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Abstract

Schizophrenia is a psychiatric disorder that has eluded characterization in terms of local abnormalities of brain activity, and
is hypothesized to affect the collective, ‘‘emergent’’ working of the brain. Indeed, several recent publications have
demonstrated that functional networks in the schizophrenic brain display disrupted topological properties. However, is it
possible to explain such abnormalities just by alteration of local activation patterns? This work suggests a negative answer
to this question, demonstrating that significant disruption of the topological and spatial structure of functional MRI
networks in schizophrenia (a) cannot be explained by a disruption to area-based task-dependent responses, i.e. indeed
relates to the emergent properties, (b) is global in nature, affecting most dramatically long-distance correlations, and (c) can
be leveraged to achieve high classification accuracy (93%) when discriminating between schizophrenic vs control subjects
based just on a single fMRI experiment using a simple auditory task. While the prior work on schizophrenia networks has
been primarily focused on discovering statistically significant differences in network properties, this work extends the prior
art by exploring the generalization (prediction) ability of network models for schizophrenia, which is not necessarily
captured by such significance tests.

Citation: Rish I, Cecchi G, Thyreau B, Thirion B, Plaze M, et al. (2013) Schizophrenia as a Network Disease: Disruption of Emergent Brain Function in Patients with
Auditory Hallucinations. PLoS ONE 8(1): e50625. doi:10.1371/journal.pone.0050625

Editor: Mariano Sigman, University of Buenos Aires, Argentina

Received July 25, 2012; Accepted October 23, 2012; Published January 21, 2013

Copyright: � 2013 Rish et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors have no support or funding to report.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: rish@us.ibm.com

Introduction

The concept of network disease, i.e. a dysfunction that affects

the coordinated activity of a biological system, is receiving

increased attention across all fields of biology and medicine.

Though incomplete, current knowledge of protein-protein and

gene-gene interaction networks provides a solid basis for assigning

functional value to topological features such as connectivity,

centrality, and so on [1,2]. In neuroscience, the complexity of

neural architecture and physiology precludes a similar detailed

analysis. While Diffusion Tensor Imaging can reveal structural

abnormalities associated with disease in large fiber tracts [3,4], it is

not immediately evident how these may affect the brain function.

Schizophrenia is in this sense a paradigmatic case. Unlike some

other brain disorders (e.g., stroke or Parkinson’s disease),

schizophrenia appears to be ‘‘delocalized’’, i.e. difficult to attribute

to a dysfunction of some particular brain areas. The failure to

identify specific areas, as well as the controversy over which

localized mechanisms are responsible for the symptoms associated

with schizophrenia, have led us amongst many others (see, for

example, [5–7]) to hypothesize that this disease may be better

understood as a disruption of the emergent, collective properties of

normal brain states. These emergent properties can be better

captured by functional networks, based on inter-voxel correlation

strength, as opposed to individual voxel activations localized in

specific, task-dependent areas.

To test the hypothesis that schizophrenia, or any other

psychiatric dysfunction, for that matter, is a network disease, we

need first to clarify how to distinguish it from a non-network disease.

In the first place, a network disease must have a measurable

impact on one or several topological graph features of the

associated functional brain networks in affected individuals, in

comparison with control subjects. This has been the subject of

several recent studies, reviewed later in the Discussion section, and

needs no further discussion. However, while some disruption of

topological features appears to be a necessary condition for a disease

to be called a network dysfunction, it is not yet a sufficient one.

Trivially, the topology of any sufficiently connected and structured

graph can be significantly altered by the removal of a few nodes;

this alteration would affect the network properties but its cause

would still be localized. (As several studies seem to indicate, the brain

behaves globally like a small-world and scale-free network [8], and

as such it is prone to large disruptions if its hubs are affected [9]).

On the other hand, disruptions of network links that cannot be

explained just by local abnormalities (e.g., when nodes remain intact)

better fits an intuitive notion of a network disease. A distinction
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between node disruptions versus connectivity issues can be also

linked to different biological phenomena behind such abnormal-

ities. For example, while stroke is associated with neuronal death

in specific areas, and thus can be viewed primarily as a local

disfunction, schizophrenia is known to be associated with

abnormal functioning of neurotransmitters, such as dopamine

and glutamate, that can dramatically change the functional

connectivity of a brain, even though underlying anatomical/

structural elements may still remain intact (e.g., temporary drug-

induced psychosis in healthy individuals, based on altering

neurotransmitters, closely mimics positive symptoms of schizo-

phrenia).

The following probabilistic model illustrates a situation where

functional network connectivity disruptions occur independently

from local (univariate) voxel activations. Let V1 and V2 denote

BOLD signals recorded by fMRI for a given pair of voxels, and let

S represent a task, or a stimulus (such as, for example, an auditory

task described later in this paper). Figure 1a depicts a simple

Markov network encoding the structure of dependencies among

these three variables. (A Markov network [10] is an undirected

probabilistic graphical model, i.e. a graph associated with a joint

probability distribution over the nodes, where a missing edge

between a pair of variables encodes their conditional indepen-

dence given the rest of the variables in the network.) We now

assume there are two groups of subjects, e.g. schizophrenics and

controls; for each group i [ f1,2g, we can write the corresponding

joint probability distribution in a factorized form as

Pi(V1,V2,S)~Pi(V1DV2,S)Pi(V2DS)P(S), where we also assume

that same task or stimulus S is applied to both groups of subjects,

so that P(S) is fixed. Next, we assume that the stimulus has same

effect on the voxel activity across the groups, i.e. there are no

group-dependent local changes; more formally, we assume that

P1(V1DS)~P2(V1DS)~a and P1(V2DS)~P2(V2DS)~b. However,

even though each marginal distribution, i.e. Pi(V1DS) and Pi(V2DS), does not

change across the subject group i, the conditional distribution Pi(V1DV2,S),
describing interactions among the pair of voxels, can vary across the groups,

since the constraint Pi(V1DS)~
Ð

Pi(V1DV2,S)dV2~a does not

uniquely determine Pi(V1DV2,S). This illustrates how the voxel

connectivity (described by their conditional distribution) can be

altered across the two groups of subjects, without any change in

the individual behavior of those voxels (described by their

marginals).

Note that standard GLM approach focuses on univariate voxel

activations, which are essentially just pairwise correlations, denoted

herein as c1 and c2, between the stimulus and each voxel’s signal

v1 and v2, respectively. However, even if the values of c1 and c2

are exactly the same (or, more realistically, their difference is not

statistically significant between the two groups of subjects, e.g.

controls vs. schizophrenic patients), the pairwise correlation c12

between the two voxels can still vary, unless one of the voxels is

perfectly correlated with the stimulus (i.e., either c1 and c2 is

exactly one, an extremely unlikely situation in practice).

A simple intuitive explanation behind varying inter-voxel

functional connectivity in presence of fixed univariate stimulus-

based activations is that there are multiple ongoing brain

processes, besides the observed stimulus, that also affect the

BOLD signal, and can be summarized as a hidden (unobserved)

variable. Figure 1b depicts a directed probabilistic graphical model,

or Bayesian network, demonstrating such situation. A naturally

arising hypothesis is that some of those processes can be disrupted

in schizophrenic patients, leading to disturbed interactions among

voxels, even if the task-based voxel activations might be similar to

those of the controls.

We can gain further insight by analyzing more mechanistic

models of brain activity. In particular, let us first consider two

approaches that have been utilized frequently as models of

interacting neuronal ensembles: coupled non-linear relaxation

oscillators, defined by their phases and frequency of oscillation

[11,12], and Ising systems of coupled spins subject to an

inhomogeneous external field [13]. It is possible to show that for

the case of coupled oscillators, varying the coupling strength over a

wide range of values leads to dramatic changes in the correlation

between the units, without significantly affecting the individual

rates (as measured by the frequency of oscillation). Similarly, for a

fixed external field, it can be shown that the mean magnetization

remains constant as the spin-spin correlation changes, as a

function of a varying coupling strength. Moreover, even if a linear

system driven by a multi-dimensional Gaussian process is not

properly inferred (for instance, by assuming that the process is

homogeneous over the nodes, when it is not), one may confound a

change in the mean activity of a node by a change in the

connectivity of the system. The detailed calculations for these three

models are presented in Material S1.

