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SUMMARY

Synthetic biology has the potential to revolutionize the biotech industry and our
everyday lives and is already making an impact. Developing synthetic biology ap-
plications requires several steps including design andmodeling efforts whichmay
be performed by in silico tools. In this work, we have developed two such tools,
Eukaryotic Genetic Circuit Design (EuGeneCiD) and Modeling (EuGeneCiM),
which use optimization concepts and bioparts including promotors, transcripts,
and terminators in designing and modeling genetic circuits. EuGeneCiD and Eu-
GeneCiM preclude problematic designs leading to future synthetic biology
application development pipelines. EuGeneCiD and EuGeneCiM are applied to
developing 30 basic logic gates as genetic circuit conceptualizations which
respond to heavy metal ions pairs as input signals for Arabidopsis thaliana. For
each conceptualization, hundreds of potential solutions were designed and
modeled. Demonstrating its time-dependence and the importance of including
enzyme and transcript degradation in modeling, EuGeneCiM is used to model a
repressilator circuit.

INTRODUCTION

Synthetic biology is the design of living systems, utilizing engineering principles, to accomplish a desired task

or purpose (Khalil and Collins, 2010). To date, applications include novel biochemical synthesis pathways and

many biological analogs of electronic circuits such as logic gates, sensors, toggles, oscillators, and switches

(Khalil and Collins, 2010; Kim and Winfree, 2011; Liu and Stewart, 2015; Scheller et al., 2020) with a long

termgoal of programmable biology (Xia et al., 2019). Commercial products which are the result of applications

of synthetic biology are emerging in restaurants (the Impossible Burger), pharmacies (Januvia indicated for

diabetes), electronics (Hyaline used in foldable smartphones), and hospitals (Kymriah, a cell-based therapy

indicated for B-cell acute lymphoblastic leukemia) highlighting the emerging roles of synthetic biology

throughout society (Voigt, 2020). Therefore, the tools which aid in the development of novel synthetic biology

applications will be of both scientific and commercial value to accelerate the development of new

applications. There are five major stages in the development of a new synthetic biology application: Concep-

tualization; design modeling; construction; probing, testing, and validation (Liu and Stewart, 2015). As a first

step toward creating a synthetic biology application pipeline from a user-defined conceptualization, the

design and modeling steps of this workflow will be explicitly linked in this work using two novel deterministic

in silico optimization-based tools which can be largely automated.

Particularly in the design of new applications, synthetic biology often relies on the intuition of biologists

and engineers; their knowledge of available promotors, genes, terminators, transcripts, enzymes, and pro-

teins (collectively, bioparts) and the associated systems; and their design ability to create new applications.

This approach is generally limited to system experts and to designs which are intuitive. Alternatively, a

computational model-driven approach is advantageous in that it allows for non-intuitive designs and the

quick in silico screening thereof, so that only designs with the greatest chance of success are constructed.

Several design and modeling tools exist, such as Cello 2.0 (Chen et al., 2020), OptCircuit (Dasika and Mar-

anas, 2008), the work of Zomorrodi and Maranas (2014) (the tool was unnamed), EQuIP (Davidsohn et al.,

2015), SynBioSS (Hill et al., 2008), and several others which may be adapted to various systems and to

screening of genetic circuits (Liu and Stewart, 2015). Figure 1 summarizes the unique approach to the prob-

lem of design along with advantages and disadvantages of each of these tools within the context of
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Figure 1. Steps of synthetic biology application development and some in silico tools

Synthetic biology applications generally have five steps: Conceptualization, design, modeling, construction, and

probing, testing, and validation. Of these steps, three can be performed in silico. Several independent design and

modeling tools exist for the second and third stages of this workflow, including Cello, the work of Zomorrodi andMaranas

(2014) (in addition to their previous OptCircuit), and EQuIP. Introduced here are the EuGeneCiD and EuGeneCiM tools

which integrate the design and modeling steps as design solutions are passed from EuGeneCiD to be modeled by

EuGeneCiM. For the listed tools, a short list of strengths and weaknesses is included to help better position this work in

the context of the current state of the field.
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developing synthetic biology applications. Although these tools have successfully designed or simulated

behaviors replicated in vivo, the most overarching challenge associated with these tools is their specializa-

tion for design or modeling tasks with no clear workflow or method by which to link the two activities. This is

highlighted in that some design tools, such as Cello 2.0, published synthetic biology workflows which skip

the modeling step altogether and used more expensive and time-consuming in vivo screening processes

