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1  | INTRODUC TION

Guillain‐Barré syndrome (GBS) is a type of acute autoimmune dis‐
ease, which occurs in the peripheral nerves and their roots.1,2 A 
monophasic course and varying clinical outcomes are common char‐
acteristics of GBS.3 GBS is a serious disease which develops rapidly 

and could be life‐threatening during the acute phase. Patients usually 
suffer from morbus asthenicus, flexor weakness, sensory disorders 
and neurological symptoms.4 Weakness often involves respiratory 
muscles, making patients dependent on respirators.5 Patients with 
an infectious disease are more likely to develop GBS. At nerve mem‐
branes, the antibodies produced from the immune response can 
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Abstract
Objectives: Guillain‐Barré syndrome (GBS) is a type of acute autoimmune disease, 
which occurs in peripheral nerves and their roots. There is extensive evidence that 
suggests many immune‐associated genes have essential roles in GBS. However, the 
associations between immune genes and GBS have not been sufficiently examined as 
most previous studies have only focused on individual genes rather than their entire 
interaction networks.
Materials and methods: In this study, multiple levels of data including immune‐asso‐
ciated genes, GBS‐associated genes, protein‐protein interaction (PPI) networks and 
gene expression profiles were integrated, and an immune or GBS‐directed neighbour 
co‐expressed network (IOGDNC network) and a GBS‐directed neighbour co‐ex‐
pressed network (GDNC network) were constructed.
Results: Our analysis shows the immune‐associated genes are strongly related to 
GBS‐associated genes whether at the interaction level or gene expression level. Five 
immune‐associated modules were also identified which could distinguish between 
GBS and normal samples. In addition, functional analysis indicated that immune‐as‐
sociated genes are essential in GBS.
Conclusions: Overall, these results highlight a strong relationship between immune‐
associated genes and GBS existed and provide a potential role for immune‐associated 
genes as novel diagnostic and therapeutic biomarkers for GBS.
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interact with gangliosides.6 Supportive medical care and immuno‐
therapy are two main treatment modes for GBS. Although most pa‐
tients should recover by nonspecific immunotherapy, there is still 
a need for optimized treatment and patient care throughout the 
course of disease.7 It is also essential to optimize supportive medical 
care to prevent or treat disease‐related complications. Therefore, 
there is an urgent need to identify novel biomarkers and treatment 
methods to improve the clinical features of GBS.

Guillain‐Barré syndrome has been proven to be related to im‐
mune dysfunction. A previous study reported that humoral immune 
and autoimmune responses could be triggered by pathogen infection 
(eg, Campylobacter jejuni) leading to nerve dysfunction for GBS.8 
It has also been demonstrated that the activation of prominent T 
lymphocytes (T cells) occurs in GBS and is essential in the pathogen‐
esis of a rat model of the disease. The integrins on T cells and adhe‐
sion molecules are up‐regulated on the endoneurial endothelium in 
GBS.9 Although some studies reported a relationship between the 
immune system and GBS, the roles of immune factors in the patho‐
genesis of GBS have not been explored in detail and systematically 
investigated.

Genetic factors are also important contributors for the pathogen‐
esis of GBS. Others have reported associations between the devel‐
opment of GBS and CD1 SNPs in European populations,10 a finding 
also reported in the Chinese population.11 Yuan et.al suggested 
that CCR2 is responsive to pharmacologic blockade CCR2, making 
a candidate drug target for GBS which could provide novel insight 
into exploring target‐specific anti‐inflammatory treatment methods 
for peripheral neuroinflammation.12 Genome‐wide gene expression 
analyses of GBS suggest there are gender differences based on GBS 
patients.13 Chang et.al identified networks and key pathways associ‐
ated with GBS using gene expression profiles.14 These studies impli‐
cate certain genes in the development of GBS, and gene expression 
profiles may help identify GBS‐associated pathways. However, most 
of these studies concentrated on individual genes and either used 
cell lines or limited patient samples. Specially, the global and sys‐
tematic investigation focus on the association between immune and 
GBS using genome‐wide expression profiling is absent.