Figure 1. Graphical models of voxel interactions. Simple probabilistic graphical models capturing interactions among voxel-level BOLD signals
and observed stimulus: (a) Markov network (undirected graph) over a pair of voxels and the task; (b) Bayesian network (directed graph) that includes
an unobserved variable capturing other brain processes, besides the response to the observed stimulus, that can affect the BOLD signals. Note that
directed links in Baysian networks are often (though not always) used to depict potential causal dependencies among the variables.
doi:10.1371/journal.pone.0050625.g001
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Thus, when analyzing a brain disorder associated with

functional network abnormalities, one should first test the null-

hypothesis assuming that the abnormalities can be fully explained

by local disruptions; rejection of such null-hypothesis would

provide a solid basis for classifying the observations as a truly

network disorder. However, given the limited spatio-temporal

resolution of current imaging techniques, a thorough analysis of

this null hypothesis can be carried out only partially, and in the

best cases requiring heavy computational resources or dramatic

dimensionality reduction [14,15]. We propose, however, an

alternative approach suitable for the type of data provided by

fMRI: if schizophrenia is a network disease, we would expect the

multi-variate functional properties captured by topological graph

features to carry more population-specific information than univariate and

localized analysis approaches such as the General Linear Model.

This is a sufficient condition, but in general not necessary;

nevertheless, if satisfied, it is a strong indication that the

dysfunction cannot be simply reduced to local functional

disruptions. We would like to stress at this point that when

network effects are discussed, this aspect is typically overlooked.

Finally, in order to quantify the notion of information carried by

network as opposed to localized features, we consider necessary to

complement hypothesis-testing with predictive modeling/classifi-

cation statistical approaches. Various reasons justify the use of

predictive modeling for brain imaging. In particular, the

classification framework evaluates the generalization ability of

models built using the features of interest, i.e. the ability to predict

whether a previously unseen subject is schizophrenic or not, unlike

standard statistical hypothesis testing that evaluates the differences

between two groups of subjects (e.g., schizophrenic and control) on

a fixed dataset. Moreover, predictive modeling is more robust to

the presence of heavy-tailed feature distributions, which naturally

arise in the topological analysis of complex networks [8].

Following the above rationale, in subsequent sections we will

demonstrate that network features reveal highly statistically

significant differences between the schizophrenic and control

groups; moreover, statistically significant subsets of certain

network features, such as voxel degrees (the number of voxel’s

neighbors in a network), are quite stable over varying data subsets.

In contrast, voxel activation show much weaker group differences

as well as stability. Moreover, most of the network features, and

especially pairwise voxel correlations (edge weights) and voxel

degrees, allow for quite accurate classification, as opposed to

voxel activation features: degree features achieve up to 86%

classification accuracy (with 50% baseline) using Markov Random

Field (MRF) classifier, and even more remarkable 93% accuracy is

obtained by linear Support Vector Machines (SVM) using just a

dozen of the most-discriminative correlation features. We will also

show evidence that traditional approaches based on a direct

comparison of the correlation at the level of relevant regions of

interest (ROIs) or using a functional parcellation techniques [16],

do not reveal any statistically significant differences between the

groups. Indeed, a more data-driven approach that exploits

properties of voxel-level networks appears to be necessary in

order to achieve high discriminative power. The results presented

in this paper unify and extend the approaches presented in our

earlier work in [17,18].

Materials and Methods

We first describe the experimental paradigm and the groups of

participating subjects, second the region of interest analysis, and

then the network analysis and classification methods used to assess

our capacity to predict which subject is schizophrenic.

Ethics Statement
Ethical approval was obtained from the Paris-Pitié-Salpétrière

ethics committee. Participants were fully informed of the

requirements of the behavioral task and all demonstrated that

they understood the aims and demands of the experiment. All

subjects gave written informed consent. The subjects’ ability to

consent was established by clinical interviews, which demonstrated

that this ability was not compromised by the subjects mental

condition.

Experimental Paradigm and Data Acquisition
In our studies, we worked with a group of 15 schizophrenic

subjects (9 women) fulfilling DSM-IV-R criteria for schizophrenia

with daily auditory hallucinations for at least 3 months despite

well-conducted treatment. Their mean 6 S.D. age was 34+10
years (i.e., 22–49 years range), and the duration of illness was

12+10 years (3–28 years range). All schizophrenic patients were

treated with antipsychotic drugs (mean+S:D:~425+604 mg)

chlorpromazine equivalent/day [19].

Four subjects were discarded because of acquisition issues,

leaving us with 11 subjects, that were approximately matched for

gender and age by the control group of 11 healthy subjects.

Originally, the dataset also included a group of alcoholic patients;

however, in this paper, we focused primarily discriminating

between the schizophrenic and normal groups; the results

including the alcoholics group together with controls, and testing

against the schizophrenic group, were quite similar to those

presented here, and are included in Material S1.

All subjects were submitted to the same experimental paradigm

involving language (see Figure 2), which was similar to the one

introduced in [20]. The task is based on auditory stimuli; subjects

listen to emotionally neutral sentences either in native (French) or

foreign language. Average length (3.5 sec mean) or pitch of both

kinds of sentences is normalized. In order to catch attention of

subjects, each trial begins with a short (200 ms) auditory tone,

followed by the actual sentence. The subject’s attention is asserted

through a simple validation task: after each played sentences, a

short pause of 750 ms is followed by a 500 ms two-syllable

auditory cue, which belongs to the previous sentence or not, to

which the subject must answer to by yes (the cue is part of the

previous sentence) or no with push-buttons, when the language of

the sentence was his own. A full fMRI run contains 96 trials, with

32 sentences in French (native), 32 sentences in foreign languages,

and 32 silence interval controls.

Data were acquired on a 1.5 T Signa (General Electric) Scanner

at Service Hospitalier Frédéric Joliot, Orsay, France. For each

subject, two fMRI runs are acquired (T2-weighted EPI), each of

which consisted of 420-scans (from which the first 4 are discarded

to eliminate T1 effect), with a repetition time (TR) of 2.0 second,

for a total length of 14 minutes per run. Data were spatially

realigned and warped into the MNI template and smoothed

(FWHM of 5 mm) using SPM5 (www.fil.ucl.ac.uk); also, standard

SPM5 motion correction was performed with the SPM5

realignment pre-processing. For each volume of the time-series,

the process estimates a 6 degree-of-freedom movement relative to

the first volume. These estimated parameters are combined to

warping parameters (obtained by nonlinear deformation on an

EPI template) to get the final, spatially normalized and realigned

time-series. Finally, a universal mask was computed as the minimal

intersection of thesholded EPI mean volumes across the entire

dataset. This mask was then applied to all subjects.

Note that the schizophrenia patients studied here have been

selected for their prominent, persistent, and pharmaco-resistant

auditory hallucinations [20] which might have increased their
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clinical homogeneity, but they are not representative of all

schizophrenia patients, only of a subgroup.

In summary, our dataset contained the total of 44 samples (there

were two samples per subject, corresponding to the two runs),

where each sample corresponds to a subject/run combination, and

is associated with roughly 50,000 voxels 6420 TRs 62 runs, i.e.

more than 40,000,000 voxels/variables. In the subsequent

sections, among other methods, we discuss feature-extraction

approaches that reduce the dimensionality of the data prior to

learning a predictive model.

Methods
We explored two different data analysis approaches aimed at

discovery of discriminative patterns: (1) model-driven approaches

based on prior knowledge about the regions of interest (ROI) that

are believed to be relevant to schizophrenia, or model-based

functional clustering, and (2) data-driven approaches based on

various features extracted from the fMRI data, such as standard

activation maps and a set of topological features derived from

functional networks.

Model-Driven Approach using ROI
First, we decided to test whether the interactions between

several known regions of interest (ROIs) would contain enough

discriminative information about schizophrenic versus normal

subjects. Ten regions of interests (ROI) were defined using

previous literature [20] on schizophrenia and language studies,

including inferior, middle and superior left temporal cortex, left

inferior temporal cortex, left cuneus, left angular gyrus, right

superior temporal, right angular gyrus, right posterior cingulum,

and anterior cingular cortex (Figure 3). Each region was defined as

a sphere of 12 mm diameter centered on the x,y,z coordinates of

the corresponding ROI.