(Borujeni et al., 2020). A particularly difficult problem in current optimization-based design tools such as

Zomorrodi and Maranas (2014), and OptCircuit (Dasika and Maranas, 2008) are Bistable Orthogonal De-

signs (BODs). These produced design solutions that would not function as desired. For instance, consider
2 iScience 24, 103000, September 24, 2021



Figure 2. Example bistable orthogonal design (BOD)

This figure illustrates a major category of problematic potential designs which may be produced by optimization-based genetic circuit design tools. From a

conceptualized Cu2+/Zn2+ responsive AND circuit, it is possible, without attribution equations, to create Bistable Orthoganol Design (BOD) which can

produce the desired response, yet not be responding to the desired signals. Text in the image describes why this occurs. One of the major innovations in

EuGeneCiD is the development of attribution equations to avoid BODs.
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the example shown in Figure 2, where it is desired to produce a circuit with an AND response to copper and

zinc ions using a GFP reporter. Using only a handful of parts, it is possible to produce a circuit with two sta-

ble states (where both tetR and GFP are produced or only cI is produced). Further, these two stable states

are independent of (or orthogonal to) the signals which the circuit should respond (e.g., the copper and

zinc ions). For such a BOD, a solver might then pick whichever state is necessary to match the desired

conceptualized circuit behavior irrespective of the conditions, rendering the circuit effectively useless for

the proposed application. These BODs are technically correct solutions to the conventional optimiza-

tion-based tools but require further manual scrutiny to identify and remove these problematic solutions.

When producing large numbers of solutions, BODs generally outnumber true designs and can overwhelm

a researcher’s ability to screen.

One promising area for synthetic biology applications is in plants, particularly commercially important

crops such as maize (Zea mays), rice (Oryza sativa), and barley (Hordeum vulgare). Applications in plants

include increasing nutrient content (Beyer et al., 2002; Gonzali et al., 2009), synthesizing novel chemicals

(Liu and Stewart, 2015; Mortimer, 2019), improving crop resilience (Pixley et al., 2019), and synthetic sensors

(Liu and Stewart, 2015). Here, we have chosen to demonstrate our novel tools using themodel plant species

Arabidopsis thaliana (hereafter, Arabidopsis) because it is well studied and has been used for many syn-

thetic biology applications (Holland and Jez, 2018). We have further chosen to design and model plant-

based synthetic sensors of heavy metal in the root of Arabidopsis. Heavy metal pollution occurs as a result

of human activities (such as mining or manufacturing), and is toxic to living organisms at sufficient concen-

trations, even essential elements such as Zinc. Thesemetal ions can enter the soil via several possible routes

including fromwater and the air (Vardhan et al., 2019; Vareda et al., 2019). Three of themost common heavy

metal pollutants are Copper, Cadmium, and Zinc (Vardhan et al., 2019), to which Arabidopsis has some nat-

ural response mechanisms. By creating reporter systems which respond to these heavy metal ions, it may

be possible in the future to develop synthetic biology applications in crop species for metal ion removal or

mitigation from contaminated soils through phytoremediation (Jacob et al., 2018). Different logical com-

binations of present ions might require different phytoremediation strategies; therefore, the construction

of logic gates responding metal ion signals would be a logical first step in the long-term development of

these strategies and applications.

For developing a combined design and modeling workflow, in this work, we developed two deterministic

optimization-based tools, namely the Eukaryotic Genetic Circuit Design (EuGeneCiD) and Modeling (Eu-

GeneCiM) tools, which utilize an input of the conceptualized circuit behavior and perform an automated

simulation of the optimal and suboptimal circuit designs for manual screening. EuGeneCiD provides

one key improvement upon previous optimization-based tools (Zomorrodi and Maranas, 2014; Dasika
iScience 24, 103000, September 24, 2021 3
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and Maranas, 2008) by developing constraints (called the attribution constraints) which precludes BODs. In

addition, several other distinct differences and improvements distinguish the EuGeneCiD tool from either

of these previous works. First, EuGeneCiD is designed for eukaryotic systems where Ribosome Binding

Sites (RBSs) are not a critical design element, but replaces such elements with terminators which are impor-

tant in eukaryotic gene expression, particularly for plants (de Felippes et al., 2020; Nagaya et al., 2010). Sec-

ond, the rate of mRNA and protein degradation on circuit behavior is incorporated, which leads to new

design possibilities. Third, the tool was made more granular so that concentration values are not always

integer values. Fourth, the layers of the central dogma (transcription and translation) are mathematically

separated so that, aside from relative concentration levels, relative levels of mRNA for genes might also

be designed and simulated. EuGeneCiM takes these unique elements and, utilizing a design passed

from EuGeneCiD, simulates circuit behavior over a given number of hypothetical time points, which will

allow for screening of circuit behavior before constructing these proposed synthetic biology applications.

