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ABSTRACT: The SARS-CoV-2 main protease (Mpro) is essential
to viral replication and cleaves highly specific substrate sequences,
making it an obvious target for inhibitor design. However, as for
any virus, SARS-CoV-2 is subject to constant neutral drift and
selection pressure, with new Mpro mutations arising over time.
Identification and structural characterization of Mpro variants is
thus critical for robust inhibitor design. Here we report sequence
analysis, structure predictions, and molecular modeling for seventy-
nine Mpro variants, constituting all clinically observed mutations in
this protein as of April 29, 2020. Residue substitution is widely
distributed, with some tendency toward larger and more
hydrophobic residues. Modeling and protein structure network
analysis suggest differences in cohesion and active site flexibility,
revealing patterns in viral evolution that have relevance for drug discovery.

Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) emerged in late 20191 and rapidly spread

worldwide, causing an ongoing pandemic. Although the
sequence of its RNA genome is highly similar to that of
SARS-CoV-1, SARS-CoV-2 is believed to have arisen
independently from a bat coronavirus,2 to which it shares
96% similarity.3 The emerging SARS-CoV-2 subsequently
gained a modified spike protein due to recombination in an
intermediate host, possibly the pangolin,4,5 followed by
purifying selection for binding to the human ACE2 protein.6

No therapeutic agents able to reduce SARS-CoV-2 mortality in
clinical settings are yet known, although extensive efforts are
underway to discover new drugs or repurpose existing ones to
inhibit key viral proteins. Here we focus on the main protease
(Mpro), which plays a critical role in viral replication. Like other
betacoronaviruses, SARS-CoV-2 is a positive-sense RNA virus
that expresses all of its proteins as a single polypeptide chain,
which is cleaved by Mpro and the papain-like protease PLpro to
yield the mature proteins.7

Inhibiting this key enzyme would prevent viral replication,
reducing viral load and thus symptom intensity. A similar
approach was instrumental in making HIV a manageable
disease.8−10 However, the proteins in question differ markedly,
rendering HIV protease inhibitors ineffective against SARS-
CoV-2; indeed, a standard HIV protease inhibitor combination
did not prove effective against COVID-19 in a recent clinical
trial.11 Specifically, HIV protease is an aspartic protease,
whereas Mpro is a 3CL cysteine protease. The 3CL cysteine
proteases are characterized by a chymotrypsin-like fold and a

cysteine-histidine catalytic dyad in the active site, implying
both different structures and distinct chemical mechanisms.
Although the general strategy of seeking protease inhibitors is
hence viable for both SARS-CoV-2 and HIV, drug develop-
ment for the former depends on characterizing this novel
enzyme.
The Mpro sequence and three-dimensional structure are

highly conserved among coronaviruses, with a characteristic
three-domain fold.12 Domains I and II make up the catalytic
region, which has a chymotrypsin-like structure, while domain
III is an α-helical domain that is primarily responsible for
dimerization.13,14 Although a mix of monomers and dimers is
found in solution,15 studies of the SARS-CoV-1 Mpro have
shown that the dimer is the functional state in the mature
protein, whereas the monomer has dramatically reduced trans-
enzymatic activity against the substrate.13 Removing key
residues involved in dimerization by mutation or truncation
of the C-terminus results in lower enzymatic activity
concomitant with an increased population of monomers.16

The N-finger (residues 1−7) is not required for dimerization17

but is necessary for activity, apparently due to highly specific
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interactions between the N-terminus of the inactive monomer
and domains II and III of the active one.18−20 In the G11A
variant, the N-finger is unable to occupy the correct binding
site, leading to dissociation of the dimer, loss of activity, and
collapse of the oxyanion hole that is an essential part of the
substrate-binding pocket.21 The global efforts to document
clinically isolated SARS-CoV-2 sequences since the beginning
of the pandemic provides an opportunity to examine the
impact of mutations on the protein structure and dynamics,
and as more sequences are collected going forward, to discover
which residues and functional features are absolutely
conserved.
Molecular modeling is an important tool for guiding

inhibitor discovery, making it possible to evaluate large
numbers of candidate drugs in silico to select experimental
targets; however, standard approaches screen against only one
version of the protein, typically the reference or wild-type
(WT) sequence. In a host population, mutations accumulate
with each viral passage, generating a mutational landscape
rather than a single protein. The design of robust inhibitors
that can protect against the multiple strains encountered in
clinical settings requires the characterization of this sequence
space and the populations of conformations it engenders.
Furthermore, effective and rapid response to future emerging
coronavirus diseases requires both in silico screening and
experimental testing of antiviral agents and a validated library
of relatively general inhibitors that can be used as a basis for
the development of specialized therapeutics. Central to the
success of that effort will be developing an understanding of
structural and functional variation in SARS-CoV-2 proteins,
particularly as mutations accumulate and new strains emerge.
In general, SARS-CoV-2 is mutating more slowly than would

be expected under neutral drift, suggesting that most of the
genome is subject to purifying selection,22 although this does
not rule out adaptive mutations in specific genes or other
sequence regions.23 Especially with a newly emerged zoonotic
disease, there is no reason to assume that any viral protein is
currently at a global optimum with respect to function, and
function-enhancing variants may appear at any time. For
example, mutation of the SARS-CoV-2 spike protein is a topic
of intense current interest, as its D614G variant appears to
confer enhanced infectivity,24 has spread rapidly through the
global population,25 and correlates with a higher mortality
rate.26 Mpro appears to be relatively tolerant of mutations near
the active site,27 underscoring the importance of mapping the
mutational landscape of active variants so that inhibitors whose
binding depends on highly specific interactions with mutation-
prone residues can be eliminated early in the screening process.
Here we characterize all 79 known variants of Mpro as of 29
April, 2020, and analyze trends in amino acid substitutions and
the resulting structural changes for both monomers and
dimers, using molecular modeling and moiety-level protein
structure network analysis. Our analysis shows a trend toward
substitution for larger and more hydrophobic residues versus
the WT protein. Analysis of active site networks (ASNs) from
Mpro variants suggests differences in active site flexibility and
cohesion that may serve to guide the design of robust,
mutation-resistant inhibitors. Intervariant differences are also
observed among the dimer interfaces, which is another
potential inhibitor target.