Because predefined regions of interest may be based on too

much a priori knowledge and miss important areas, we also ran a

more exploratory analysis. A second set of 600 ROI’s was defined

automatically using a parcellation algorithm [16] that estimates,

for each subject, a collection of regions based on functional signal

similarity and position in the MNI space.

Time series were extracted as the spatial mean over each ROI,

leading to 10 time series per subject for the predefined ROIs and

600 for the parcellation technique. Drifts were removed from the

time series by removing low frequencies below 1/128 Hz using a

cosine basis.

The connectivity measures were of two kinds. First, the

correlation coefficients were computed between each pair of ROIs

time series without taking into account the experimental

paradigm. Next, we computed a psycho-physiological interaction

(PPI), by contrasting the correlation coefficient weighted by

experimental conditions (i.e. correlation weighted by the ‘‘Lan-

guage French’’ condition versus correlation weighted by ‘‘Con-

trol’’ condition after convolution with a standard hemodynamic

response function). Those connectivity measures were then tested

for significance using standards non-parametric tests between

groups (Wilcoxon signed-rank test) with corrected p-values for

multiple comparisons.

Data-driven Approach: Feature Extraction
Activation maps. To find out whether local task-dependent

linear activations alone could possibly explain the differences

between the schizophrenic and normal brains, we used as a

baseline set of features based on the standard voxel activation maps,

computed using General Linear Model (GLM). The GLM analysis

described here is a standard component of the Statistical

Parametric Mapping (SPM) toolkit. Given the time-series for

stimulus s(t) (e.g., s = 1 if the stimulus/event is present, and s = 0

otherwise), and the BOLD signal intensity time-series vi(t) for

voxel i, GLM is simply a linear regression vi(t)~bi � ŝs(t)zbizE,
where ŝs(t)~HRF (t)6�s (t) is the regressor corresponding to the

stimulus convolved with the hemodynamic response function (HRF) in

order to account for delay between the voxel activation and

change in the BOLD signal, E is noise, b is the baseline (mean

intensity) and bi coefficient is the amplitude that serves as an

activation score (note that bi coefficient is simply the correlation

between vi and ŝs(t) when both are normalized and centered prior

to fitting the model). Given multiple trials, multiple estimates of bi

are obtained and a statistical test (e.g., t-test) is performed for the

mean �bbi against the null-hypothesis that it comes from Gaussian

noise distribution with zero mean and fixed noise s (the level of

noise for BOLD signal is assumed to be known here).

In case of multiple stimuli, the GLM model uses a vector of

regressors ŝs(t) and obtains the vector of the corresponding

coefficients b. For example, in our studies, the following stimuli/

events were considered: ‘‘FrenchNative’’, ‘‘Foreign’’, and ‘‘Si-

lence’’, together with several additional regressors, such as some

low-frequencies trends and the movement parameters (additional

1-only column is added to account for the mean of the signal, as

above - a standard step in linear regression with the unnormalized

data). Once the GLM is fit, we focus on the bi coefficients

Figure 2. Experimental paradigm.
doi:10.1371/journal.pone.0050625.g002
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obtained for the above three stimuli, and the corresponding three

activation maps. Next, we compute several activation contrast maps by

subtracting some maps from the others (hoping that such

differences, or contrasts, may provide additional information).

The following activation contrast maps were computed: activation

contrast 1: ‘‘FrenchNative – Silence’’, activation contrast 2: ‘‘FrenchNative –

Foreign’’, activation contrast 3: ‘‘Silence – FrenchNative’’, activation contrast

4: Foreign - FrenchNative (note that maps 2 and 4 are just negations of

the maps 1 and 3, respectively), activation contrast 5: ‘‘Foreign –

Silence’’; also, the following three contrast maps are simply the

difference of the corresponding bi coefficient (activation) and the

mean (bi): activation contrast 6: ‘‘FrenchNative’’, activation contrast 7:

‘‘Foreign’’, activation contrast 8: ‘‘Silence’’. For each of those maps, t-

values are computed at each voxel (with a null-hypothesis

corresponding to zero-mean Gaussian). In the analysis presented

in this paper, we use the resulting t-value maps, rather than just the

‘‘raw’’ activation maps (i.e., b coefficient maps), and to simplify the

terminology, just refer to them as ‘‘activation’’ or ‘‘activation

contrast’’ maps.

The above activation contrast maps (that we will further refer to

as simply activation maps) were computed for each subject and for

each run. The activation values of each voxel were subsequently

used as features in the classification task. We also computed a

global feature, mean-activation (denoted mean-t-val), by taking the

mean absolute value of the voxel’s t-statistics.

Network features. In order to continue investigating possi-

ble disruptions of global brain functioning associated with

schizophrenia, we decided to explore lower-level (as compared

to ROI-level) functional brain networks [8] constructed at the voxel

level, as follows: (1) pair-wise Pearson correlation coefficients are

computed among all pairs of time-series (vi(t),vj(t)) where vi(i)
corresponds to the BOLD signal of i-th voxel; (2) an edge between

a pair of voxels (i,j) is included in the network if the correlation

between vi and vj exceeds a specified threshold (herein, we used

the same threshold of c(Pearson) = 0.7 for all voxel pairs; we tried a

few other threshold levels, such as 0.8 and 0.9, and the results were

similar; however, we did not perform an exhaustive evaluation of

the full range of this parameter due to high computational cost of

such experiment). For each subject, and each run, a separate

functional network was constructed. Next, we measured a number

of its global topological features, including:

1. the mean degree, i.e. the number of links for each node

(corresponding to a voxel), averaged over the entire network;

2. the mean geodesic distance, i.e. the minimal number of links needed

to reach any to from any other node, averaged over the entire

network;

3. the mean clustering coefficient, i.e. the fraction of triangulations

formed by a node with its first neighbors relative to all possible

triangulations, averaged over the entire network;

4. the giant component, i.e. the size (number of nodes) of the largest

connected subgraph in the network;

5. the giant component ratio, i.e. the ratio of the giant component size

to the size of the network;

6. the total number of links in the network.

Besides global topological features, we also computed a series of

voxel-level network features, based on topological properties of an

individual voxel in functional network; the following types of

features were used:

1. (full) degree: the value assigned to each voxel is the total number

of links in the corresponding network node;

2. long-distance degree: the number of links making non-local

connections (i.e., links between the given voxel and the voxels

that are 5 or more voxels apart from it);

3. inter-hemispheric degree: only links reaching across the brain

hemispheres are considered when computing each voxel’s

degree;

4. strength: node strength is the sum of weights of links connected

to the node. In our study, the full correlation matrix was used

as a weighted adjacency matrix, where each pairwise

correlation corresponds to the link weight; thus, for each

voxel, its strength is the sum of its correlations with the other

voxels;

5. absolute strength: same as above, but the link weights are replaced

by their absolute values;

6. positive strength: same as node strength, but only positive link

weights are considered;

7. clustering coefficient of a node is the fraction of triangles around a

node, i.e. the fraction of node’s neighbors that are neighbors of

each other; herein, we first computed a functional networks by

Figure 3. Locations of ROIs. Regions of Interest (ROI) and their location on a brain normalized to the MNI template (Talairach coordinate system).
Note that the region outside the brain has been defined for testing purposes.
doi:10.1371/journal.pone.0050625.g003

Schizophrenia as a Network Disease

PLOS ONE | www.plosone.org 5 January 2013 | Volume 8 | Issue 1 | e50625



applying a threshold of 0.7 to the absolute values of the

pairwise correlations, and then used the resulting graph to

compute the clustering coefficients for each node/voxel;

8. local efficiency: the local efficiency is the global efficiency computed

on node neighborhoods, and is related to the clustering

coefficient. the global efficiency is the average inverse shortest

path length in the network, that is S1=dnT{1, where dn is the

shortest path for node n, such that for disconnected nodes

dn~?[1=dn~0;

9. edge weights: finally, we simply used as features a randomly selected

subset of 200,000 pairwise correlations out of 53,000653,000

entries of the correlation matrix (the location of pairs were

randomly selected once, and then same locations used to derive

features for all subjects); the rationale behind random sampling

from the correlation matrix was to reduce the computational

complexity of working with the full set of correlations, which

would exceed 2800 million features. Nevertheless, subsequent

feature ranking procedure was able to select a highly

discriminative subset of correlation features, which would only

improve if the feature ranking was allowed to continue running

over the rest of the correlation matrix. (Note that we also tried

other sets of randomly selected 200,000 voxels and obtained

similar results to those presented in this paper. Clearly, the

results may vary if we keep selecting other random sets of

voxels that may not include the top most informative voxel

pairs discovered in our analysis. However, the point of our

analysis is to show that it is possible to find predictive features

among pairwise correlations, and that our results demonstrate

only a lower bound on a potentially even better predictive

performance of correlation features.)