In the current study, an immune‐ or GBS‐directed neighbour 
co‐expressed network (IOGDNC network) including immune‐ 
and GBS‐associated genes, immune‐associated genes only, 
GBS‐associated genes only, and other genes was constructed. 
We also extracted the first neighbours of GBS‐associated genes 
from IOGDNC networks to construct a GBS‐directed neighbour 
co‐expressed network (GDNC network). We use the two net‐
works to illustrate the roles of immune‐associated genes in GBS. 
We identified immune‐associated genes in the IOGDNC net‐
work with hub topological characteristics related to GBS. The 
immune‐ and GBS‐associated genes have the highest co‐expres‐
sion level are also found. We further identify five clusters from 
GDNC network which include some key immune‐associated and 
GBS‐associated genes, suggesting specific functions of the im‐
mune‐associated genes in GBS. Specially, some of these clusters 

could distinguish the GBS from control samples when used as a 
ebiomarker. A functional analysis reveals that the genes in these 
clusters are co‐related to immune‐related processes and oth‐
ers in GBS. Our results highlight the specific contribution of an 
immune‐directed network for GBS and could be as an effective 
resources and candidate for further research and treatment of 
GBS.

2  | MATERIAL S AND METHODS

2.1 | Expression profile of genes and PPI network 
data set

High‐throughput microarray gene expression data were ob‐
tained from Gene expression Omnibus (GEO, accession number: 
GSE31014). This data set comprises 7 Guillain‐Barré syndrome 
samples and 7 normal controls. We downloaded high‐confidence 
protein‐protein interaction (PPI) data from the Human Protein 
Reference Database (HPRD),15 which is an integrated protein data‐
base that records various protein features. PPI data from HPRD have 
been applied to thousands of network studies, especially in the field 
of disease gene discovery.16

2.2 | Human immune‐related gene data sets

All immune‐related genes in Homo sapiens were obtained from AmiGo, 
and 3068 immune genes were obtained based on 651 records.17

2.3 | Guillain‐Barré syndrome (GBS)‐
associated genes

We downloaded all GBS‐associated genes from the DisGeNET da‐
tabase, which stores data on human disease‐related genes and vari‐
ants. We obtained 561 119 gene‐disease associations comprising 
20 370 diseases or phenotypes and 17 074 genes.

2.4 | Immune‐ or GBS‐directed neighbour co‐
expressed network construction (IOGDNC)

Firstly, we calculated the Pearson correlation for gene expression be‐
tween any two gene pairs. Initial gene co‐expression networks were 
obtained by limiting the expression correlation coefficient (absolute 
coefficient value > 0.3) and false discovery rate (FDR < 0.05). For the 
second step, we mapped the PPI network pairs to our co‐expres‐
sion network and only retained the gene pairs that were common 
to the PPI network. The final network is a Guillain‐Barré‐specific 
co‐expression network. Network visualization was performed using 
Cytoscape. Interaction levels were distinguished by high and modest 
Pearson correlation coefficients. Most biological networks are scale‐
free networks. We therefore checked the power law distribution of 
our co‐expression network in MATLAB, using the degree distribu‐
tion data from our network.
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2.5 | Dissecting Guillain‐Barré syndrome and 
immune‐associated gene features in network

We classified the genes into five groups: GBS (Guillain‐Barré syn‐
drome)‐associated genes, immune genes, GBS‐ and immune‐asso‐
ciated genes, GBS‐ and non‐immune‐associated genes, and other 
genes. In order to construct the GBS‐directed neighbour co‐expres‐
sion network (GDNC network), we extracted the first neighbours 
of GBS genes and GBS‐ and non‐immune‐associated genes from 
IOGDNC network to get two GBS‐associated networks. The one‐
step neighbour network for the GBS and GBS‐ and non‐immune‐
associated genes was visualized using Cytoscape, with different 
node colours representing different gene types. For each gene set, 
we compared the number of their first neighbours in the network. 
Next, to analyse the level of interaction with neighbours among dif‐
ferent gene sets, we used a cumulative distribution function (CDF) 
to estimate the degree of the expression correlation for each gene 
category. Wilcoxon rank‐sum tests were used to compare the co‐ex‐
pression correlation coefficients between gene set pairs.

2.6 | Network cluster mining and validation of its 
classification power

We used GraphWeb tool mine important network clusters that 
are associated with GBS,18 using our constructed co‐expression 
networks as the input file. Each of the output clusters was plot‐
ted using the Cytoscape program. For each cluster, the gene ex‐
pression data were then used to classify the 14 samples in our 
study using a consensus clustering method.19 This was performed 
using the ConsensusClusterPlus package in R. We chose the op‐
timum category number determined by the point at which the 
increase in the area under the cumulative distribution function 
curve is small. Combining the classification results of the consen‐
sus clustering and the real category (disease and control) of the 
samples, we used a chi‐squared test to investigate the association 
between the two classification methods. We considered the two 
type of class to be associated when the test result was significant 
(P < 0.05).

