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Abstract: Over the last decades, the prevalence of drug-resistance in Mycobacterium tuberculosis
(Mtb), the causative agent of tuberculosis, has increased. These findings have rekindled interest in
elucidating the unique adaptive molecular and biochemistry physiology of Mycobacterium. The use
of metabolite profiling independently or in combination with other levels of “-omic” analyses has
proven an effective approach to elucidate key physiological/biochemical mechanisms associated with
Mtb throughout infection. The following review discusses the use of metabolite profiling in the study
of tuberculosis, future approaches, and the technical and logistical limitations of the methodology.
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1. Introduction

Mycobacterium tuberculosis (Mtb) is the causative agent for tuberculosis (TB), causing millions
of new infection cases and deaths every year [1]. Since its discovery in 1882 by Robert Koch, many
studies have focused on the understanding of the bacilli as well as the treatment and prevention of TB
infection (Figure 1). In 1921, the first TB vaccine (Mycobacterium bovis Bacillus Calmette-Guérin) was
discovered, followed by the first anti-TB drugs during WWII [2,3]. Nevertheless, almost a century
later, research is still focused on the eradication of the TB epidemic.Microorganisms 2019, 7, x 2 of 10 
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more holistic understanding of the processes involved. Systems Biology as a discipline has evolved 
and aims to decipher relationships between the different facets of cellular regulation. Underpinning 
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Figure 1. Timeline of tuberculosis (TB) from its discovery to treatments, current case numbers and
TB research.

The unique properties of pathogenic mycobacteria provide an advantage over the progression
of the infection and against drugs [4,5]. The most prominent properties are the nonreplicating state
(NRP), during which the bacilli reduce their metabolic activity to enable long-term viability [6,7],
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and the mycobacterial cell envelope, which undergoes structural and functional changes under
oxygen limiting conditions [8]. The lipid layers of the cell wall form a considerable barrier for the
transport of compounds into the cell, preventing drugs from reaching their intracellular targets [7,9,10].
Additionally, the number of mycobacteria developing multidrug-resistance (MDR) to the standard
anti-TB drugs increased rapidly over the last few decades [11]. The cause of resistance is known for
most of these standard drugs and has resulted in renewed interest for alternative drug target sites [12].
Hence, an important component of studies for new TB therapeutics is the detailed understanding of
the metabolism of bacilli across their life cycle [13].

2. Metabolite Profiling a “New” Approach for Drug Discovery

Bacteria are unicellular systems but still have complex cellular regulatory networks that require
analysis at different levels (genome, transcriptome, proteome and metabolome) in order to gain a
more holistic understanding of the processes involved. Systems Biology as a discipline has evolved
and aims to decipher relationships between the different facets of cellular regulation. Underpinning
knowledge, from the understanding of the dynamic behaviour of the system as a whole and interactions
between the cell/pathogen and its environment/host (Figure 2), can be exploited in the design of new
antibiotics [14–16]. Many studies, such as the Mtb genome scale model (GSMN), have highlighted that
metabolic analysis is needed for a comprehensive analysis and to fill gaps in the reactions predicted
from genome annotation [17–19].
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Figure 2. Role of systems biology in understanding key physiological processes of the TB bacilli
and intracellular regulation under adaptation to the environment. Arrows represent interaction of
intracellular regulation molecules (left circle) and changes of metabolites (right circle).

The metabolome comprises small molecular weight molecules (e.g., sugars) as well as components
of larger macromolecules (e.g., amino acids for proteins). Metabolic analysis represents a measure
of these compounds and components involved in cellular regulation [20] and can be divided into
three different types: Chemical fingerprinting (general screen of the metabolome), metabolite profiling
(detailed analysis of a defined group of metabolites) and targeted analysis (accurate analysis of specific
metabolites) [21]. The analytical platforms for all metabolic analysis include chromatography often
coupled to mass spectrometry. To minimise the analytical procedures, the platform applied needs to be
able to analyse metabolites varying in mass and polarity. The more advanced the methods become, the
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easier it is to compare detected features to published metabolite libraries [22–24]. Additionally, the aim
of the study defines on which metabolite class the analytical focus is based (e.g., end-products such
as lipids or metabolites associated with intermediary metabolism) and contributes to the analytical
platform used or utilised [22,25,26].