For each of the above feature types, except the edge weights, we

call the corresponding feature sets ‘‘feature map’’, since each voxel

is associated with its own feature value, e.g. (full) degree maps,

strength maps, and so on.

The set of global measures and spatial maps was utilized for

further analysis of statistical significance of group differences,

including t-test and several classification approaches, described

below.

Spatial normalization. Note that, for each sample, we also

computed spatially normalized activation and degree maps, dividing

the corresponding maps by their maximal value taken over all

voxels in the given map. As it turned out, normalization affected

both statistical testing and classification results presented below.

We mainly focus on normalized activation and degree maps (full,

long-distance and inter-hemispheric), since they yield better

classification results. In case of hypothesis testing, however,

unnormalized (raw) activations maps, unlike the degree maps,

happened to outperform their normalized counterparts, and thus

both sets of results were presented.

Classification Approaches
Classification tasks. We first focused on discriminating

between the schizophrenic and normal subjects only, that resulted

into well-balanced dataset containing 2611 positive (schizophren-

ic) and 2611 negative (healthy) samples (since there were two runs

per each subject), with 50% baseline prediction accuracy. The

results for the original dataset, including alcoholics together with

controls into one category and discriminating them from

schizophrenic subjects, were quite similar to those presented here,

i.e. we were able to accurately separate schizophrenics from the

alcoholic subjects merged with the controls; the results are

included in Material S1.

Classifiers. First, standard off-the-shelf methods such as

Gaussian Naive Bayes (GNB) and Support Vector Machines

(SVM) were used in order to compare the discriminative power of

different sets of features described above. We used standard SVM

implementation with linear kernel and default parameters,

available from the LIBSVM library. For GNB, we used our own

MATLAB implementation.

Moreover, we decided to further investigate our hypothesis that

interactions among voxels contain highly discriminative informa-

tion, and compare those linear classifiers against probabilistic

graphical models that explicitly model such interactions. Specif-

ically, we learn a classifier based on a sparse Gaussian Markov

Random Field (MRF) model [21], which leads to a convex

problem with unique optimal solution, and can be solved

efficiently; herein, we used the COVSEL procedure [21]. The

weight on the l1-regularization penalty serves as a tuning

parameter of the classifier, allowing to control the sparsity of the

model, as described below.

Sparse Gaussian MRF classifier. Let X~fX1,:::,Xpg be a

set of p random variables (e.g., voxels), and let G~(V ,E) be an

undirected graphical model (Markov Network, or MRF) repre-

senting conditional independence structure of the joint distribution

P(X ). The set of vertices V~f1,:::,pg is in the one-to-one

correspondence with the set X. The set of edges E contains the

edge (i,j) if and only if Xi is conditionally dependent on Xj given

all remaining variables; lack of edge between Xi and Xj means that

the two variables are conditionally independent given all

remaining variables. Let x~(x1,:::,xp) denote a random assign-

ment to X. We will assume a multivariate Gaussian probability

density p(x)~(2p){p=2 det (C)
1
2e{1

2
xT Cx, where C~S{1 is the

inverse covariance matrix (also called the precision matrix), and the

variables are normalized to have zero mean. Let x1,:::,xn be a set

of n i.i.d. samples from this distribution, and let S~ 1
n

Pn
i~1 xT

i xi

denote the empirical covariance matrix. Missing edges in the

above graphical model correspond to zero entries in the inverse

covariance matrix C, and thus the problem of learning the

structure for the above probabilistic graphical model is equivalent

to the problem of learning the zero-pattern of the inverse-

covariance matrix. Note that the inverse of the empirical covariance

matrix, even if it exists, does not typically contain exact zeros.

Therefore, an explicit sparsity constraint is usually added to the

estimation process. A popular approach is to use l1-norm

regularization that is known to promote sparse solutions, while

still allowing (unlike non-convex lq-norm regularization with

0vqv1) for efficient optimization. From the Bayesian point of

view, this is equivalent to assuming that the parameters of the

inverse covariance matrix C~S{1 are independent random

variables Cij following the Laplace distributions

p(Cij)~
lij

2
e{lij DCij{aij D with zero location parameters (means) aij and

equal scale parameters lij~l. Then

p(C)~ Pp
i~1 Pp

j~1 p(Cij)~(l=2)p2

e{lDDCDD1 , where

DDCDD1~
P

ij DCij D is the (vector) l1-norm of C.

Assume a fixed parameter l, our objective is to find

arg maxC]0 p(CDX), where X is the n|p data matrix, or

equivalently, since p(CDX)~P(X,C)=p(X) and p(X) does not

include C, to find arg maxC]0 P(X,C), over positive definite

matrices C. This yields the following optimization problem

considered, for example, in [21]

max
C]0

ln det (C){tr(SC){lDDCDD1 ð1Þ

where det (A) and tr(A) denote the determinant and the trace (the
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sum of the diagonal elements) of a matrix A, respectively, and S the

empirical covariance of the data. For the classification task, we

estimate on the training data the Gaussian conditional density

p(xDy) (i.e. the (inverse) covariance matrix parameter) for each

class Y~f0,1g (schizophrenic vs control), and then choose the

most-likely class label arg maxc p(xDc)P(c) for each unlabeled test

sample x.

Variable selection. Note that each sample is associated with

roughly 50,000 voxels 6 420 TRs 6 2 runs, i.e. more than

40,000,000 voxels/variables. Thus, some kind of dimensionality

reduction and/or feature extraction appears to be necessary prior

to learning a predictive model. Extracting degree maps and

activation maps reduced dimensionality by collapsing the data

along the time dimension.

Moreover, we used variable selection as an additional prepro-

cessing step before applying a particular classifier, in order to (1)

further reduce the computational complexity of classification

(especially for sparse MRF, which, unlike GNB and SVM, could

not be directly applied to 50,000 variables), (2) reduce noise and (3)

identify relatively small predictive subsets of voxels. We applied a

simple filter-based approach, selecting a subset of top-ranked

voxels, where the ranking criterion used p-values resulting from

the paired t-test, with the null-hypothesis being that the voxel

values corresponding to schizophrenic and non-schizophrenic

subjects came from distributions with equal means. The variables

were ranked in the ascending order of their p-values (lower p-

values correspond to higher confidence in between-group differ-

ences), and classification results on top k voxels will be presented

for a range of k values. Clearly, in order to avoid biased estimate of

generalization error, variable selection was performed separately on

each cross-validation training dataset; failure to do so, i.e. variable

selection on the full dataset, would produce overly optimistic

results with nearly-perfect accuracy (e.g., 95% accuracy using

GNB on just 100 top t-test voxels).

Evaluation via cross-validation. Since there were two

samples corresponding to two runs per each subject, another

source of overly optimistic bias that we had to avoid was possible

inclusion of the samples for the same subject in both training and

test datasets - for example, if using the standard leave-one-out

cross-validation approach. Instead, we used leave-one-subject-out

cross-validation, where each of the 22 folds on the 44-sample

dataset (11 schizophrenic and 11 control samples, 2 runs each)

would set aside as a test set the two samples for a particular subject.

Controls. A potential artifact that affects the computation of

functional connectivity networks is the movement of subjects in the

scanner. While we implemented the standard procedure for

movement correction, it is known that residual effects may still

leave a trace in the functional images. For this we developed an

approach that addresses the issue directly in the context of

predictive modeling; specifically, we computed pairwise correla-

tions between the movement parameters and each network

feature, for all feature types listed in the paper (e.g., for degree

features, we computed correlation between a motion parameter

and degree of each voxel). To see whether those correlations were

significant, we used the False Discovery Rate (FDR) test with

significance level 0.05, on p-values corresponding to the correla-

tions, and showed that there are no voxels that pass significance

test (see Material S1). (FDR is a statistical method used in multiple

hypothesis testing to correct for multiple comparison, discussed in

more detail in the subsequent sections).