■ MATERIALS AND METHODS

Sequence Analysis and Clustering. SARS-CoV-2
genome sequences were found by searching the GISAID
(https://www.gisaid.org/)28 EpiCoV database on May 3,
2020, using the host keyword “human” and a submission
cutoff date of April 29, 2020, yielding a total of 15 432 SARS-
CoV-2 genomes. Genomes outside the range of ±3% reference
(RefSeq: NC 045512.2) length (29 006 bp−30 800 bp
inclusive) or ≥1% N content were removed, leaving 10 644
“high-quality” sequences. Open reading frames in these high-
quality full genomes were compared with a reference Mpro

nucleotide sequence (WT, RefSeq, NC 045512.2; loc, 10 055−
10 972) to extract Mpro sequences of at least 80% similarity
using a script written in Python v3.7.0.29 Genomes with gaps
or ambiguous nucleotides (e.g., N, S, D, per International
Union of Pure and Applied Chemistry (IUPAC) nomencla-
ture30) in the Mpro sequence were excluded from this data set,
leaving a total of 10 578 sequences from high-quality genomes.
Nucleotide sequences were converted into amino acid

sequences and screened for nonsynonymous mutations against
the WT Mpro using code written in Wolfram Mathematica
12.1,31 yielding 511 nonsynonymous mutations in Mpro, 77 of
which were unique. A single unique Mpro variant, found in an
April 24, 2020 data set, but no longer available in the GISAID
database, was also used in our analyses. Mpro variants were used
in phylogenetic analyses along with reference human, bat, and
pangolin viruses. Full genome alignments were performed
using MUSCLE (v3.8.1551, max 8 iterations, enable find
diagonals)32 on the complete set of nonsynonymous Mpro

mutants as well as reference WT, bat, and pangolin sequences.
Trees were generated in MEGA X,33 using the Neighbor-
Joining method;34 a bootstrap test35 of 1000 replicates was
performed, and distances were calculated using the Maximum
Composite Likelihood model.35 In all, 515 full genomes were
used in phylogenetic analyses; 78 unique Mpro mutants and a
reference WT sequence (79 total) were used for molecular
modeling.

Molecular Modeling of Wild-Type and Variant
Protein Structures. Initial conditions for the WT trajectories
used here are based on the PDB structure 6Y2E,36 representing
a mature (i.e., cleaved pro-sequence) protein. For monomer
trajectories, the A chain of 6Y2E was employed. Initial variant
monomer and dimer structures were, respectively, predicted
using MODELLER 9.23,37 using the 6Y2E structure as a
template; three rounds of annealing and MD refinement were
performed using the “slow” optimization level for each (final
objective function values are provided in Table S7). Initial
structures were then processed to correct protonation states to
reflect their predicted cellular environment (with protonation
states predicted using PROPKA 3.138). Each corrected model
structure was then minimized and equilibrated in explicit
solvent; simulations were performed using NAMD39 with the
CHARMM36 force field40 in TIP3P water41 at 310 K under
periodic boundary conditions (with a 10 Å margin water box).
Solvated protein models were energy-minimized for 10 000
iterations before being simulated for 0.5 ns, followed by a
water box size adjustment, after which a 10 ns trajectory was
simulated with conformations being sampled every 20 ps; an
NpT ensemble was used, with temperature controlled via
Langevin dynamics with a damping coefficient of 1/ps and
Nose−́Hoover Langevin piston pressure control set to 1
atm.42,43 Final conformations from each trajectory were used
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to generate figures in the main text and Supporting
Information.
Network Analysis. A protein structure network (PSN) was

calculated for each modeled conformation of each variant via
scripts employing the statnet,44−46 Rpdb,47 and bio3d48

libraries for R.49 Vertices were defined using the method
used in ref 50, where each node represents a chemical moiety,
with edges being defined by interatomic contacts. Specifically,
two nodes i and j are considered adjacent if i contains atom g
and j contains atom h such that the g and h distance is less than
1.1 times the sum of their respective van der Waals radii (using
values from ref 51). The node definitions are illustrated in
Figure S1A, and a small-moiety PSN of this type for WT Mpro

is shown in Figure S1B. Active site networks (ASNs) were
constructed from each PSN as described in ref 52. Briefly, all
vertices belonging to the catalytic Cys and His residues were
identified, along with all vertices adjacent to these vertices
within the PSN. The ASN was then defined as the subgraph of
the corresponding PSN induced by this combined vertex set
(Figure S1C). In the case of dimer models, one ASN was
constructed for each chain.
To assess overall cohesion, degree k-core values53 were

calculated for each vertex in each PSN, and the average core
number was computed for the entire protein and for the
vertices in each domain, respectively. All calculations were
performed using the sna library46 for R. For dimer PSNs,
interfacial moieties were identified by selecting all vertices
adjacent to at least one vertex in the opposing chain, and
average core numbers were computed for these interfacial
vertices to assess cohesion in the dimerization interface; raw
counts of edges spanning the two chains (interfacial tie
volumes) were also calculated. For each vertex associated with
a moiety in the active site, three measures identified as
associated with active site constraint by ref 52 were computed:
the degree, or number of ties to other vertices; the triangle
degree, or number of triangles (3-cliques) to which the vertex
belongs; and core number, or number of the highest degree k-
core54 to which the vertex belongs. Physically, these,
respectively, indicate the total number of contacts associated
with the chemical group (potentially impeding its motion), the
number of truss-like, triangular structures in which the group is
embedded (again, restricting mobility), and the extent of local
cohesion around the chemical group, which is found to
distinguish “tighter” and “looser” packing regimes.55 To
summarize the impact of each measure over the active site as
a whole, values were averaged across active site vertices. As an
additional constraint measure, the number of paths between
each pair of active site vertices through neighboring (i.e.,
nonactive site) vertices was computed, and the log of the
minimum of this value over the set of active site vertex pairs
was employed as a measure of site cohesion. Intuitively, high
values of site cohesion indicate that all active site chemical
groups are connected by a large number of indirect contacts,
while low values suggest that at least one pair of active site
moieties has few local pathways holding them together. These
four indices (mean active site degree, mean active site triangle
degree, mean active site core number, and site cohesion) were
used to produce an omnibus index of site constraint via
principal component analysis (PCA) of the standardized
network measures over all modeled conformations, as
described in ref 52. This first principal component (the
constraint score) accounted for approximately 71% of the
variance in all four measures in the case of monomer ASNs,

and the ratio of its associated eigenvalue to the next largest was
approximately 4.7 (confirming the dominance of the principal
eigenvector). This process was repeated for the dimer ASNs,
resulting in a constraint score vector accounting for
approximately 69% of the total index variance, with an
eigenvalue ratio of approximately 4.3.