2.1. Understanding Mtb Properties through Metabolite Studies

The understanding of pathogens comprises the identification of compounds involved in virulence
as well as the elucidation of intracellular changes throughout the infection cycle (Figure 3). The main
compounds related to virulence in Mtb are associated with the cell wall and its remodelling/stabilisation
during the infection of macrophages. The thickening of the cell wall (higher cross-linking of the
peptidoglycan) and modification of cell wall lipids promotes the cell wall rigidity and enables
survival in the hostile granuloma environment with a low oxygen content and an acidic pH [27,28].
Many of these lipids (e.g., sulfolipids and trehalose dimycolates) act as virulence factors and induce
an immune response in the infected tissue [22,29]. Metabolic analysis facilitated discovery of
other cell wall components directly and indirectly involved in virulence. These components are
isopentenyl pyrophosphate (IPP)-derived compounds, such as polyprenol carrier lipids, menaquinone,
isotuberculosinol and carotenoids, and are involved in the transport of saccharides and mycolic acids
for the cell wall, electron transport chain, arrest of phagosomal maturation as well as free radical
scavenging [30–33]. A reduction or even lack of these compounds has been reported to lead to defects
of the lipoglycan biosynthesis and a reduction of virulence [34–37]. In mycobacteria, IPP is produced
via a different pathway to that found in human cells, which presents a valuable exploitable drug
target [38].
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Figure 3. TB infection cycle indicates intracellular changes of the bacilli during the different stages
of the infection. The first adaptations occur during phagocytosis of the bacilli by the macrophages.
The inner environment of the macrophages starts changing, which causes further adaptations of the
bacilli and can include the switch to dormant bacilli. The last adaptation includes the resuscitation
from dormant to active bacilli and the changes during airborne transmission.

Over the course of the infection, a significant reprogramming of transcription in Mtb can be
detected and is primarily influenced by the availability of nutrients and oxygen at each infection
stage [39]. The resulting intracellular changes at these stages included the reduction of metabolic
activity/transcription, the redirection of the carbon flow and the induction of alternative metabolic
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pathways, such as the glyoxylate shunt and methyl citrate cycle [7] (Figure 4). The purpose of this
reprogramming was attributed to the utilisation of alternative carbon sources (e.g., lipids from the host)
and eliminated by-products (e.g., propanoate created during the β-oxidation of odd-number chain fatty
acids and production of triacylglycerides as carbon/energy storage) [40,41]. One key enzyme related to
most of the processes mentioned was identified as isocitrate lyase (ICL) that converts isocitrate and
methyl isocitrate for the alternative TCA cycles [42]. ICL-deficient mycobacteria accumulate precursors
associated with these pathways, which leads to bactericidal enzyme inhibition [43].

The culture conditions mimicked by many studies involve a partially aerated or hypoxic NRP
state, typically designated on the basis of protocols from Wayne and Hayes [44], which documented an
orderly downregulation of the intermediary metabolism, e.g., [27]. Other studies comparing changes
of metabolite levels reported a transcriptional mode of regulation under aerated conditions and a
more complex metabolic regulation in the presence of hypoxic conditions, e.g., [45]. Despite evident
discrepancies about the mode of regulation in previous studies, overall data identified compounds
utilised as storage compounds (e.g., succinic acid, triacylglycerides and poly glutamic acid) and arising
during the immediate response to resuscitation. Most of these compounds accumulate intracellularly,
but some are transported outside the cell, to reduce toxicity and resulting cellular dysfunction [45–47].
The process of resuscitation, which can occur quite suddenly [39], is still poorly understood, as it is
difficult to establish the exogenous factors influencing this process [7].
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Microbiology 2016, 162, 1456–1467. Copyright© 2016 Microbiology Society [45]. Intracellular metabolic
processes are indicated with black arrows and regulation highlighted as up (green) or down (red).

2.2. New Drug Targets and Understanding Drug Resistance Based on Metabolic Studies

Much progress has been achieved in identifying new anti-TB drugs and drug targets. However,
despite the promising results, many drugs against MDR Mtb strains (e.g., d-cycloserine) tend to lead
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to serious side effects in the host [48]. In general, research for anti-TB drugs has been focused on
intracellular targets both under aerobic and hypoxic conditions and on weakening the mycobacterial
cell wall for more drug accessibility. This led to the discovery of metronidazole, which targets DNA in
anaerobe bacteria without antagonistic effects in combination with isoniazid or rifampicin [49]. Other
studies identified methionine synthesis, important for nucleotide and protein synthesis, as a viable
target, as human cells do not synthesize this amino acid [50,51]. The permeability of the cell wall can be
influenced by a diverse range of compounds. Examples are trehalose, a saccharide utilised as backbone
for mycolic acids, and IPP-derived carrier lipids for cell wall components. The latter can be affected by
the inhibition of IPP synthesis through fosmidomycin, a known malaria drug [52,53]. In addition to
the permeability, efflux pumps play an important role in decreasing the concentration and therefore
efficiency of drugs already within the bacterial cell [54]. Metabolite profiling offers a means of assessing
known inhibitor targets, secondary targets and the holistic effects of these drugs/inhibitors on the
metabolome under different conditions. In combination with standardised metabolite profiles for
known well-characterised drugs, metabolomics can also be used to classify new chemical inhibitors
and elucidate their modes of action [55]. Additionally, the metabolic analysis of resistant mycobacteria
can help to understand why the resistance occurs and whether/how it can be circumvented as reviewed
previously [56–58].