Moreover, we applied the same classification approach to data

from alcoholic patients, acquired following the same protocol as

normal and schizophrenic patients. Alcoholic patients are known

to show a significant degree of movement inside the scanner. As

reported in Material S1, the negative classification results are

further indication that movement is not a factor.

Results

Model-driven ROI Analysis
First, we observed that correlation (blind to experimental

paradigm) between regions and within subjects were very strong and

significant (p-value of 0.05, corrected for the number of

comparisons) when tested against 0 for all subjects (mean

correlation .0.8 for every group). However, these inter-region

correlations do not seem to differ significantly between the groups.

The parcellation technique led to some smaller p-values, but also

to a stricter correction for multiple comparison and no correlation

was close to the corrected threshold. Concerning the psycho-

physiological interaction, results were closer to significance, but

did not survive multiple comparisons. In conclusion, we could not

detect significant differences between the schizophrenic patient

data and normal subjects in either the BOLD signal correlation or

the interaction between the signal and the main experimental

contrast (native language versus silence).

Data-driven Analysis: Topological vs Activation Features
Empirical results are consistent with our hypothesis that

schizophrenia disrupts the normal structure of functional networks

in a way that is not derived from alterations in the activation;

moreover, they demonstrate that topological properties are highly

predictive, consistently outperforming predictions based on

activations.

Voxel-level statistical analysis. In order to find out

whether various features exhibit statistically significant differences

across the two groups, we performed two-sample t-test for each

feature xi from the corresponding feature vector x~(x1,:::xn) of a

particular type (e.g., activations, degrees, etc.); herein, n is the

number of voxels for voxel-level features, and n~200,000 for the

weight features (pairwise correlations). Clearly, when the number

of statistical tests is very large (i.e., n here is exceeding 50,000), a

correction for multiple comparisons is necessary, since low p-values

indicating statistically significant differences given one test may just

occur due to pure chance when many such tests are performed. A

commonly used Bonferroni correction is overly conservative in

brain imaging analysis since it assumes test independence, while

there are obviously strong correlations across the voxel-level

features. A more appropriate type of correction that is now

frequently used in fMRI analysis is the False Discovery Rate

(FDR) method, designed to control the expected proportion of

incorrectly rejected null hypotheses, or ‘‘false discoveries’’. In

general, FDR is less conservative than the familywise error rate

(FWER) methods (including the Bonferroni correction), since it

does not guarantee there are no false positives, but rather that there

are only a few of them. For example, FDR with threshold 0.05

guarantees no more than 5% of false positives. Herein, we include

the results for both FDR and Bonferroni corrections (see columns

5 and 6 of the Table 1, respectively). However, our discussion is

mainly based on FDR results, while Bonferroni results are

mentioned purely for completeness sake, to demonstrate that

some of the statistical differences we observed are so strong that

they survived even an overly strict Bonferroni correction.

Our main observation is that the network features show much stronger

statistical differences between the schizophrenic vs. non-schizophrenic groups

than the activation features. Figure 4 shows the results of two-sample t-

test analysis for all voxel-level features, and the corresponding

FDR threshold at a~0:05 level. Panel (a) shows a direct

comparison between the best activation features (dashed lines)
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and three (spatially normalized) degree maps: full, long-distance

and inter-hemispheric. In all degree maps, on the order of 103

voxels survive FDR correction (i.e., have their p-values below the

black line corresponding to the FDR threshold), while only a

handful (less than 10) of activation voxels do. The other measured

graph features, including clustering and local efficiency, have less

statistical power than degrees (i.e., have p-values closer to the FDR

threshold), but yet outperform activation maps by almost two

orders of magnitude, as shown in Panel (b). A full list showing the

number of surviving voxels for each map is shown in Table 1.

(Note that for the activation maps, the results for both normalized

and unnormalized maps are shown, since unnormalized ones

performed better in hypothesis testing. In classification study

presented next, the situation was reversed, i.e. normalized

activations predicted better than unnormalized; thus, we always

included the best possible results achieved by activations. In case of

degree maps, we always used only their normalized versions,

which performed best in both hypothesis testing and classification

scenarios.) Finally, randomly selected pairwise correlations, as

shown in Panel (c), behave similarly to degrees, with an order of

104 correlations surviving the FDR test, i.e. an order of magnitude

more than for degrees. (Note, however, that the total number of

correlation features (200,000) is also much larger than the number

of degree features (about 50,000), i.e. voxels; therefore, the results

for correlations are not directly comparable to those for degrees

and other voxel features, and thus plotted in a separate panel.).

The spatial localization of the network maps is shown in

Figure 5, representing the voxels surviving correction for (a)

(normalized) degree maps, (b) strength (red-yellow), absolute

strength (blue-light blue) and positive strength (black-white), (c)

clustering coefficient and local efficiency maps. Normalized

degrees (a) show the most spatially coherent organization, with

contiguous bilateral clusters in auditory/temporal areas, promi-

nently BA 22 and BA 21. Note also that the degree of the normal

population is higher than the patient population. Strength-related

features (b) have less bilateral symmetry and are also less spatially

coherent, while clustering (c) is even more scattered.

The network in Figure 6 visualizes the top 30 most significantly

different edges selected out of 200,000 edge features, or pairwise

correlations (the total number of such features surviving FDR

correction was 12240, as shown in Table 1 and visualized in

Figure 4b). Figure 7 shows a stable subset of 9 edges common to all

top-30 ranked edges, over all cross-validation subsets, making it a

highly robust representation. Note that unlike the degree maps,

this network includes areas other than BA 22 and BA 21,

prominently left precentral gyrus BA 44 (Broca’s area), right

middle frontal gyrus BA 10, medial precuneus BA 7, and the

declive of the cerebellum. A complete list of the nodes is presented

in Table 2, while area-to-area functional connections determined

by the 9 most stable links are shown in Table 3. Note that most

links span both hemispheres, and that there are no local, intra-area

links, even though we introduced no voxel clustering.

Table 1. Detailed t-test results for all activation and network-based features: each column shows the number of voxels that satisfy
a given constraint, such as having p-value below the specified threshold or surviving the FDR or Bonferroni correction with the
significance level a~0:05 (the number of voxels common with the full degree maps is shown in parenthesis for unnormalized linear
activation maps).

map p,0.01 p,0.001 p,0.0001 FDR Bonferroni N

norm. full degrees 2583 1046 448 1033 50 53750

norm. long-dist. deg. 2335 972 398 924 43 53737

norm. inter-hem. deg 1448 677 258 508 18 51373

activation 1 (3) 1799 (341) 317 (76) 52 (9) 7 (2) 0 53456

activation 2 (4) 805 (27) 112 (0) 15 (0) 0 (0) 0 53456

activation 5 1356 (306) 262 (69) 63 (10) 0 (0) 0 53456

activation 6 1481 (152) 303 (14) 55 (1) 2 (0) 1 53456

activation 7 1294 (130) 163 (13) 20 (1) 0 (0) 0 53456

activation 8 2369 (97) 467 (1) 53 (0) 0 (0) 0 53456

norm. activation 1 (3) 885 108 15 0 0 53456

norm. activation 2 (4) 688 95 13 0 0 53456

norm. activation 5 647 58 8 0 0 53456

norm. activation 6 1357 245 37 0 0 53456

norm. activation 7 1019 123 10 0 0 53456

norm. activation 8 1511 236 30 1 1 53456

corr subset(200 K) 23573 6437 1718 12240 37 199998

Strength 10917 2197 393 11294 6 53750

absolute strength 6721 1053 154 971 0 53750

positive strength 8938 1594 277 5724 2 53750

clustering coef. 3812 955 240 789 4 53750

local efficiency 4142 1076 286 1077 4 53750

The last column shows the total number of voxels N with non-zero values in the corresponding map (recall that Bonferroni correction filters out the voxels with
pwa=N). Note that for the activation maps, the results for both normalized and unnormalized maps are shown, since unnormalized ones performed better in
hypothesis testing.
doi:10.1371/journal.pone.0050625.t001
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Our observations suggest that (a) the differences in the collective

behavior cannot be explained by differences in the linear task-

related response, and that (b) topology of voxel-interaction

networks is more informative than task-related activations,

suggesting an abnormal degree distribution for schizophrenic

patients that appear to lack hubs in auditory cortex, i.e., have

significantly lower (normalized) voxel degrees in that area than the

normal group, possibly due to a more even spread of degrees in

schizophrenic vs. normal networks. Note that, as discussed earlier,

ROI- and parcellation-level network topologies do not seem to

retain information present in voxel-level networks, apparently due

to averaging the signal over ROIs or parcels.