2.7 | Identifying gene expression patterns in 
network modules

To explore the genes’ inter‐relationship in each module, we com‐
puted the Pearson correlation coefficient S between each gene pair 
in the module. Correlation heatmaps were plotted in R using the 
pheatmap package. We also compared the gene expression pat‐
terns between GBS and normal control samples in each module. 
The differentially expressed genes were identified using a t test in 
R, with a significance threshold (P value) of 0.05. Finally, we used 
a hypergeometric test to validate the enrichment between all dif‐
ferentially expressed genes and the differentially expressed genes 
in all modules.

2.8 | KEGG pathway enrichment analysis

We performed functional enrichment analysis using the GSEApy 
package in Python. Briefly, the genes in each module and all modules 
were tested against each KEGG pathway, respectively. Significant 
enrichment results (adjusted P value < 0.05) were retained for the 
following analysis.

3  | RESULTS

3.1 | Immune‐associated genes are essential in the 
process of GBS

There were 58 genes common to the immune‐related and GBS‐
related gene sets such as FCRL3, CXCL1 and HPRT1. Twenty‐four 
GBS‐specific genes and 2859 immune‐specific genes were also 
identified. We constructed an immune‐ or GBS‐directed neighbour 
co‐expressed network (IOGDNC network), which is a subnetwork 
extracted from the PPI network. The IOGDNC network included 
2497 nodes and 3442 edges (Figure 1A). First, the degree distribu‐
tion of all genes was analysed, with the degree showing the scale‐
free distribution (Figure 1B). The R‐squared was 0.9946. There were 
23 immune‐ and GBS‐associated genes, 10 GBS‐associated genes 
and 834 immune‐associated genes in the network (Figure 1C). Next, 
we compared the degree of different gene types and found GBS‐as‐
sociated and non‐immune‐associated genes, and immune‐associated 
genes showed the highest degree (Figure 1D). The top five genes 
with highest degree were CASP3, PRKCD, AKT1, EGFR and SUMO4, 
and three of these were immune‐associated genes. This suggests an 
essential role for immune‐related genes in the IOGDNC network. 
Collectively, these results indicate that immune‐related genes could 
act as essential contributors for GBS.

3.2 | Immune‐associated genes interact with GBS 
genes and show stronger co‐expression patterns

We also constructed a network termed GBS‐directed neighbour 
co‐expressed network (GDNC network) to further consider the as‐
sociation between immune‐associated and GBS‐associated genes 
(Figure 2A). The GDNC network is a subnetwork of the IOGDNC 
network based on extracting GBS‐associated genes and their di‐
rectly interacting genes. There were 20 GBS‐ and immune‐associ‐
ated genes, 10 GBS‐specific genes and 63 immune‐specific genes. 
We further analysed the co‐expression (Pearson correlation) levels 
of the interactions between different gene types (Figure 2B). The 
GBM‐e and immune‐associated genes showed the highest co‐ex‐
pression level with their interacting genes. This result suggests 
there are strong relationships between immune‐associated genes 
and GBS‐associated genes based on topological structure and ex‐
pression patterns. Additionally, we discovered the correlation of 
expression was significantly distinct among diverse kinds of genes 
(Figure 2C). A subnetwork only comprising GBS‐associated genes 
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and their directly interacting genes was extracted from the GDNC 
network (Figure 2D). This network included nine GBS‐associated 
genes, all of which interacted with immune‐associated genes. These 
GBS‐associated genes also showed strong correlations with im‐
mune‐associated genes (Figure 2E). For example, GBS‐associated 

gene NR3C1 was strongly co‐expressed with immune‐associated 
genes including STAT3, RAF1 and TRIM28. These results indicate that 
there are complex features including topological interactions and 
expression patterns among the associations between GBS‐associ‐
ated genes and immune‐associated genes.