Using bioparts, which are either a part of natural Arabidopsis heavy metal response mechanisms, or shown

to function in Arabidopsis from other species, and fluorescent proteins as state reporters, EuGeneCiD is

applied to developing these synthetic heavy metal sensors in Arabidopsis. EuGeneCiD was used to create

design solutions for 30 different genetic circuits formed from combining nine unique two-input logic gates

with three different input signal pairs. These input signals are the presence of Cadmium, Copper, and Zinc

ions at high or toxic concentrations. For each genetic circuit conceptualization which was able to be de-

signed from the given biopart library, EuGeneCiD generated hundreds of feasible solution designs,

each with a corresponding dynamic simulation from EuGeneCiM. Aside from basic logic circuits, repressi-

lators have also proven to be a useful control schema in synthetic biology, allowing for oscillating gene

expression (English et al., 2021). Therefore, EuGeneCiM is used to model the dynamic behavior of a repres-

silator circuit to demonstrate its utility as a stand-alone dynamic modeling tool and the value of incorpo-

rating mRNA and protein degradation in modeling efforts. Together, the EuGeneCiD and EuGeneCiM

tools can hypothesize genetic circuit designs and simulate their behavior to increase the chances that a

plant might have the desired behavior when transformed, potentially saving time and resources. This

work could be the basis for the development of a synthetic biology application pipeline. Therefore, for

the ease of use and the facilitation of this pipeline, various programs have been developed to make EuGe-

neCiD and EuGeneCiM user-friendly, and a related protocol paper on the use of these tools will be pub-

lished to accompany this work. Further, the design solutions produced here could form the basis of future

heavy metal phytoremediation applications of synthetic biology particularly in important crops like Zea

mays (maize). Maize has been identified as both Cadmium tolerant (Rizwan et al., 2017) and as a Cadmium

hyperaccumulator (Wuana and Okieimen, 2010), and is already used for heavy metal phytoremediation

(Rizwan et al., 2017). Additionally, maize has been identified as a bioaccumulator of both Zinc and Copper

(Sekara et al., 2005; Wuana and Okieimen, 2010). From this, maize is already particularly well suited for phy-

toremediation applications, and could be engineered through synthetic biology to be superb, solving mul-

tiple problems at a stroke by providing food from otherwise toxic farmland while cleansing it of heavy metal

ions toxic to both humans and other plants.

RESULTS

Selection of test system and synthetic biology conceptualizations

Arabidopsis was chosen as the test system for the development and subsequent application of the EuGe-

neCiD tool since it is a model plant system to which systems biology has often been applied (Holland and

Jez, 2018). It was decided to develop heavy metal ion biosensors in the Arabidopsis root, which would

report sensor state using fluorescent proteins. A plant system, in particular, was chosen for this work

because in the future EuGeneCiD and EuGeneCiM will be applied to plants of biotechnological and agro-

nomic importance (e.g., Zea mays) for various applications related to plant health and fitness, potentially

including phytoremediation of heavy metal pollution. Since phytoremediation strategies may change de-

pending on the metal ion(s) present, basic logic gates are conceptualized here which report on the pres-

ence or absence of the metal ions.

Development of the Eukaryotic Genetic Circuit Design (EuGeneCiD) tool

EuGeneCiD was conceived and developed to address the limitation of the current state-of-the-art optimi-

zation-based design tools for synthetic biology applications (Zomorrodi and Maranas, 2014; Dasika and

Maranas, 2008). Particularly, by changing the focus to eukaryotic systems, allowing granularity, modeling

transcript abundance, adding terminators as a design element (which are particularly important in plant
4 iScience 24, 103000, September 24, 2021
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synthetic biology), and creating the attribution constraints. The initial EuGeneCiD formulation was inspired

by other optimization-based circuit design works (Ali R Zomorrodi andMaranas, 2014; Dasika andMaranas,

2008) and was formulated specifically to apply to eukaryotic systems and incorporate biopart degradation.

