and defense responses3. In the apo-symbiotic morph,
the NFAT motif was enriched within cluster IV sites. There is
evidence that the NFAT signaling pathway participates in the
regulation of cell survival in different tissues and cell types!.

Apo-symbiotic cluster V was enriched with ATF4 motifs, this
transcription factor is associated with homeostasis in response to
ER stress, and showing higher levels when reaching 34 °C32.
Altogether, transcription factor motifs that were found are also
associated with various immune response pathways (GATA3%3,
SOX14%%, PAX3%). In the symbiotic morph, the production of
reactive oxygen species (ROS) is increased (Fig. 6¢) in both the
host and the symbiont cells in response to elevated tempera-
tures3. This leads to the enrichment of motifs of NKx3-1, SMAD,
HNF4A and IRF4 transcription factors as detected by chromatin
accessibility. These motifs are classified to act in response to
oxidative stress in mammalian cells®’-3%, as previously shown
that SMAD protein family helps in improving mammalian cell
response to oxidative stress*. Motifs that were found in both
morphs are MYB, CAD and two representatives of the paired box
(PAX) family are all important for cell homeostasis. Further
analysis of enriched transcription factor motifs led to a review of
their expression patterns. We identified a correlation between
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expression and accessibility of transcription factors found enri-
ched in clusters. Moreover, we identified resemblance in their
expression/accessibility to their relative cluster pattern showing a
link between those TSs and the observed transcriptional heat-
stress response.

The canonical pathways enrichment analysis using RNA-seq
further strengthened the differences in response to heat we

observed (Fig. 6). Among top canonical pathways, apo-symbiotic
morphs were enriched with immunological response loci such as
TGF-f3 Signaling, NF-kB Signaling, and p53 Signaling. In contrast,
symbiotic sea anemones were more enriched with pathways
related to oxidative stress showing gene upregulation including
RAR activation, NRF2-mediated and other oxidative stress
responses. We concluded that these changes are due to symbiont
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presence and, consequently, the elevation of ROS, while apo-
symbiotic morphs responded to possible changes in microbial
communities. Previously this phenomenon was observed before
as a major cause leading to coral bleaching as reflected by
the decline of Fv/Fm measurements of symbiotic Aiptasia
(Fig. 1b)*142, Finally, stress state triggered by high temperature is
causing different response pathways. This is due to different
secondary stress that is stimulated within the host cell depending
on its symbiotic state. Many studies have shown that heat triggers
increase ROS production by symbiont cells*>44, and for symbiotic
Aiptasia morph the response to it is crucial for cell survival.
However, apo-symbiotic Aiptasia morphs are faced with
increased microbial metabolism that can either help them adapt
to heat or harm their health!845, Based on chromatin dynamics
and the gene expression landscape we have designed a scheme
suggesting the molecular pathways occurring in response to heat-
stress depending on Aiptasia symbiotic state (Fig. 7).

Finally, to our knowledge, this work presents the first analysis
showing the relationship between gene expression and DNA
accessibility by integrating two sequencing methods for a better
understanding of the model organism, Aiptasia, regulatory

landscape. Thus, exposing the regulatory elements that participate
in genome-wide gene regulation, in response to thermal stress
and symbiont presence can serve as an important glance into the
role of the symbiotic algae presence. Our findings are important
for cnidarian and evolutionary investigations as well as a step
towards deepening our understanding of cnidarian epigenetic
adaptive mechanism to climate change in the marine milieu.

Method

Animal culture. Adult Aiptasia pallida were kept in plastic containers filled with
ten liters of artificial seawater at a salinity of 35 ppm, under natural light and a
constant temperature of 24 °C or gradually changing temperature starting at 24 °C
and max temp of 34 °C (temperature rose daily by 0.5 °C). 100 individuals were
kept in each container in a closed water system and fed five times a week with
freshly hatched brine shrimp (Artemia nauplii). To identify the clade present, DNA
was extracted from symbiotic Aiptasia pallida using the DNeasy kit (Qiagene,
Germany) and analyzed by RT-PCR, using a set of four clade-specific primers
(A-D) following published protocols*®. The clade was identified as Breviolum (i.e.,
clade B)24. Photosynthetic efficiencies were measured in anemones with Imaging-
PAM (pulse amplitude modulation; Maxi-PAM, Walz Gmbh, Effeltrich, Germany).
The resulting images were analyzed using the Imaging-Win software program
(v2.00 m,Walz Gmbh, Effeltrich, Germany).
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ATAC-seq nuclear isolation and library preparation. Nuclei were isolated from
adult Aiptasia pallida that were subjected to different temperature treatments.
From each sample, tissue was suspended in 500 pL PBS-NAC 2% (N-acetyl-
cysteine, sigma) by pipetting in a 1.5 mL tube?’. The suspension was centrifuged
at 1500 x g for 5min at 4 °C. The pellet was re-suspended in 500 pL PBS, and
cells were counted using a cytometer. To remove algae contamination, 400,000
Aiptasia cells were centrifuged at 600 x g for 10 min and supernatant was col-
lected, then re-suspended in 500 puL PBS and centrifuged at 1500 x g for 5 min at
4 °C. The pellet was suspended in 50 uL of ATAC-seq lysis buffer (10 mM TRIS-
Cl pH 7.4, 10 mM NaCl, 3 mM MgCl,, 0.1% IGEPAL CA630) and centrifuged at
300 x g for 10 min at 4 °C. The supernatant was collected and kept in a 1.5 mL
tube on ice. The pellet was re-suspended in 50 uL ATAC-seq lysis buffer and
centrifuged at 300 x g for 10 min at 4 °C. The supernatant was combined with the
supernatant from the previous step. Then 9 pL of isolated nuclei were stained
with DAPI to verify the isolation of intact nuclei. The isolated nuclei were then
centrifuged at 1500 x g for 10 min at 4 °C. Immediately following this cen-
trifugation step, the pellet was re-suspended in the transposase reaction mix
(25 pL 2x TD buffer, 2.5 pL transposase (Illumina REF: 15028212) and 22.5 pL
nuclease-free water). The transposition reaction was carried out for 30 min at
37 °C. Directly following transposition, the sample was purified using an Invi-
trogen PureLink PCR purification kit (REF: K310001). Following purification,
library fragments were amplified using 1 x NEBnext PCR master mix (#M0541S)
and 1.25 pM of custom Nextera PCR primers forward and reverse (Supple-
mentary Table 2), using the following PCR conditions: 72 °C for 5 min; 98 °C for
30s; and a variable number of cycles as needed (we added 4-9 cycles) at 98 °C
for 10's, 63 °C for 30 s and 72 °C for 1 min. To reduce GC and size bias in our
PCR, we monitored the PCR reactions using qPCR to stop amplification before
saturation. To do this, we amplified the full libraries for five cycles, after which
we took a 4-puL aliquot of the PCR reaction and added 6 pl of the PCR cocktail
with Sybr Green (Promega, REF: A6001) at a final concentration of 0.6 x. We
ran this reaction for 20 cycles to determine the additional number of cycles
needed for the remaining 46-pl reaction. The libraries were purified using
Agencourt AMPure XP beads (cat. No. 63881) and analyzed on a Tape-Station.