Comparing Mean Cohesion and Constraint Scores Across
Variants. Because cohesion and constraint scores are heavily
autocorrelated within trajectories, we employ a parametric
bootstrap strategy to obtain autocorrelation-corrected standard
errors and confidence intervals.56 For each time series of scores
for each trajectory, an autoregressive (AR) model with AIC-
selected order was fit, and the estimated series mean was
obtained (estimation performed by maximum likelihood
estimation using the ar function in R49). The whitened
residuals from the time series model were then used to
construct 5000 parametric bootstrap replicate series, which
were then refit to obtain bootstrap replicate means. Mean
estimates from the bootstrap replicates were used to construct
95% bootstrap confidence intervals and standard errors for the
series mean. This procedure was applied to the MD trajectory
for each variant. For cohesion scores, mean and bootstrap
standard errors are provided for the full protein and each
domain in Table S3.

Kernel PCA of Active Site Networks. To identify key
features differentiating active site conformations observed
throughout the entire sample of trajectories, we employ a
kernelized principal component analysis (kernel PCA57) of a
stratified sample of monomer and dimer ASNs from all Mpro

variants. The ASN sample consists of 25 evenly spaced
conformations from each trajectory (monomer, dimer A chain,
and dimer B chain), for a total of 5925 networks. For
comparative purposes, each ASN was mapped to the set of all
unique vertices appearing in any ASN in the sample, and the
upper triangle of the associated adjacency matrix was
vectorized, yielding a binary vector of fixed dimension
encoding each network. Analysis of the vectorized ASNs was
performed using a disjunctive normal form (DNF) kernel,58

defined by

= + ϵ −k x y( , ) (1 ) 1x yT

where x and y are respective ASN vectors, and ϵ is a free
parameter controlling regularization. In a graph-theoretic
context, the feature space of the DNF kernel consists of the
set of all labeled subgraphs of the inputs; thus, kernel PCA on
this space identifies combinations of labeled subgraphs that
efficiently discriminate among ASNs. Hyperparameter tuning
was performed via grid search, with the performance assessed
by reconstruction of a held-out sample of 100 randomly
selected ASNs, following training on a separate sample of 1000
ASNs. Reconstruction was performed using the preimage
method from ref 59 with a local sample of 10 neighbors; the
optimal hyperparameter obtained was ϵ = 0.0739. Following
hyperparameter tuning, principal component scores were
calculated for use in subsequent analysis. Analyses were
performed using R49 with portions implemented using Rcpp.60

■ RESULTS AND DISCUSSION
Mutations in Mpro Are Geographically Distributed.

From the GISAID (https://www.gisaid.org/)28 EpiCoV data-
base (through April 29, 2020), 78 unique nonsynonymous
mutations to Mpro were found in addition to the WT sequence,
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including 73 single point variants and 5 double variants. For
genome sequences containing these Mpro variants, full genome
alignments were performed using MUSCLE,32 and neighbor-
joining trees were generated using MEGA X.33 Overall, the
variation in SARS-CoV-2 sequences observed so far is
relatively low, with mutation hotspots not evenly distributed
throughout the genome, but localized to specific sequence
regions.61 Because Mpro is critical for viral replication,
mutations that have a large deleterious effect on virus
replication are unlikely to be observed in clinical isolates; all
Mpro variants investigated here are therefore assumed to be
enzymatically competent. In general, codon usage and amino
acid frequency in viruses of eukaryotes are essentially identical
to those of their eukaryotic hosts, reflecting the viruses’ use of
the host translation machinery.62

The known mutations in Mpro are summarized in Figure 1.
The tree was generated based on overall genome similarity;
however, only sequences containing at least one non-
synonymous mutation in Mpro were included in the analysis,
along with the WT human sequence and two nonhuman
reference sequences. The accession numbers and geographical
sources are listed in Table S1. The solid arcs around the
outside of the diagram indicate Mpro mutations; color coding
corresponds to the geographical source. Several mutations
appear to have arisen more than once in the virus’s
evolutionary history so far. Notably, K90R variants appear in
multiple distantly related subtrees; five of these unique
evolutionary events can be verified in Nextstrain’s SARS-
CoV-2 phylogenetic tree.63 Further, L89F, P108S, and N274D
arise at least twice in both trees.

Figure 1. Optimal tree generated using 512 full mutant genomes and three reference genomes: human wild-type (WT),64 bat,3 and pangolin.65