This involved using terminators, as opposed to RBSs, as part of the design; incorporating mRNA and pro-

tein degradation; having amore granular values of concentration; and reporting relative mRNA abundance

for particular genes. Attempts were made to incorporate time to make EuGeneCiD a dynamic design tool.

This would influence various design variables, such as concentration, yet this proved computationally

intractable and was abandoned. At this stage in development, it was decided to separate the formulations

of design and modeling tools. When applying this first version of the EuGeneCiD tool to a modest sized

biopart database, the issue of BODs became apparent and pressing. The final stages of the development

of EuGeneCiD involved the creation of the attribution constraints to prevent BODs. These attribution con-

straints account for a high fraction of all constraints (about 42%) and variables (about 42%) in the formula-

tion of EuGeneCiD and thus account for a fair amount of the tools’ computational expense. This tradeoff is

considered worthwhile in that it allows for the preclusion of BOD solutions which can account for greater

than 90% of solutions in some instances when the attribution equations are not included. The final formu-

lation of EuGeneCiD is a Mixed Integer Linear Programming (MILP) problem, with a single-level objective

function maximizing the concentration of desired enzymes and minimizing that of undesired enzymes.

Initial testing of both EuGeneCiD and EuGeneCiM was conducted using hypothetical bioparts, details

of which are provided in the GitHub repository associated with this work (github.com/ssbio/

EuGeneCiDM or https://doi.org/10.5281/zenodo.4762590). The final formulation has over three dozen

constraints and variables which are detailed in the STAR Methods section.
Development of the Eukaryotic Genetic Circuit Modeling (EuGeneCiM) tool

EuGeneCiM was conceived and developed to address the lack to optimization-based tools for the

modeling of proposed synthetic biology application designs, particularly one which might readily be

passed designs for screening. As previously stated, EuGeneCiM initial development began when it was

noticed that including time-based simulations inside the EuGeneCiD tool was computationally intractable.

EuGeneCiM is similar to EuGeneCiD in formulation with threemajor exceptions. First, the design variable is

made a parameter in EuGeneCiM as these values are passed from an optimal or suboptimal solution of

EuGeneCiM. Second, as EuGeneCiM does not design, the attribution constraints are unnecessary and

therefore unused, thus considerably boosting solution speed. Third, as the design is not variable, this al-

lows certain simplifications in the formulation. The final formulation has approximately two dozen con-

straints and variables which are detailed in the STAR Methods section.
Initial testing of the EuGeneCiD and EuGeneCiM tools

Initial testing of both EuGeneCiD and EuGeneCiM was conducted using a test bioparts database and test

codes, provided in the GitHub repository associated with this work (github.com/ssbio/EuGeneCiDM). This

test bioparts library consists of 33 promotors, 13 transcripts, 10 terminators, and 13 proteins and enzymes.

Versions of the EuGeneCiD and EuGeneCiM workflow were created which allow for one-, two-, and three-

input circuit designs. These circuits include the following logics: ADDER (three inputs), AND (two inputs),

BUFFER (one input), HALF ADDER (two inputs), NAND (two inputs), NOR (two inputs), NOT (one input), OR

(two inputs), XNOR (two inputs), and XOR (two inputs). Through these tests, numerical issues such as BODs

were discovered. The final EuGeneCiD and EuGeneCiM workflow was not applied to these test circuits and

database, though these test applications show that EuGeneCiD and EuGeneCiM can be adapted to cir-

cuits with other than two input signals.
Definition of the bioparts database

Following the creation and initial testing of the EuGeneCiD and EuGeneCiM tools, a database of real bio-

parts was created for the design of genetic circuits which respond to Cadmium (Cd2+), Copper (Cu2+), or

Zinc (Zn2+) ions, or combinations thereof to design and simulate various logic gates. Note that bioparts

which are responsive to the metal ions do not directly respond to those ions, but rather make use of the

native metal sensing or signaling pathways of Arabidopsis and are bioparts whose activity is affected by

these signaling pathways. This approach is used because it was decided that it would be too complex

to introduce the various signal pathways in a target organism with each design. Promotors included in

the biopart database are shown in Figure 3. Details on the sources for these bioparts, their parameteriza-

tion, and their reason for inclusion in the database can be found in Table S1.
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Figure 3. Bioparts database for the current work