F I G U R E  1   The properties of the immune‐ or GBS‐directed neighbour co‐expressed network (IOGDNC network). A, The global IOGDNC 
network. B, The degree distribution of all nodes in the IOGDNC network. C, The Venn diagram shows the intersect for GBS‐associated 
genes and immune‐associated genes. D, The box plots show the degree of different gene types

F I G U R E  2   The characteristics of the GBS‐directed neighbour co‐expressed network (GDNC network). A, The global GDNC network. B, 
The cumulative distribution curves of co‐expression values (Pearson correlations) for diverse gene types. C, The violin plots show the Pearson 
correlations of different kinds of genes. D, The subnetwork is extracted from the GDNC network which comprises only GBS‐associated 
genes and their interacting genes. E, The heatmap shows the correlations between GBS‐associated genes and immune‐associated genes
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3.3 | Immune‐associated network clusters are 
special classifiers in GBS

We used a public web server, GraphWeb, to identify the vital module 
clusters from our IOGDNC network. A total of five clusters were 
identified, comprising several important GBS‐ or immune‐associated 
genes (Figure 3A). The number of genes in each module was vari‐
ably distributed (Figure 3B). Most of the GBS‐associated genes in the 
five module clusters have hub topological features, connecting to 
immune genes or other genes. This topological characteristic dem‐
onstrates an essential role for GBS genes in the gene co‐expression 
network, along with other key immune genes. For instance, the hub 
CXCR4 gene in module 5 is both a GBS‐ and immune‐related gene. 
Immature plasma cells with low CXCR4 content have been observed 
in GBS patients 20; CXCR4 is also a gene that exerts significant roles 
in many immune processes, such as myelopoiesis, haematopoiesis 
and B‐cell lymphopoiesis.21,22 STAT1 can regulate multiple immune 
system reactions, such as cell death and anti‐microbial activities, as 
biological and medical studies have rapidly developed, the role of 
STAT1 in tumorigenesis has emerged.23 Researchers have demon‐
strated that JAK1 (Janus‐associated kinase 1) can serve as an inhibi‐
tor in the treatment of immune disorders.

Furthermore, we used gene expression values in each module 
to classify samples by a consensus clustering method. We used a 
chi‐squared test to validate the classification power of these mod‐
ules. The test shows that module 3 and module 5 are effective in 
distinguishing samples (P = 0.033 and 0.039 separately). The result 
of module 3 is displayed (Figure 3C‐F, other modules’ results are 
displayed in Figure S1). According to the CDF values and relative 
change in area under curve (AUC) of the CDF plot (Figure 3C,D), we 
determined that the optimum number of groups is 3 (Materials and 
methods). Furthermore, each sample group has a consensus expres‐
sion pattern (Figure 3D,F).

3.4 | Immune‐ and GBS‐associated genes are 
related on expression level in clusters

The similarity of the modules based on their co‐expression status 
was dissected. We found these modules all had a very high co‐ex‐
pression pattern for any gene pair. The fraction of the co‐expression 
value >0.5 against all gene pairs reached 90% for all module clusters. 
In particular, the proportion of the co‐expression values more than 
0.7 in each module was 73.6% on average, with the minimum value 
being 58.2% in the second module and the maximum value being 
86.1% in the fourth module. The third and fifth module's co‐expres‐
sion patterns were very significant (Figure 4A,C, for other modules, 
see Figure S2).

We also analysed gene expression in the five modules by com‐
paring the expression values for all genes between GBS and normal 
control samples. Interestingly, in all modules, the gene expression 
value differed between disease and control samples. For modules 
1‐3 and 5, the gene expression in GBS was higher than controls; 
on the contrary, the module 4 gene expression in normal control 

samples was higher than GBS samples (Figure 4B,D, and Figure S2). 
We could infer that these genes have a consistent impact in GBS. In 
addition, we discovered significantly differentially expressed genes 
by a t test (Figure 4B,D). Although the total number of differentially 
expressed genes in our module was small, it may be related to the low 
gene numbers in each module. We assessed whether genes with dif‐
ferential expression patterns between groups were enriched among 
our module gene sets (Materials and methods). Unsurprisingly, this 
enrichment was significant (P = 0.021).

3.5 | The functional analyses show the potential 
significance of immune‐associated clusters in GBS