Only topology is shown; branch lengths are not to scale (average branch length = 1.432161 × 10−4 base substitutions per site). Each continuous arc
corresponds to a variant label; these represent only adjacent branches with the same mutation in Mpro and do not necessarily indicate shared
ancestry. Branches and arcs from human clinical samples are color coded by location, which includes the following subregions: Africa, light blue
(Democratic Republic of the Congo); Asia, green (Beijing, Fujian, Malaysia, Shanghai, Vietnam, and Wuhan); Australia, gold; Central Eurasia, pink
(Georgia, Jordan, Russia, and Turkey); Europe, red (Belgium, Denmark, England, Finland, France, Germany, Iceland, Luxembourg, Netherlands,
Scotland, Spain, Sweden, Switzerland, and Wales); North America, purple (Costa Rica and United States of America); South America, yellow
(Argentina and Brazil). Subtrees that contained identical subregions and mutations have been condensed into a single branch; all subtrees and their
constituent accessions can be found in Table S1.
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These phylogenetic comparisons appear to support a
multiple event hypothesis but are subject to errors resulting
from the sparsity of testing. The repeated occurrence of the
same mutation in seemingly unrelated subtrees may be due to
missing data that would show their evolutionary connected-
ness. The average branch length of Figure 1, which shows only
topology, is 1.432161 × 10−4 base substitutions per site
(including those from the bat3 and pangolin65); 32.2% of the
1028 branches have, to ten significant figures, 0 base
substitutions per site. For a genome of roughly 30 000 base
pairs, this amounts to an average of only 4 substitutions per
branch. All of these unique mutants therefore effectively
belong to the same strain, making them difficult to place in an
evolutionary context. For more diverged mutants, unfortu-
nately placed ambiguous nucleotides30 could push them from
one subtree to another. With the exception of five double
variants, the sequences in Figure 1 arise from single point
mutations. Whether and how Mpro mutations have affected
viral fitness is not yet known, but at least three mutants have
remained in the population long enough to accumulate another
mutation: L220F to A191V/L220F, G15S to G15S/D48E and
G15S/V35L, and K90R to V77A/K90R. It is worth noting,
that although a single variant A191V exists, the A191V/L220F
double variant likely stemmed from an L220F ancestor due to
its shared lineage with L220F single variants. A fifth double
variant, A193T/R279C, was found but did not stem from any
single mutation in our data set; its origins remain unclear.
Although a mutation’s prevalence and evolution in a

population may be interpreted as a sign of robust viral
function, the opposite does not necessarily indicate reduced
infectivity. Testing rates, social behavior, and time of first
infection in each region are all factors that contribute to the
spread of the disease and the availability of sequencing data.
For instance, a large number of K90R mutants were collected
in Iceland, where the number of tests per 1000 people is nearly
twice as many as the next leading country’s and more than
seven times as many as the United States’ (Iceland, 141.75;
USA, 18.21, as of April 29, 2020).66 Consequently, further
investigation is needed to determine whether Mpro mutations
affect viral fitness on a global scale. As such, without greater
divergence and more sequences, it is difficult to tell if the
presence of an Mpro mutation in unrelated subtrees is evidence
of multiple evolutionary events, or an artifact of sparse testing.
Despite these caveats, it is clear that these 78 variants are
functional enough to infect people within their local
populations. In the structural analyses that follow, we focus
on the differences in protein properties of the clinically
observed Mpro variants relative to WT.
Because only sequences harboring Mpro mutations were

retained for analysis, certain geographical areas appear to be
underrepresented. It is likely that the strains that had spread to
underrepresented regions prior to our data collection simply
did not have Mpro mutations. Different regions tend to be
dominated by different mutants, a feature that might be
explained by the timing at which these mutations arose or
arrived. For instance, 83 of the 100 Mpro mutants from Iceland
were K90R, and most stemmed from a single shared ancestor
(see Supporting Information). Further, it is likely that
heterogeneity in sequencing rates have resulted in a less-
than-complete data set. As of April 29th, the only North
American, South American, and African Mpro mutants reported
in the GISAID database that passed our filtering parameters
were from Costa Rica and the USA, Argentina and Brazil, and

the DRC respectively. This does not necessarily indicate a lack
of Mpro mutations in other subregions and may instead reflect
differences in sequencing rates.
It is worth noting that some nodes in expanded Figure 1 (see

Supporting Information) exhibit bootstrap values less than 10
(i.e., their branch relationships were shown in fewer than 10%
of replicates). The majority of these extremely low values can
be found on large subtrees that share an Mpro mutation, like
D248E or K90R, many of which likely spread from a common
source. Their branches can often be interchanged with no
reduction in accuracy due to high sequence identity. Low
bootstrap values here primarily reflect genotype similarity
within subtrees rather than low accuracy. This is a known
property of the Felsenstein procedure,35 which bootstraps loci
instead of sequences; low bootstrap values indicate groupings
that are sensitively dependent upon differences in small
numbers of loci but do not necessarily reflect uncertainty
due to sequence sampling.

Mpro Mutations to Date Suggest Selection for Larger,
More Massive, and More Hydrophobic Residues. To
reveal the global pattern of substitutions, we visualize
mutations in Mpro independent of sequence position or
location in the three-dimensional structure, by a network
where the nodes, or vertices, are amino acid types and the
edges (represented by arrows pointing in the direction of
substitution) are directional indicators of how often one amino
acid was observed to substitute for another (Figure 2). The

weights of the edges indicate the frequency of the mutation
across known Mpro variants, while node color reflects residue
hydrophobicity on the scale of Kyte and Doolittle.67 The most
obvious trend observed in the pattern of mutation so far is the
preferential substitution of larger, more hydrophobic amino
acids in place of smaller, less hydrophobic ones. The pattern is
consistent with increased incidence of amino acid types that

Figure 2. Amino acid substitutions in SARS-CoV-2 Mpro observed up
to April 29, 2020. Arrows indicate the direction of substitution: an
arrow from i to j indicates at least one clinically observed substitution
of residue type i to residue type j; heavier lines indicate larger
numbers of observed substitutions. Color indicates hydrophobicity,
using the scale of Kyte and Doolittle.67 In general, substitution has
been toward larger and more hydrophobic residues.
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are more likely to be present in folded domains rather than
those found more often in less-structured linker regions.68

In particular, it is notable that alanine has very few incoming
ties and a large number of outgoing ties, mostly to valine,
which has a larger and more hydrophobic side chain. Alanine is
at the same time one of the most common amino acids and
one of those with the most variable prevalence in the human
genome.69 Similarly, observed ties to isoleucine are mostly
incoming from smaller residues; leucine likewise has more
incoming than outgoing ties, with the bulk of its outgoing ties
going to phenylalanine, which is also large and hydrophobic.
However, aromatic residues per se do not appear to be
selected. For example, tyrosine has mostly outgoing ties. Also
notable are the selection away from the secondary structure
breakers proline and glycine, both of which have only outgoing
ties, and the propensity for lysine to be replaced by arginine
even though both side chains are positively charged. Arginine
is both larger and capable of making more and stronger
hydrogen bonds, as well as cation-π interactions not available
to lysine, leading to its known overrepresentation in
interdomain and intermonomer interfaces.70−73