TheEuGeneCiDandEuGeneCiMToolsdesignedrequire thedefinitionofbiopartsdatabases fromwhich topickdesignelements

and to define the properties of thoseelements for bothdesignandmodeling. For compactness in other images, introducedhere

is a shorthand for promotor, transcript, terminator, and protein characteristics. The shorthand here is then used to define each

biopart included in thebioparts library used for thiswork,which includespromotors, transcripts, terminators, andproteins.Source

species acronyms for listed bioparts are as follows: Ath –Arabidopsis thaliana, Osa –Oryzae sativa, Eco –Escherichia coli, Vco –

Verrillofungia coninna, Avi –Aequorea victoria, Atu–Agrovacterium tumefaciens, Cmv–Califlower Mosaic Virus.
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Application of EuGeneCiD and EuGeneCiM

The EuGeneCiD and EuGeneCiM tools are embedded in the workflow shown in Figure 4. In summary, this

workflow uses the bioparts library and the synthetic biology application conceptualization as inputs from

which the EuGeneCiD problem is attempted. Should a solution be found, EuGeneCiM is solved across

several time points to model the designed circuit. If a solution is not found, there are two possibilities:

all possible designs with the specified parameters (primarily circuit size) have been identified, or that all

possible designs have been identified which are smaller than some maximum allowed circuit size. In the

former case, the size of the sought design is incremented, and EuGeneCiD is attempted again. Otherwise,

the selection of designs is returned, and the user may select a design from the design and modeling infor-

mation. For greater details, see STAR Methods.

To demonstrate the utility of EuGeneCiD and EuGeneCiM tools, it was decided to use these tools to design

and model 30 unique genetic circuit conceptualizations using the defined real bioparts database. Each
6 iScience 24, 103000, September 24, 2021
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Figure 4. Workflow of the EuGeneCiD and EuGeneCiMtools

The EuGeneCiD and EuGeneCiM tools were designed to be used in concert to complete the design and modeling steps of synthetic biology applications

development together. This workflow begins with a defined conceptualization of the application (in the form of a logic table) and a bioparts library which

defines and describes potential design elements (see Figure 2). Then an attempt to solve EuGeneCiD is made, with three possible outcomes. First, no

solution is found at the current design size limit (limiting the number of allowed triads), in which case this limit is incremented, and EuGeneCiD is attempted

again. Should design or run limits be reached, or if no further designs exist within specified restrictions, the set of designs is returned which can be manually

screened for candidates likely to succeed. Should the attempt to solve EuGeneCiD be successful, a circuit design is the result, which is passed to EuGeneCiM

for modeling. This modeling solves EuGeneCiM at each time point and applies protein and transcript degradation between time points for the full set of

desiredmodel time points. This results in a simulation of design behavior at each time point which will be reported. The current solution is then precluded by

defining a new integer cut and the cycle is repeated.
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conceptualization will have its own input file; an example is provided in Table S2, containing all information

from Table S1 in addition to a logic table, and a parameter specifying the number of time points to model.

These unique conceptualizations were defined both by the logic circuit and the ligand pair to which that

circuit is to respond. The logic circuits to which EuGeneCiD and EuGeneCiM were used to design and

model include BUFFER (also known as a toggle circuit), AND, NIMPLY, converse non-implication (abbrevi-

ated CNI), HALF ADDER, NAND, NOR, OR, XNOR, and XOR. Note that CNI is included because it is logi-

cally equivalent to NIMPLY with a reversed ligand order. Further, this study does not purport to study all

possible or useful logic gates, but rather these 30 conceptualizations will show the usefulness of the EuGe-

neCiD and EuGeneCiM workflow to apply to a variety of genetic circuit conceptualizations. Divalent heavy

metal ion pairs, representing common heavy metal pollutants (Vardhan et al., 2019), were selected to serve

as the signals for the logic gates by their presence or absence. Themetal ion signal pairs used are Cadmium

and Copper; Cadmium and Zinc; and Copper and Zinc. The number line shown in Figure 5 shows each com-

bination of metal ion signal and logic gate.

It should be noted that the applications of EuGeneCiD and EuGeneCiM when applied to the real bioparts

database do not make full use of the in-built capabilities of these algorithms. First, these algorithms have

the potential to consider alternative splicing, through definitions of the variable which maps transcripts to

its encoded enzyme (rje) and transcriptional efficiency (hj). The former can be used to define more than one

transcript-enzyme encoding relationships and the latter can be lowered to reflect fractions of transcript be-

ing used to encode each alternative splice. In addition, the capability exists for enzymes to be regulated by

environmental cues and other enzymes. These capabilities are not exploited in this application because it

was desired to apply these tools to a plant system, and Arabidopsis appears to not have such sophisticated

bioparts natively (at least for heavy metal signaling and resonse pathways), nor have such parts been en-

gineered for Arabidopsis. However, these capabilities will function in the event that they are needed

and defined in the input bioparts library, as these functions have been tested using the test database

described earlier.