We also evaluate the stability of all features with respect to

selecting a subset of top ranked voxels over different subsets of

data. For each value of k, stability of the top-k-ranked feature

subset is defined as a fraction of features in common over all cross-

validation data subsets (recall that there are 22 of them). Namely,

given a fixed value of k, for each data subset, we rank the features

by their p-values computed on that particular subset, choose the

top k of them, and then compute the intersection over all 22 of

those top- k feature subsets. The number of features common to all

subsets (i.e., the size of their intersection), divided by k, gives us a

measure of feature stability. Interestingly, network-based features,

such as degrees (full, long-distance or inter-hemispheric) demon-

strate much higher stability than activation features, as well as other

network-based features. Figure 8a shows that degree maps have up

to almost 70% top-ranked voxels in common over different

training data sets when using the leave-one-subject out cross-

validation, while activation maps have below 50% voxels in

common between different selected subsets. This property of

degree vs activation features is particularly important for

interpretability of predictive modeling. Stability of the other

network-based features is shown in Figures 8b and 8c, where the

Figure 8c shows the same results as Figure 8b, but using

Figure 4. Two-sample t-test results for different features: p-values vs. FDR threshold. (a) Activations vs. normalized degrees; (b) clustering
coefficients, strength, absolute strength, positive strength, and local efficiency of each voxel; (c) 200,000 randomly selected pairwise correlations. The
null hypothesis for each feature assumes no difference between the schizophrenic vs normal groups. P-values of the features are sorted in ascending
order and plotted vs FDR baseline; FDR test select voxels with pva:k=N , a - false-positive rate, k - the index of a p-value in the sorted sequence, N -
the total number of voxels. Note that graph-based features yield a large number of highly-significant (very low) p-values, staying far below the FDR
cut-off line, while only a few voxels survive FDR in case of (unnormalized) activation maps in panel (a): 7 and 2 voxels in activation maps 1 (contrast
‘‘FrenchNative – Silence’’) and 6 (‘‘FrenchNative’’), respectively, while the rest of the activation maps do not survive the FDR correction at all.
doi:10.1371/journal.pone.0050625.g004

Figure 5. Two-sample t-test results for different features: voxels surviving FDR correction. (a) Normalized degree maps; (b) strength (red-
yellow), absolute strength (blue-light blue) and positive strength (black-white); (c) clustering coefficient and local efficiency maps. Here the null
hypothesis at each voxel assumes no difference between the schizophrenic vs normal groups. Colored areas denotes low p-values passing FDR
correction at a~0:05 level (i.e., 5% false-positive rate). Note that the mean (normalized) degree at highlighted voxels was always (significantly) higher
for normals than for schizophrenics. Coordinates of the center of the image: (a) and (c) X = 26,Y = 30,Z = 16, (b) X = 26,Y = 30,Z = 18.xl.
doi:10.1371/journal.pone.0050625.g005
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logarithmic scale instead of linear, in order to focus on the regimes

when only a small number of features is selected. While the overall

stability of the remaining network features does not reach the high

values of the degree features, it is still interesting to note that the

pairwise correlations appear to be the most stable of the remaining

network features when the number of selected features is relatively

small, e.g. below 100.

Inter-hemispheric degree distributions. As suggested by

the predominance of inter-hemispheric edges in the set of most

significantly different pairwise correlations (Table 3), a closer look

at the degree distributions reveals that a large percentage of the

differential connectivity appears to be due to long-distance, inter-

hemispheric links. Figure 9a compares the probability of finding a

link in the networks as a function of the Euclidean distance

between the nodes (in millimeters), for schizophrenic (red) versus

control (blue) subjects. The bars correspond to one standard

deviation, drawn on the top only, to avoid clutter in the figure, and

the lines correspond to power-law fits for the intermediate

distances (i.e. between 10 and 150 mm). The fit is P~a �Dk,

with k~{1:46 for schizophrenics, and k~{1:15 for controls.

We see that for this distance range, schizophrenics have reduced

connectivity, i.e. lower link probabilities than controls. Figure 9b

compares the fraction of inter-hemispheric connections over all

connections, for schizophrenic (red) versus normal (blue) groups.

For each subject, a unique value was computed dividing the

number of links spanning both hemispheres by the total number of

links. The figure represents the normalized histogram of this inter-

hemispheric link density for each group. The schizophrenic group

shows a significant bias towards low relative inter-hemispheric

connectivity. A t-test analysis of the distributions indicates that

differences are statistically significant (p~2:5 10{2). Moreover,

it is evident that a major contributor to the high degree difference

Figure 6. Thirty top-ranked (lowest-p-value) edges (all surviving Bonferroni correction) out of 200,000 pairwise correlation
features, computed on the full dataset. (a) All views and (b) enlarged saggital view. Edge density is proportional to their absolute value.
doi:10.1371/journal.pone.0050625.g006

Figure 7. 9 stable edges common to all subsets of 30 top-ranked (lowest-pvalue) edges that survived Bonferroni correction, over 22
different cross-validation folds (leave-subject-out data subsets). (a) All views and (b) enlarged saggital view. Edge density is proportional to
their absolute value. The network includes several areas not picked up by the degree maps, i.e. other than BA 22 and BA 21, mainly the cerebellum
(declive) and the occipital cortex (BA 19).
doi:10.1371/journal.pone.0050625.g007
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discussed before is the presence of a large number of inter-

hemispheric connections in the normal group, which is absent in

schizophrenic group. Furthermore, we selected a bilateral region

of interest (ROI) corresponding to left and right Brodmann Area

22 (roughly, the clusters in Figure 4a), such that the linear activation for

these ROI’s was not significantly different between the groups, even in the

uncorrected case. For each subject, the connection strength

between the left and right ROIs was computed as the fraction of

ROI-to-ROI links over all links. Figure 9c shows the normalized

histogram over subjects for this connectivity measure. Clearly, the

normal group displays higher ROI-to-ROI connectivity, which is

significantly disrupted in the schizophrenic group (p~3:710{7).

This provides a strong indication that the group differences in

connectivity cannot be explained by differences in local activation.

Global features. For each global feature (full list in Material

S1) we computed its mean for each group and p-value produced

by the t-test, as well as the classification accuracies using our

classifiers. While more details are presented in Material S1, we

outline here the main observations: while mean activation (we

used map 8, the best performer for SVM on the full set of voxels -

see Table 4b) had a relatively low p-value of 5:5|10{4, as

compared to less significant p~5:3|10{2 for mean-degree, the

predictive power of the latter, alone or in combination with some

other features, was the best among global features reaching 27:5%
error in schizophrenic vs normal classification (Table 4a), while

mean activation yielded more than 40% error with all classifiers In

general, low p-values not necessarily imply low generalization

error, as the results with other global features show. This is not

particularly surprising, especially when the data violate Gaussian

assumption of the t-test as it is in our case.
Classification using activations vs. network

features. While mean-degree indicates the presence of discrim-

inative information in voxel degrees, its generalization ability,

though the best among global features and their combinations, is

relatively poor. However, voxel-level network features turned out

to be very informative about schizophrenia, often outperforming

activation features by far. Table 4b shows the results of

classification by SVM using all voxel-level network features of

each type. Herein, all voxels and their corresponding features were

used, without any subset selection; for correlation features, defined

on pairs of voxels, we just used same number of features as in all

other cases, i.e. the top 53750 correlations out of 200000, since

53730 is the number of voxels used in the other features. Note that

the top-performing network features are correlations (14% error)

and (full) degree maps (16% error), greatly outperforming all

activation maps that yield above 30% error for even the best-

performing activation map 8.