RNA-seq libraries preparation. Apo-symbiotic and symbiotic Aiptasia indivi-
duals were sampled for RNA analysis by snap freezing in liquid nitrogen and were
immediately transferred to —80 °C for storage. RNA was prepared using a com-
bined RNA extraction procedure including Trizol reagent and an RNeasy Mini Kit
(Qiagen)48. Aiptasia tissue was homogenized in Trizol (1 mL per 0.1d) and incu-
bated for 5 min at room temperature. Samples were centrifuged for 10 min at
12,000 x g. Chloroform was added to the supernatant (0.2 mL chloroform per 1mL
Trizol). Samples were centrifuged at 10,000xg for 18 min. Then the aqueous phase
was transferred with an equal volume of 100% RNA-free EtOH to RNeasy mini kit
column. RNA concentrations were determined using a NanoDrop (ND-1000)
spectrophotometer, and the integrity was assessed by Tape-Station.

RNA samples with integrity values (RINs) >9 were used for deep sequencing
analyses. RN Aseq libraries were pooled and prepared from 1.5-ug aliquots of RNA
(n =10 per pool) for each treatment and time point (total of 14 samples), using the
Illumina NEB ultra II RNA Library Preparation Kit v2 kit, according to the
manufacturer’s protocol.

Data analysis. Sequence data of whole Aiptasia ATAC-seq libraries were prepared
using single end 50 bp reads from a single-end (SE) Illumina HiSeq run. Treat-
ments were run on one lane of Illumina HiSeq2000. Sequenced reads were aligned
to the Exaiptasia pallida genome using bowtie?2. Only unique mapped reads were
used. Peaks were called by applying MACS2%%, with the following parameters:

-g 260,000,000-nomodel-extsize 75-shift -30. transcription factor binding motifs
enrichment were identified within the peaks using scripts within HOMER>?:
findMotifsGenome.pl and annotatePeaks.pl were used with default parameters, and
the genome used as background. The raw counts were normalized using DESeq2,
and transcripts with a normalized value larger than 30 were retained. The
sequencing data reported in this study has been deposited to the Sequence Read
Archive (SRA) BioProject, under accession: PRINA518019. To compare chromatin
accessibility with expression patterns, we evaluated a set of ~6000 transcripts that
were found to be differentially expressed. The genes had been sorted into five or
four clusters with similar temporal expression patterns using a K-means clustering
analysis.

Further analysis was performed using the BEDTools suites®! (bedtools
bamtobed, bedtools shift, bedtools merge, bedtools jaccard, bedtools intersect,
bedtools window, bedtools getfasta) with default parameters. GO for biological
processes and gene promoters found within treatment specific peaks were defined,
and were subsequently analyzed for enriched terms using metascape.org? and
Causal variants in this study were identified through the use of Ingenuity® Variant
Analysis™ software https://www.qgiagenbioinformatics.com/products/ingenuity-
variant-analysis from QIAGEN, Inc.

Statistics and reproducibility. Physiology assay results were compared using SPSS
one-way ANOVA with post-hoc Tukey-SDH. RNA-Seq and ATAC-seq results were
analyzed using the R package DEseq2 (v 1.22.2) to detect statistically significantly

changed expression or accessibility respectively of genes/promoters, requiring a
P-value of <0.05 and -log2(fold-change) <—0.6 or —log2(fold-change)>—0.6. heat
maps of all the significantly accessible/expressed genes were generated using the
heatmap.2 function from the R BIOCONDUCTOR package GPLOTS (v2.17.0).
Heatmap.2 was used with the default clustering method and scaling the data by
rows. GO for biological processes and gene promoters found within treatment
specific peaks were defined, and were subsequently analyzed for enriched terms
using metascape.org52 and Causal variants in this study were identified through the
use of Ingenuity® Variant Analysis™ software https://www.qiagenbioinformatics.
com/products/ingenuity-variant-analysis from QIAGEN, Inc.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The sequencing data reported in this study has been deposited to the Sequence Read
Archive (SRA) BioProject, under accession: PRINA518019. Peaks BED and excel files are
available at figshare. Correspondence and requests for materials should be addressed to
the authors.
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