The mean differences in side chain properties for observed
Mpro mutations are summarized in Table 1. As observed in the

network representation (Figure 2), on average, the mutated
residues are larger and more hydrophobic than the ones they
replace. Although substituted residues are on average larger
and more massive, we do not see strong evidence favoring
bulky residues over more compact ones, independent of mass:
residue bulk (measured as volume/mass) for substituted
residues did not differ significantly from WT (mean difference
= 0.02 Å3/Da, t = 1.87, p = 0.0650). The variant sequences are
not significantly different from WT in charge or aromatic
content.
Mpro Mutations Occur Throughout the Protein. In

order to provide context for the discussion of conformational
changes and the locations of mutation sites, a ribbon diagram
of the SARS-CoV-2 Mpro monomer is shown in Figure 3A. The
three domains, the active site residues, and other structural
features are labeled. The dimer is shown in Figure 3B; the
dashed box shows the approximate location of the interchain
salt bridge shown in Figure 3C. In SARS-CoV-1 Mpro, this salt
bridge between Arg4 of Chain A and Glu290 of Chain B is an
important component of the dimer interface,74 and sub-
stitution of either or both of these residues with alanine
resulted in shifting the equilibrium from dimer to monomer,

although dimerization was not abolished completely.14 Panels
D and E show two different views of the dimer interface, with
key residues labeled. In addition to important interfacial
residues, we also highlight key residues near the oxyanion hole,
a structural feature found in many serine and cysteine
proteases that stabilizes negatively charged, tetrahedral
transition states.75

In SARS-CoV-2 Mpro, several interactions at or near the
dimer interface play a role in keeping the oxyanion hole in the
active conformation. An intrachain hydrogen bond between
the side chain NH2 of Arg298 and the backbone carbonyl of
Met6 appears to help hold the N-terminus (also called the N-
finger) in place to make the appropriate contacts with the
other chain.76 In the S1 specificity pocket, a ring-stacking
interaction between the side chains of His163 and Phe140 is
stabilized by a network of hydrogen bonds comprising residues
from both monomers. Hydrogen bonding interactions between
Glu166 and Ser139 of Chain A with the N-terminus of Chain
B (Ser1) are also important for stabilizing the dimer interface,
along with interactions between the Ser10 residues of both
chains. Mutating the adjacent Gly11 to Ala completely
abolishes dimerization due to a dramatic conformational
change to the N-finger that causes disruption of the interface.21

Although the mutational studies discussed here were
performed using SARS-CoV-1 Mpro, many of the key residues
are also found in SARS-CoV-2 Mpro, and we hypothesize that
they play similar roles.
Figure 4A shows the Mpro dimer with mutation sites

indicated by spheres. The mutations observed so far are
relatively evenly distributed throughout the protein. Notably,
mutations are tolerated close to the active site residues, near
the oxyanion hole, and at the termini, both of which are
involved in modulating the dimer conformation.17 Two
different views of the dimer interface are shown in Figure
4B, with interfacial residues shown as space-filling models and
with mutated residues highlighted in light blue (Chain A) or
dark blue (Chain B). Despite the importance of the dimer
interface, several mutations are observed in this region: M6L,
A7V, A116V, S121L, C300S, S301L, and G302C. Particularly
notable are M6L and A7V, which are part of the N-finger that
participates in interactions with the C-terminal domain of the
second monomer. In both cases, the hydrophobic character of
the residue is preserved, with a slight increase in the size of the
residue. With the exception of A116V, the other mutations
represent qualitative changes in side chain properties. These
changes in chemical properties are apparently well tolerated, as
all of these mutations were found in clinical isolates.

Molecular Modeling Suggests Regionally Specific
Differences in Mpro Variant Structure. For WT Mpro and
each variant, molecular models of the monomer and dimer
structures were constructed using MODELLER 9.23,37 based
on PDB structure 6Y2E,36 followed by annealing, correction of
protonation states, and all-atom molecular dynamics simu-
lation in explicit solvent (see Materials and Methods).
Examples of representative models are shown in Figure S2,
intramolecular contacts for residue 225 in WT and the T225I
variant are shown in Figure S3 and listed in Table S2, and
selected double mutants are shown in Figure S4. The positions
of all observed K to R and R to C mutations, which are
commonly observed in interfaces, are shown in Figure S5. In
Mpro, two such mutations, K236R and R279C, are located in
domain III, near the dimer interface. The positions of all
mutated residues are mapped onto the WT structure in Figure

Table 1. Mean Differences in Side Chain Properties for
Substituted Residues versus WT (N = 83; Substitutions
from Double Mutants Considered Separately)a

mean difference std error t value p value

polar (1 = true) 0.08 0.07 1.22 0.2251
hydrophobicity 1.03 0.30 3.47 0.0008d

charge −0.05 0.04 −1.27 0.2078
aromatic (1 = true) 0.07 0.04 1.62 0.1093
mass (Da) 9.97 3.49 2.85 0.0055c

volume (Å3) 11.58 3.65 3.17 0.0021c

bulk (Å3/Da) 0.02 0.01 1.87 0.0650
aOn average, substituted residues are significantly more hydrophobic,
more massive, and larger in volume than those they replace (all p
values for two-tailed t-tests versus no difference). bP < 0.05 cP < 0.01
dP < 0.001
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S6, with color coding indicating the change (if any) in side
chain chemical properties. We do not observe gross differences
in structure or dynamics across variants, as expected given that
all variants were found in clinical isolates and are therefore
necessarily functional; mutations leading to radically altered or
misfolded structures would likely be strongly selected against.
However, analysis of MD trajectories does suggest more subtle
differences across variants, providing insight into function-
preserving changes.
To assess the overall degree to which local structure is

conserved across Mpro variants, we compute the cross-variant
variance in average ϕ,ψ backbone torsion angles by residue
within free monomers. In order to control for overall flexibility,
we normalize this by the estimated variance in torsion angles
within each trajectory. For arbitrary angle αi at residue i, this
leads to the local variation index