KEGG pathway enrichment analysis was performed for our module 
clusters. Because of the low number of module genes, KEGG analy‐
sis was also performed for all genes in each module (Figure 5, the 
whole result pathways are available in Table S1). We obtained sev‐
eral important pathways that are related to the immune system, such 
as antigen processing and presentation, leucocyte transendothelial 
migration, chemokine signalling pathway, Fc gamma R‐mediated 
phagocytosis and T‐cell receptor signalling pathway. When using all 
module genes to perform pathway enrichment, we find there is a 
common pathway, chemokine signalling pathway, which is implicated 
in several biological reactions including immune responses. All mod‐
ule genes except for those in the third module were enriched in this 
pathway. Early studies identified a role for chemokines in recruit‐
ing immune cells to the site of inflammation.24 After years of study, 
new roles of chemokines have been discovered. Chemokines also 
regulate other cells to impact embryonic development and metasta‐
sis. CXCL12 is a well‐known chemokine, and it can bind with CXCR4 
(Figure 6A, module 5) to activate downstream signalling reactions.25 
Moreover, we also identified a significant immune‐related pathway, 
TNF (tumour necrosis factor) signalling pathway (Figure 6B). The 
most famous member of the TNF family is TNF‐α (Figure 6B), and its 
initial function comprises regulating the immune cells. Many studies 
have demonstrated that the abnormal expression of TNF‐α is impli‐
cated in multiple human diseases.26‐28 Researchers had shown that 
the crosstalk between TNF‐α and TNFR1 have a vital effect in the 
tumour microenvironment. They also have an important role in tu‐
mour progression, and impact metastasis, apoptosis and survival of 
tumour cells. Dysregulation of module cluster genes might therefore 
impact GBS status through acting on these immune‐associated path‐
ways, which are potential signatures for GBS.

4  | DISCUSSION

The current study integrates interaction network and expression 
profile to explore the functions and mechanisms of immune‐related 
genes in GBS. It provides novel insights into understanding the de‐
velopment and treatment for GBS. Some effective biomarkers have 
been identified for GBS in past years. However, the global identi‐
fication and characterization are lacking. Here, a comprehensive 
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F I G U R E  3   The GBS‐associated clusters and their classifying power evaluation. A, The important module clusters resulted from the 
IOGDNC network. Different genes are represented by different colours (green: GBS genes; yellow: immune genes; dark red: GBS and 
immune genes; grey: other genes). B, Numbers of genes in each cluster. C, Cumulative distribution function plot of the consensus index. 
D, Relative change in area under CDF curve of different group numbers. E, Consensus cluster heatmap of samples. F, The gene expression 
heatmap, sublabel refers to the group type classified by the consensus cluster method, and sample type refers to the disease status of the 
samples
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computational approach was developed based on GBS‐related 
genes and expression profiles to explore the features of GBS‐related 
immune genes and clusters.

Guillain‐Barré syndrome is an acute immune disease which oc‐
curs at nervous system, with a serious prognosis. It has been reported 
that GBS could be induced by immunization with peripheral‐nerve 

F I G U R E  4   Co‐expression and gene expression feature in the clusters. A,C, The co‐expression heatmap of genes in the third and fourth 
module cluster. B,D, Gene expression pattern of the third and fourth module, significantly differentially expressed genes have been labelled 
(* and ** indicate the significance level of 0.05 and 0.01, respectively)
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proteins.29 In the current analysis, we also concentrated on the asso‐
ciation between immune‐ and GBS‐related genes on gene expression 
patterns. The immune‐ and GBS‐related gene interaction network and 
expression profile data were both integrated to study the role of im‐
mune genes for GBS. Collectively, all results suggest there are strong 
associations between immune‐ and GBS‐related genes not only on 

network structure but also on expression patterns. Some immune‐
associated genes may have potential as diagnostic and treatment 
biomarkers of GBS based on differential expression and functional 
analyses.

In summary, interaction networks and expression profiles were 
integrated to reveal novel roles and insights for immune‐related 

F I G U R E  5   KEGG pathway enrichment analysis in genes. The KEGG enrichment results for the five module genes and all module genes, 
respectively

F I G U R E  6   KEGG pathway enrichment analysis in signalling pathways. A, The map of the chemokine signalling pathway. B, The map of the 
TNF signalling pathway
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genes in GBS. Immune‐ and GBS‐related genes showed close rela‐
tions both at the level of network interaction structure and expres‐
sion patterns. Some immune‐associated clusters were also identified 
for GBS, and these core clusters comprised special expression fea‐
tures. Specially, gene expression of these modules could distinguish 
the GBS and normal samples. The functional analyses highlighted 
the molecular mechanisms of immune‐associated genes in GBS.

5  | CONCLUSIONS

We constructed a GBS‐directed neighbour co‐expressed network 
(IOGDNC network) and a GBS‐directed neighbour co‐expressed 
network (GDNC network) and found an important role of immune 
and GBS gene in GBS. We identified five clusters from the GDNC 
network, some of which can serve as biomarkers to distinguish be‐
tween GBS and control samples. In addition, the genes in these clus‐
ters displayed different expression characteristics between GBS and 
control samples. Furthermore, pathway enrichment analyses clearly 
illustrate the functions for these genes in each cluster. Our results 
provide support for these immune‐associated genes as potential 
therapeutic targets for GBS.
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