3. Advantages and Disadvantages of Metabolite Profiling Studies

3.1. Model Organisms for Mtb

Mtb is logistically difficult to work with due to biosafety risks and slow growth. Hence, suitability of
model organisms has led to intense debates [59–61]. The most common model species are Mycobacterium
smegmatis and M. bovis BCG. M. smegmatis is a fast-growing species and has ~1.7-times larger genome
than Mtb [62,63]. M. smegmatis is nonpathogenic, even though it shares 12 out of 19 virulence gene
homologues found in Mtb. This challenges the adequacy of M. smegmatis for pathogenicity studies [61].
Furthermore, M. smegmatis develops a spore-like shape under oxygen limitation with a cell morphology
different to slow-growing mycobacteria [64]. M. bovis BCG is a slow-grower and closely related to Mtb.
They share ~99.9% of the DNA and, for unknown reasons, M. bovis BCG never regained virulence [4,65].
A comparison of five Mycobacterium species (M. bovis BCG, Mycobacterium avium, Mycobacterium
intracellulare, M. smegmatis and Mycobacterium phlei) with different growth rates and pathogenicity,
showed that: (i) Their only common trait was the metabolic processes related to the cell wall and (ii) the
metabolic changes under aerobic and hypoxic conditions emphasise differences on a genetic level
between fast- and slow-growing mycobacteria [45]. Conclusions from other studies highlighted that
the model Mycobacterium species for Mtb depends on the purpose of the metabolic study, and the use
of phenotypically closer-related species (e.g., M. bovis BCG) is recommended for specialised pathways.
Nevertheless, a metabolic comparison of nonpathogenic and pathogenic mycobacteria might provide
valuable insights into virulence and ‘dormancy’, as the processes involved (e.g., glyoxylate shunt,
central carbon metabolism) often also occur in nonpathogenic mycobacteria [42,59,66]. Metabolomic
studies facilitate chemotyping different/diverse strains and identifying subtle differences in their
steady-state metabolite levels that can eventually be utilised as differentiating biomarkers [42].

3.2. Heterogeneous Cultures

The phenomenon of heterogeneous mycobacterial cultures, comprising active and ‘dormant’
bacilli, bears an obstacle for data interpretation of metabolite profiling [67]. The detected metabolite
changes of the culture/tissue samples contain information for both states which cannot be related to
one single state and, hence, does not give accurate details about the processes involved in transition
between active and ‘dormant’ bacilli. Previous studies implied ‘dormancy’ as a redirection of metabolic
activity under unfavourable growth conditions, e.g., [46]. The renewed growth rate and metabolic
activity, detected after 28 days under aerated and hypoxic conditions, indicate that the process of
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‘dormancy’ does not involve the whole culture [45]. Further analysis of such growth conditions is of
importance for a better understanding of the resuscitation process, which could just reside from a
delayed log phase of very few active bacilli in the culture instead of the assumed complex and sudden
occurrence [7,39].

3.3. In Vitro Versus in Vivo Studies

Metabolite profiling can not only analyse cellular compounds but also the culture composition
affecting the metabolism of the strains. In vitro studies represent a regulated environment with
set parameters mimicking an in vivo study, which includes a far broader range of parameters and
influencing factors, of which many can be potentially unknown. In the case of a Mtb infection, these
parameters include all the stages experienced from active replication in the alveolar macrophages to
dormant cells within granulomas [7]. Hence, an in vitro study mimicking set conditions might be
more helpful, as the first step to elucidate complex processes (e.g., ‘dormant state’ of mycobacteria)
compared to an in vivo study. A main disadvantage of an in vitro study is cell concentration, which is
usually higher in in vitro studies compared to human sputum with 101–105 cells/ml sputum [68,69].

The introduction of metabolomics for TB research led to major advances in diagnostic tools
and the continuous replacement of tradition methods such as sputum smear tests with non-invasive
techniques [70,71]. The increasing number of metabolic studies led to the discovery of new TB
biomarkers (e.g., volatiles and specific lipids) in plasma and urine samples [24,72]. The advancement
of high-resolution metabolomics can distinguish between human and TB metabolites, elucidating the
progression of TB in the human host and the host response [73]. Furthermore, the higher resolution of
the technique facilitates the identification of biomarkers to a high confidence level with the libraries
available [74].

3.4. Limitation to Metabolite Profiling

The metabolome comprises a broad range of compounds that differ in their properties and
dynamic range. A complete study of the whole metabolome would require analysis with different
platforms and techniques such as steady-state levels or fluxomics [23,26,75]. Studies focused on an
overview of the metabolic steady-state levels have shown a strong correlation to the literature and
endorsed the importance of metabolic studies [45]. Hence, it is of great value to integrate recently
acquired results with published data concerning metabolic biology studies as well as those representing
other levels of cellular regulation. This should also include techniques such as electron microscopy to
gain a comprehensive understanding of cell biology and how it is influenced by changes in metabolite
composition [6].

4. Conclusions

The consistent threat of the TB epidemic and the occurrence of resistance to existing antibiotics
challenges the community to better understand Mtb and its infection cycle. Metabolite profiling is a new
tool in this research area that can be used to elucidate key physiological properties of Mtb throughout
infection. To date, the most prevalent studies relate to cell wall metabolism and the production of
storage compounds during ‘dormancy’. The metabolomics platforms now established can be used to
(i) generate characteristic biochemical signatures for specific Mycobacterium strains, (ii) identify specific
developmental stages in their life cycle and (iii) elucidate metabolic adaptation to their environment.
Despite these notable advances, the need for better metabolite annotation and integration with other
“omic” technologies to generate exploitable network models remains.
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