α
α
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∑ =
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N j
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ij
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where αij is the vector of angles of type αi over the trajectory of
variant j with corresponding angular mean αij, αi is the vector
of such means across variants, VarB is the “between variant”
angular variance in mean angles, and VarW is the “within
variant” angular variance in αij. Intuitively, high values of v(αi)
indicate relatively large between-variant variation in αi relative
to angular variation seen within the trajectories themselves. For
v(ϕi) and v(ψi), such values correspond to systematic changes

in local conformation associated with Mpro mutations. By turns,
low values of v(ϕi) and v(ψi) indicate residues whose local
structure does not vary meaningfully across variants. It should
be noted that such regions can be either flexible or rigid.
Figure 5 shows the mean local variation indices for ϕ,ψ by

the residue for the 79 Mpro variants, indicated by color on the
structure of Mpro WT. (Separate values for ϕ and ψ are shown
in Figure S7.) It is immediately noteworthy that, with the
minor exception of two small loop regions around N277 and
F223 (respectively), Domain III shows little systematic
variation across variants. The β-sheet-rich structure around
the active site is also relatively well-conserved. By contrast, we
see relatively high levels of between-variant difference in the
interdomain region involving the termini (residues G2-A7 and
S301−F305) and the double loop “active site gateway” region
involving (respectively) L50-Y54 and D187-A191. The former
is potentially significant in influencing large-scale flexibility
(possibly relevant to dimerization), whereas the latter is of
obvious relevance to substrate processing and specificity. This
motivates a more detailed examination of variation in the
active site, to which we return below.
The relatively high levels of conformational variation in the

interdomain regions suggest functionally relevant differences in
global cohesion across variants. To assess this, we employ
protein structure networks (PSNs), which are well-suited for
assessing the looseness or cohesiveness of contacts among
chemical groups.

Figure 3. (A) Ribbon diagram for the Mpro monomer, with key structural features labeled, including the three domains, the N- and C-termini, and
the active site residues, H41 and C145. (B) Ribbon diagram for the Mpro dimer, with separate chains shown in light gray and black. The N- and C-
termini, both of which mediate interactions at the dimer interface, are labeled for each monomer. The dashed square shows the approximate
location of the salt bridge shown in panel C. (C) A salt bridge between Arg4 of one monomer and Glu290 of the other is shown. This salt bridge is
hypothesized to be important for stabilizing the dimer interface and maintaining the active conformation. (D, E) The dimer interface is shown from
two different angles, with key residues labeled.
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For all Mpro variants, moiety-level PSNs were constructed for
each frame within each variant trajectory, using the definitions
found in ref 50 (Figure S1) The assessment of global cohesion
was performed by computing the mean degree k-core number
for all moieties in each structure; to allow comparison of global
cohesion within domains, we also compute mean core
numbers within each of the three domains. The mean core

number can be considered an index of structural cohesion, with
higher values indicating greater numbers of redundant contacts
among chemical groups.55 To account for within-trajectory
autocorrelation in comparing mean core numbers, autocorre-
lation-corrected parametric bootstrap confidence intervals and
standard errors were employed.
Figure 6 shows global and domain-specific cohesion levels

(i.e., mean core numbers) for all variant monomers, sorted in
descending order of mean cohesion. Means and standard
errors for each variant can be found in Table S3. As suggested
from the torsion angle analysis, cohesion differs significantly
among variants, both globally and within domains. On average,
the majority of variants are estimated to be less cohesively
structured than WT, with the exception of Domain III (in
which WT does not differ significantly from the mean). It is
possible that these differences indicate selection for more
globally flexible structures (again, with the exception of
Domain III). Whether or not this is the case, however, it
appears clear that less cohesive structures are not strongly
selected against. Such flexibility may affect dimerization
kinetics, which is relevant to protease function and the
development of robust dimerization inhibitors.
While cohesion and flexibility within Mpro monomers may

provide clues to how mutations may impact dimerization,
examination of the interfacial region within Mpro dimers
suggests indications of the impact of mutations on the behavior
and stability of the dimers themselves. Figure 7A shows mean
cohesion scores (i.e., mean degree k-core numbers) for
interfacial moieties in dimer trajectories for all Mpro variants,
together with autocorrelation-corrected 95% bootstrap con-
fidence intervals; values are also provided in Table S4. (We
here define a moiety to be interfacial if it is adjacent to at least

Figure 4. (A) Ribbon diagram for the Mpro dimer, with separate chains shown in light gray/light blue and purple/dark blue. The locations of all
observed mutations are indicated by spheres centered on the α-carbons. (B) Two different views of the dimer are shown, with all residues at the
dimer interface rendered as space-filling models, providing a visualization of the size of the dimer interface and its spatial relationship to the active
site residues (blue, His41; yellow, Cys145) Residues having at least one mutation in this data set are highlighted in light blue (Chain A) or dark
blue (Chain B.).

Figure 5. Local variation indices for Mpro monomer backbone torsion
angles (front/back views). Blue residues show higher levels of cross-
variant ϕ,ψ differences relative to baseline variation; red residues show
little evidence of structural difference across variants. Domain III is
substantially conserved, while greater change is seen in the
interdomain regions and loop regions adjacent to the active site.
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one chemical group in the opposite chain (Figure 7C). This is
assessed on a frame-by-frame basis, allowing us to account for
changes in contact patterns within trajectories.) Although there
is some variation in interfacial cohesion, relatively few
trajectories differ significantly from the mean cohesion level,
and very few are two standard errors away from wild-type (12
being more cohesive and 1 being less cohesive). This is
consistent with the hypothesis that interfacial cohesion is
strongly conserved in Mpro, suggesting that a looser or more
dynamic dimer core may impede function. (The fact that, of
those variants differing significantly from WT, all but one show
greater cohesion is also consistent with this determination,
albeit not determinative.)
For a different look at interaction across the interfacial

region, we also consider the total number of contacts between
the A and B chains over time (the tie volume across the dimer
interface, e.g., the interfacial ties in Figure 7D). Figure 7B
shows mean dimer interface tie volumes and associated
confidence intervals for the Mpro variants, with variants sorted
in the order of the mean core number to facilitate comparison
(panel A). Whereas the mean core number provides a
measurement of overall structural cohesion at the interface
(including both interactions within and between chains), the
tie volume directly measures the number of cross-chain
contacts and is thus a potential proxy for interaction strength.
As with cohesion, tie volume is fairly well-conserved, and few
trajectories show significant deviation from wild-type (with
seven trajectories having higher tie volume than WT, and two
lower). Interestingly, interfacial tie volume is not strongly