Next, in Figure 10, we compare the predictive power of different

features using all three classifiers: Support Vector Machines

(SVM), Gaussian Naive Bayes (GNB) and sparse Gaussian Markov

Random Field (MRF), on the subsets of k top-ranked voxels, for a

variety of k values. For sparse MRF, we experimented with a

variety of l values, ranging from 0.0001 to 10, and present the best

results; while cross-validation could possibly identify even better-

performing values of l, it was omitted here due to its high

computational cost (also, using the fixed values listed above we

already achieved quite high predictive accuracy as described later).

We used the best-performing activation map 8 from the Table

above, as well as maps 1 and 6 (that survived FDR); map 6 was

also outperforming other activation maps in low-voxel regime.

Also, to avoid clutter, we only plot the results for the three best-

performing network features: full and long-distance degree maps,

and pairwise correlations. Classification results for the rest of

network features can be found in Appendix. We can see that:

N Network features outperform activation maps, for all classifiers we

used, and for practically any value of k, the number of features

selected. The differences are particularly noticeable when the

number of selected voxels is relatively low.

The most significant differences are observed for SVM in low-

voxel (approx. v500) regime: using just a dozen of most-predictive

Table 2. Areas corresponding to the nodes on the 9 most
stable links.

Hemis. Broad Anatomy Brodmann x y z

R Temporal Fusiform
Gyrus

20 45 224 218

R Temporal Fusiform
Gyrus

20 48 221 218

L Middle Temporal
Gyrus

21 242 0 221

L Middle Temporal
Gyrus

21 254 6 215

L Middle Temporal
Gyrus

21 251 2 212

L Middle Temporal
Gyrus

21 257 251 3

L Superior Temporal
Gyrus

38 245 18 218

L Superior Temporal
Gyrus

38 251 6 29

R Superior Temporal
Gyrus

22 57 26 0

R Superior Temporal
Gyrus

22 63 0 0

R Superior Temporal
Gyrus

22 48 212 6

L Superior Temporal
Gyrus

22 251 212 6

L Precentral Gyrus 44 254 12 6

R Middle Frontal
Gyrus

10 48 51 21

L Medial Precuneus 7 212 278 36

L Medial Precuneus 7 23 284 45

R Inferior Parietal
Lobe

40 48 245 54

- Declive Cb 0 263 212

doi:10.1371/journal.pone.0050625.t002

Table 3. Area-to-area functional connections determined by
the 9 more stable links.

left BA 21 « Cb

right BA 20 « left BA 7

right BA 20 « left BA 21

left BA 38 « left BA 44

left BA 21 « right BA 22

left BA 38 « right BA 22

right BA 22 « medial BA 7

right BA 10 « right BA 40

doi:10.1371/journal.pone.0050625.t003
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pairwise correlations achieves a remarkable 7% error while the

activation maps yield 30% and larger errors. Also, both pairwise

correlations and degrees noticeably outperform activations on the

full set of features (far right of the x-axis). Moreover, degree

features demonstrate excellent performance with MRF classifiers:

they achieve quite low error of 14% with only 100 most significant

voxels, while even the best activation map 6 requires more than

200–300 to get just below 30% error; the other activation maps

perform much worse, often above 30–40% error, or even just at

the chance level.

N Full and long-distance degree maps perform quite similarly, with long-

distance map achieving the best result (14% error) using

MRFs.

N Among the activation maps only, while the map 8 (‘‘Silence’’)

outperforms others on the full set of voxels using SVM, its

behavior in low-voxel regime is quite poor (always above 30–

35% error); instead, map 6 (‘‘FrenchNative’’) achieves best

performance among activation maps in this regime. We also

observed that performing normalization really helped activa-

tion maps, since otherwise their performance could get much

worse, especially with MRFs - we provide those results in

Material S1.

N MRF classifiers significantly outperform SVM and GNB with degree

features, possibly due to their ability to capture inter-voxel

relationships that are highly discriminative between the two

classes (see Figure 10d). However, with the correlation features

the situation is reversed, and the overall best results (7% error)

is achieved using SVM with just a dozen of top-ranked

correlations.

Figure 8. Stability of feature subset selection over cross-validation (CV) folds. Stability is measured as the percent of voxels in common
among the subsets of k top variables selected at all CV folds: (a) activations and degrees; (b,c) edge weights (correlations), clustering coefficients,
strength, absolute strength, positive strength, and local efficiency: (b) linear scale on x-axis, (c) log-scale on x-axis (focusing on small number of
features selected.
doi:10.1371/journal.pone.0050625.g008

Figure 9. Functional connectivity disruption in schizophrenic subjects vs controls. (a) Probability of finding a network link as a function of
the Euclidean distance between the nodes (in millimeters): schizophrenics (red) show reduced connectivity than controls (blue) for distances in the
middle range (10 to 150 mm). (b) Disruption of global inter-hemispheric connectivity. For each subject, we compute the fraction of links spanning
both hemispheres over the total number of links, and plot a normalized histogram over all subjects in each group (normal - blue, schizophrenic - red).
(c) Disruption of task-dependent inter-hemispheric connectivity between specific ROIs (Brodmann Area 22 selected bilaterally). The ROIs were defined
by a 9 mm radius ball centered at [x = 242, y = 224, z = 3] and [x = 42, y = 224, z = 3]. For each subject, we compute the fraction of links connecting
the bilateral ROIs over all links, and show a histogram of this connectivity measure over all subjects in each group. The histograms are similarly
normalized.
doi:10.1371/journal.pone.0050625.g009
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Discussion

Attributing schizophrenia to abnormal interactions among

different brain areas, rather than to local failures, has a long

history in schizophrenia research, and is sometimes referred to as

the ‘‘disconnection’’ hypothesis [22]. According to [23], this

hypothesis was first proposed in 1906 by Wernicke [24], who

postulated that anatomical disruption of association fiber tracts is

at the roots of psychosis; in fact, the term ‘‘schizophrenia’’ was

introduced by Bleuler [25] in 1911, and was meant to describe the

separation (‘‘splitting’’) of different mental domains.

Recent advances in neuroimaging provided researchers with

tools for studying not just anatomical, but also functional

connectivity and its disruption in schizophrenia. The ‘‘disconnec-

tion syndrome’’ article by [22] was among the first ones to point

out abnormalities in functional connectivity using PET imaging

data (see also [26]). (More recently, the ‘‘dysconnection’’ term was

suggested [23] in order to better capture the fact that schizophre-

nia is associated with a broader range of network dysfunctions

besides just missing connections.) The paper studied functional

connectivity captured by temporal correlations among different

brain areas during a linguistic task, using principal component

analysis (PCA) decomposition of the functional connectivity

(covariance) matrix. Analysis of spatial components (‘‘eigen-

images’’) revealed that ‘‘profound negative prefronto-superior

temporal functional interactions associated with intrinsic word

generation’’ was strongly present in healthy subjects, but

practically absent in schizophrenic patients; vice versa, positive

prefronto-left temporal correlations were present in schizophrenic

group but in the normal group, suggesting a reversal of prefronto-

temporal integrations, attributed to ‘‘failure of prefrontal cortex to

suppress activity in the temporal lobes (or vice versa)’’.

More recently, several studies demonstrated altered patterns in

default-mode networks of schizophrenia, e.g. altered temporal

frequency and spatial location of the default mode networks [5],

and other patterns of aberrant connectivity [27,28]. Also, multiple

recent studies [7,29] focused on graph-theoretic analysis of

functional connectivity networks [8] in schizophrenia, demonstrating,

for example, that in schizophrenia patients ‘‘the small-world

topological properties are significantly altered in many brain

regions in the prefrontal, parietal and temporal lobes’’ [7]. There

is also continuing work exploring abnormalities in anatomical

networks in schizophrenia [6,30,31].

In general, the importance of modeling brain connectivity and

interactions became widely recognized in the recent neuroimaging

literature beyond schizophrenia research ([32–34] give just a few

examples). However, practical applications of such approaches

such as dynamic causal modeling [32], dynamic Bays nets [33], or

structural equations [34] are often limited to interactions among a

relatively small number of known brain regions believed to be

relevant to the task or phenomenon of interest. As discussed below,

such approach can be sometimes disadvantageous, while a more

data-driven, voxel-level functional networks analysis can achieve better

results.

In this paper, we proposed an approach to constructing

predictive features based on functional network topology, and

applied it to predictive modeling of schizophrenia. We demon-

strated that (1) specific topological properties of functional networks yield

highly accurate classifiers of schizophrenia and (2) functional network

differences cannot be attributed to alteration of local activation patterns, a

hypothesis that was not ruled out by the results of [6,7] and similar

work. In other words, our observations strongly support the

hypothesis that schizophrenia is indeed a network disease, associated

with the disruption of global, emergent brain properties.

Specifically, we demonstrated that topological properties of

(voxel-level) functional brain networks are highly informative

about the disease, unlike localized, task-related voxel activations,

that were greatly outperformed by network-based features in both

hypothesis testing and predictive settings. We also showed that it is

highly important to use functional networks at the proper level: in

our study, discriminative information present in voxel-level

networks was apparently lost (perhaps due to averaging over large

groups of voxels) at both regions-of-interest (ROI) and functional

parcellation levels; the latter did not reveal any statistically

significant differences between the schizophrenic and control

groups. Unlike most traditional studies of schizophrenia networks

based solely on hypothesis testing approach (e.g., [6,7,31]), we also

employed predictive modeling techniques in order to evaluate how

well the models built using network vs. local features would

generalize to previously unseen subjects. Using generalization

power, besides statistical significance, provides a complimentary

(and often a more accurate) measure of disease-related information

contained in a particular type of features, such as network

Table 4. Classification errors using (a) global features and (b)
activation and degree maps (using SVM on the complete set
of voxels (i.e., without voxel subset selection).

(a)

Feature GNB SVM MRF(0.01)

degree (D) 27.5% 27.5% 27.5%

clustering coeff. (C) 30.0% 42.5% 45.0%

geodesic dist. (G) 67.5% 45.0% 45.0%

mean activation (A) 40.0% 45% 72.5%

D+A 27.5% 27.5% 32.5%

C+A 27.5% 45.0% 55.0%

G+A 45.0% 45.0% 72.5%

G +D +C 37.5% 27.5% 27.5%

G+D+C+A 30.0% 27.5% 32.5%

(b)

Feature Err FP FN

correlations (53750) 14% 14% 14%

degree (full) 16% 27% 5%

degree (long-distance) 21% 32% 9%

degree (inter-hemis) 32% 46% 18%

clustering 23% 32% 14%

local efficiency 23% 32% 14%

strength 23% 23% 23%

abs strength 34% 41% 27%

pos strength 25% 32% 18%

activation 1 (and 3) 54% 29% 82%

activation 2 (and 4) 50% 55% 45%

activation 5 43% 18% 68%

activation 6 36% 27% 46%

activation 7 32% 18% 46%

activation 8 30% 23% 37%

For each feature, we show the average error, as well as the fraction of false
positives (FP) and false negatives (FN).
doi:10.1371/journal.pone.0050625.t004
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properties or local activations. Moreover, predictive models have

potential applications in clinical setting, e.g. for early diagnosis of

schizophrenia based on abnormal patterns in imaging data. (Note,

however, that multiple studies on a variety of subjects and

experimental conditions may be necessary to come up with a

robust predictive model).

In summary, our observations suggest that voxel-level functional

networks may contain significant amounts of information discriminative about

schizophrenia, which may not be otherwise available in voxel activations or

ROI-level networks. Note, however, that the schizophrenic popula-

tion studied here has been selected for their prominent, persistent,

and pharmaco-resistant auditory hallucinations [20], which might

have increased its clinical homogeneity and reduced its value as

representative of the full spectrum of the disease. The experimen-

tal protocol may also restrict the applicability of our approach to

generic cases. The areas more evidently involved in the

discriminative networks, BA 22 and BA 21, are involved in

language processing and are known to alter their activity in

schizophrenics [35], and to display genetic and anatomical

anomalies [36]. The direct analysis of pairwise correlations (as

opposed to the voxel-centric degree maps) identifies anomalies in

functional connectivity with Broca’s area, the cerebellum and,

interestingly, the frontal lobe (BA 10), in loose agreement with

previous findings regarding disrupted fronto-temporal connectivity

associated with auditory hallucinations [37]. However, the analysis

of correlations as a function of (Euclidean) distance provides a

more nuanced perspective, as it shows weaker long-distance and

stronger short-distance correlations for the patient population.

This suggests a global re-organization of functional connections,

and is further evidence of the emergent nature of the disruptions

introduced by the disease. In the context of this finding, the

identification of specifically affected areas, or area-to-area links,

may be less relevant for the purpose of understanding functional

alterations.

Note that the hypothesis of an emergent signature for

schizophrenia does not necessarily reject the possibility of localized

activation differences with respect to the normal population, for

specific tasks or conditions. The finding that long-range functional

connections are differentially affected, as demonstrated by the

paucity of inter-hemispheric links and the weakness of long-

distance correlations, may still be interpreted in terms of localized

changes. Our findings may follow from subtle, undetectable

changes (by fMRI at least) in the local activation of a handful of

areas, that get amplified by the effect of the large number of links

that are pooled when network features are computed, and bear no

relationship to disruptions in the effective connectivity of the

network (determined, for instance, by the lack or excess of specific

neuro-transmitters). The fact is, however, that there is no such

thing as a completely ‘‘local’’ activation in the brain, since the

driving input to most areas of the central nervous system is

provided by the activity of other areas. In this sense, the hypothesis

can be reformulated to imply that the disease is concomitant with

a much stronger disruption of emergent than of local features.

While our conclusions may not necessarily apply to the

schizophrenic population in general, we believe that our approach

transcends the specific details of the particular population and

experimental protocol we studied, and can guide future investi-

gations of schizophrenia and other complex psychiatric diseases

that can be better understood as network dysfunctions. Directions

for further research include exploration of network abnormalities

in other schizophrenia studies that involve different groups of

patients and different tasks, as well as better characterization of

connections involved in the predictive discrimination.

Supporting Information

Figure S1 Demonstration of connectivity-based vs.
locally-based changes in correlation for coupled oscilla-
tors. The upper panels show the effect of changing the coupling

strength of the oscillators, leading to drastic changes in correlation

that do not affect the rates. The lower panels show the effect of

changing the intrinsic rate of one oscillator while keeping the

connection strength fixed. The correlation also changes drastically,

but the change is associated with a change in the rate.

(TIF)

Figure S2 Demonstration of connectivity-based vs.
locally-based changes in correlation for Ising spins. By

changing the local field h, it is possible to affect the correlation

while keeping constant the coupling parameter J (black arrow).

(TIF)

Figure 10. Classification results: degree vs. activation features. Three classifiers, Gaussian Naive Bayes (GNB) in panel (a), SVM in panel (b) and
sparse MRF in panel (c) are compared on two types of features, degrees and activation contrasts; (d) all three classifiers compared on long-distance
degree maps (best-performing for MRF).
doi:10.1371/journal.pone.0050625.g010
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Figure S3 Classification results comparing GNB, SVM
and sparse MRF classifiers on unnormalized (raw) activa-
tion maps vs degree maps.

(TIF)

Figure S4 Classification results comparing (a) GNB, (b)
SVM and (c) sparse MRF on correlations, clustering
coefficient and strength features.

(TIF)

Figure S5 FDR-corrected 2-sample t-test results show-
ing p-values associated with correlations between dif-
ferent features and the movement parameter. The

following features are presented: (a) pairwise voxel correlations

(edge weights) (b) voxel-wise network features; (c) activations. The

null hypothesis assumes no (significant) correlation between the

feature and the movement parameter. P-values for each feature-

movement correlation are sorted in ascending order and plotted vs

FDR baseline; FDR test select voxels with pva:k=N , a - false-

positive rate, k - the index of a p-value in the sorted sequence, N -

the total number of tests. Note that practically no p-value survives

the FDR correction, suggesting that correlations between the

features and the movement parameter are not statistically

significant.

(TIF)

Figure S6 Results for schizophrenic vs (normal+alcho-
holic) classification.
(TIF)

Table S1 Global features.

(TIF)

Table S2 Classification errors using global features schizophren-

ics vs. normal+alcoholics, baseline error about 31%.

(TIF)

Materials S1 Supplemental materials.
(PDF)
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