related to interfacial cohesion, indicating that the tightness or
looseness of the structure around the interface is not simply a
function of the raw number of interfacial contacts. Both,
however, suggest a relatively high level of conservation in
interfacial structure in the Mpro dimer across variants observed
to date. While the first version of this work, which addressed
moiety-level networks of Mpro monomers77 was under review, a
preprint78 was released, showing similar results using residue-
level network analysis on MD trajectories of Mpro dimers, and
subsequently published.79 Although different methodology is
used, the conclusions are in broad agreement, with significant
flexibility observed in the N-finger region that is important for
dimerization, as well as the loops near the active site. The
authors also describe key low-frequency motions of the dimer
that may be impacted by mutation and identify a pocket near
the dimer interface that could serve as a potential target for
allosteric inhibitors, underscoring the importance of mutational
analysis as a part of effective inhibitor design. Moiety-level
network analysis of Mpro dimers was then added to this paper
in response to reviewers’ comments, again finding substantial
agreement with the residue-level results.78

Active Site Networks Suggest Potential Activity
Differences across Mpro Variants. The observation of
structural variation in loop regions associated with the binding
pocket motivates closer examination of variation in the Mpro

active site. To this end, subgraphs of the full protein structure
networks comprising moieties belonging to the active site
residues and their neighbors were constructed to produce
active site networks (ASNs)52 for all conformations. A

Figure 6.Mean core numbers for Mpro monomer PSNs, by variant (ordering is by mean value in each panel). Points indicate trajectory means, with
segments showing autocorrelation-corrected 95% bootstrap confidence intervals; red/blue intervals have t values versus WT (green) of at least ±2,
indicating significant variation in structural cohesion across variants. Overall, the majority of variants are less cohesive than WT globally and in
Domains I and II, while Domain III cohesion in WT is typical of the variant set.
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protein’s ASN describes physical interactions among active site
moieties and other groups that are immediately adjacent in the
3D structure, irrespective of their positions in the amino acid
sequence. Per ref 52, we compute for each ASN a constraint
score, a general measure of active site flexibility that is
associated with substrate specificity. The constraint score is the
first principal component of a set of several network metrics
(see Materials and Methods), with higher values indicating a
greater tendency for the catalytic residues to be constrained by
cohesive contacts with other residues, and lower values
indicating fewer such constraints. Examples of ASNs
corresponding to the maximum, minimum, and mean observed
constraint values over all observed Mpro monomer conforma-
tions are shown in Figure 8. For the dimer structures, we
repeat this process for the active site in each chain, yielding
two constraint values per variant; these scores, along with
corresponding maximum, mean, and minimum constraint

ASNs, are shown in Figure 9. Values for both monomers
and dimers are also provided in Tables S5 and S6.
Examination of the mean constraint scores for each variant

trajectory suggests potential activity differences across Mpro

variants. Figure 8A shows mean constraint scores for each
variant monomer, with autocorrelation-corrected parametric
bootstrap confidence intervals. Of the 79 trajectories examined,
22 (28%) were significantly below the grand mean (dotted
vertical line) and 28 (35%) were significantly above it;
similarly, when directly compared to WT, 12 variants were
observed to be significantly less constrained, while 17 were
significantly more constrained (i.e., bootstrap t-scores less than
−2 or greater than 2, respectively). A total of 43 out of 79 Mpro

sequences (55%) showed nominally higher levels of mean
constraint than WT (discounting significance), suggesting a
lack of uniform selection pressure for active sites that are more
or less constrained than WT (the fraction greater does not
differ significantly from random deviation, p = 0.16, exact

Figure 7. (A) Mean core number for moieties at the dimer interface across all variants, with 95% autocorelation-corected bootstrap confidence
intervals. Higher values indicate a higher core number (greater cohesion); variants indicated in red/blue have significant variation in core number
relative to WT (green). The vertical dotted line indicates grand mean. (B) Mean tie volume across the dimer interface, ordered per panel A.
Variants indicated in red/blue have significantly lower/higher tie volumes across the interface relative to WT (green). (C) Illustrative moiety-level
PSN for the WT Mpro dimer. Moieties associated with chains A and B are indicated in gray and dark purple, respectively. Moieties making up the
interfacial residues for chains A and B are indicated in light gray and light purple, respectively. Also shown are moieties associated with the active
site His (blue) and Cys (yellow.) (D) Induced subgraph of the PSN in panel C based on interfacial moieties. Interfacial tie volume is the count of
ties from A (gray) to B (purple) interfacial nodes, while embeddedness in locally cohesive structures contributes to the mean k-core number.
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binomial test). Thus, although we do not see evidence here of
systematic selection for net changes in active site constraint in
the monomeric state, we do see evidence that variants differ
from each other and from WT in their average active site
properties. Turning to the dimer trajectories, Figure 9A shows
mean constraint scores for A and B chain active sites, with
autocorrelation-corrected parametric bootstrap confidence
intervals for each variant. Consistent with the hypothesis that
dimerization can result in asymmetric modification of active
site conformations,20 we frequently observe large differences in
the active site constraint between chains within the same
variant; indeed, the root-mean-square difference in mean
constraints within the variant is significantly larger than would
be expected from the variation across sites alone (p = 0.048,
permutation test), being approximately 1.65 times the standard
deviation in mean constraint across variants. That said, such
differentiation is not always present, with many trajectories
(including WT) showing similar levels of constraint for both
active sites, and it may not be necessary for function. (We
observe that symmetric active site conformations were
obtained in the WT dimer structure of Zhang et al.,36 for
instance.) Unlike the monomeric case, we see a greater trend
here toward reduction in dimer active constraint scores versus

WT, with 76% of sequences showing constraint levels lower
than WT (p < 0.0001, exact binomial test). It is possible that
this reflects a higher level of selection for looser active sites in
the dimeric state per se. These differences should be
considered when designing inhibitors that are tolerant of
mutational change in Mpro over time. In particular, it is clear
that the population of extant Mpro variants already possesses
some phenotypic diversity in active site flexibility, potentially
facilitating its ability to evolve around some types of inhibitors.
The ability of Mpro dimers to sustain active sites with different
levels of flexibility may also complicate inhibitor design and
suggests the importance of inhibitors that are robust to
variation in active site constraint.

Overall Variation in Mpro Active Site Conformations Is
Related to Cys/His Contact. Given the diversity of active
site conformations across monomeric/dimeric states, variants,
and chains, it is useful to seek specific features that can be used
to characterize those conformations. To examine this, we
employ a kernel principal component analysis (kPCA) of a
stratified sample of ASNs from the set of monomer and dimer
trajectories, taking 25 evenly spaced frames from each
trajectory (including both A and B ASNs in the dimeric
case) for a total of 5925 conformations from the entire data

Figure 8. (A) Mean monomer active site constraint scores and 95% autocorrelation-corrected parametric bootstrap confidence intervals, by variant.
Higher values indicate greater constraints on active site residues; red/blue intervals have t values versus WT (green) of at least ±2, indicating
significant variation in average constraint across variants. (B) Minimum, (C) mean, and (D) maximum constraint ASNs over all frames. Low
constraint conformations are characterized by no shared partners between the catalytic residues (colored nodes), while highly constrained
conformations show cohesively reinforced contacts between them. (E, F, G) Active site residues and the surrounding residues making up the ASN
for the proteins described in panels B, C, and D, respectively. (H, I, J) Full protein models for the same examples, with the active site regions
indicated by white boxes.
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set. The feature space for our kernel is the set of all labeled
subgraphs on the set of potential ASNs, allowing us to detect
specific patterns of contacts among moieties that characterize
subpopulations of conformations. As shown in Figure 10, the
combined set of active site conformations falls into two fairly
distinct clusters obliquely aligned with the first two principal
components. These respective clusters correspond to a single
feature, specifically the presence or absence of at least one
contact between the catalytic cysteine and histidine residues;
the cluster aligned with the first principal component consists
of “open” conformations lacking such a contact, while the
cluster aligned with the second principal component consists
of “closed” conformations in which the contact is present.
Both clusters have an ellipsoidal form, with distance along

the ellipsoids away from the origin corresponding to the
average number of contacts per chemical group (mean degree).
The cluster ellipsoids are also slightly oblique to one another,

an orientation that arises from their joint respective correlation
with the total number of moieties interacting with the active
site residues (ASN size); this is shown in Figure 10 via the
gradient of the size distribution, indicated as contour lines.
These three properties (Cys/His contact, mean degree, ASN
size) thus provide a parsimonious description of the most
important axes of variation in active site structure and may be
useful as targets for experimental investigation (e.g., via NMR).
Interestingly, we observe very little association between
conformation and monomer/dimer status (R2 < 0.6% on the
first PC, and no significant difference on the second-highest R2

in the first 10 dimensions of 1.4%), indicating that the full
range of active site conformations is observed in both
monomer and dimer structures and at similar frequencies.
Conformation is more strongly associated with the variant, the
latter accounting for approximately 14% of the variance in the
first PC and 7% in the second; adding interaction effects with

Figure 9. (A) Mean active site constraint scores and 95% autocorrelation-corrected parametric bootstrap confidence intervals for dimer A and B
chain active sites, by variant. Red/blue intervals have t values versus WT (green) of at least ±2, indicating significant variation in average constraint
across variants (comparisons made within the chain). (B) Minimum, (C) mean, and (D) maximum constraint ASNs over all structures. (E, F, G)
Active site residues and the surrounding residues making up the ASN for the proteins described in panels B, C, and D, respectively. (H, I, J) Full
protein models for the same examples, with the active site regions indicated by white boxes.
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chain and monomer/dimer status increases this by 30% and
16%, respectively, suggesting that Mpro mutations tend to affect
monomer and dimer structures differently. While the
mutations observed to date do not radically alter active site
conformation (this being a priori unlikely for functional
mutations in any event), they do appear to exert a nontrivial
influence on the distribution of conformational states.

■ CONCLUSION

For clinically relevant variants of Mpro, the observed variation
so far is toward larger and more hydrophobic amino acids,
leading to reduced structural cohesion on average in the
variants relative to wild-type. Although mutations occur
throughout the protein, the structural effects of those
mutations appear to be far more localized, impacting primarily
the protein’s interdomain interfaces and several key loop
regions near the substrate-binding pocket. These mutations
appear to result in systematic variations in both global
flexibility and in the extent to which the catalytic residues of
the active site are constrained (a factor previously found to be
related to substrate specificity in related systems). Our results
suggest that Mpro may be currently subject to selection for
enhanced global flexibility and that currently circulating Mpro

variants represent a reservoir of phenotypic diversity in active
site structure and dynamics that could facilitate an evolutionary

response to certain classes of protease inhibitors. These
findings are relevant to dimerization kinetics, substrate capture,
and the development of resistance to inhibitors, as well as our
understanding of SARS-CoV-2 more generally.
On a more methodological note, these results underscore

the potential of comparative in silico studies to rapidly probe
structural and functional consequences of genotypic variation
in emerging diseases. Advances in both GPU-enabled hardware
and molecular dynamics have made high-volume simulation
studies feasible over short time horizons, giving us a powerful
tool for selection of experimental targets. At the same time,
comparative analysis of large volumes of trajectory data created
by such simulation studies remains a challenge. Here, we have
used both network analytic and machine learning techniques to
identify potentially important sources of variation across
trajectories. Although network analytic ideas have been used
to study protein structures at least since 1993,80 systematic use
of combined network analytic and MD trajectories for
comparative analysis of protein variants is more recent.81−84

It is hoped that applications such as this one will inspire further
development of this promising approach.

Figure 10. Kernel PCA solution for Mpro active site networks. Conformations fall into two clusters, corresponding to whether the Cys-His tie is
present (“closed,” circles) or absent (“open,” triangles). The position within each cluster is strongly associated with mean degree (see point color)
and secondarily with network size (gradient shown via contour lines). Inset networks illustrate centroids of each cluster; note the presence of the
Cys/His interaction (highlighted) in the selected A226 V chain B conformation, which is absent in the selected G278R chain A conformation.
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