General EuGeneCiDsolution trends

Several general trends emerge from the sets of solutions produced by EuGeneCiD and can be identified in

Figure 5. First, as highlighted in Figure 5, using the given database, it appears that certain simpler logic

gates such as BUFFER, AND, NIMPLY, NOR, and OR are easier to find design solutions for. This is indicated

by high numbers of solutions after the seven day run time, short solution times (minimum, average, and

maximum), and a large percentage of reported solutions being proven optimal solutions (as opposed to

integer solutions which do not guarantee optimality). On the other hand, circuits such as XNOR, XOR,

and HALF ADDER are generally more difficult to find design solutions as indicated by fewer solutions,

longer solve time, and low percentage of reported solutions being proven optimal. For these circuits,

the majority of solutions are integer solutions without proven local or global optimality. In addition, these

more difficult circuits generally also have higher minimum and mode circuit sizes, as well as longer solution

times. These circuits are also more likely to have been terminated by reaching the seven day time limit, as

opposed to the easier circuits which weremore likely to be terminated by reaching themaximum number of

allowed solutions. As shown in Figure 5, more complex solutions generally require more triads (solution

size is reported as the number of triads in the design) to achieve the desired logic.

A particularly interesting trend in EuGeneCiD solutions, shown in Figure 5, is that the maximum objective

function value rarely occurs in the first solution, with the exception of the Cu2+/Zn2+ XOR and Zn2+ BUFFER

responsive circuits, though the minimum objective value sometimes occurs at this point. This can be for

multiple reasons. The objective function is defined as the difference of response strength under desired
8 iScience 24, 103000, September 24, 2021



Figure 5. Visualized holistic EuGeneCiDresults

Thisfigure highlights several key result metrics of the application of EuGeneCiD to a large number of synthetic biology

application conceptualizations seeking a large number of solutions. Each bar indicates the minimum, mean, and maximum

solution time for specified inputs (indicated by color) and logic gate (indicated by the logic gate drawing on the bar). The

number to the right of the bar indicates the number of solutions achieved, and the pie chart to the right of the bar indicates

what percent (rounded to the nearest whole percent) of those solutions were proven to be globally optimal. To the left of the

bar are given the solution size (in number of triads in eachdesign) statistics, formatted as ‘‘min/max (mode)’’. Above the legend,

which defines the symbols and colors used, is given the characteristics of the database used to derive these solution sets.
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response conditions and response strength under undesired condition. This formulation ideally will favor

solutions with strong responses and low expression leakiness. See STAR Methods for the mathematical

formulation. The first possibility is that a biopart with this inherent function might be leaky or not particu-

larly strong, yet would be the simplest possible solution. A second possibility is, due to the nature of the

EuGeneCiD objective function, different circuit conceptualizations will have slightly different priorities in

their optimal designs. In summary, depending on the sparsity of the response vector(s) in the input logic

table, a slight favoritism for low leakiness of the response protein(s) or for a strong response pulse may

be favored. A full discussion of this can be found in the STAR Methods.
iScience 24, 103000, September 24, 2021 9
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Dissecting selected circuit designs

This study produced a very large number of design andmodeling results, more than 23,000 to be precise. This

volume allows for analysis of the broad solution trends discussed while precluding the analysis of each indi-

vidual solution. All solutions may be found in the associated GitHub repository (github.com/ssbio/

EuGeneCiDM). Additionally, code is provided in the repository which will plot any given solution (see the pro-

vided documentation in GitHub). This code was used in part to generate the graphs in Figures 6 and S4

(showing example BUFFER solutions). By investigating several solutions using this code, we have selected

three representative circuit results (two of which could be defined as likely to be successful and one is unlikely

to be successful) as example results, shown in Figure 6. One general feature of interest in the EuGeneCiM tool

can be seen in each of themodeling results graphs: the start-up time. EuGeneCiM essentially assumes that the

genetic circuit is newly introduced into the target organism at time point 0; therefore, there is some delay

(2 time points) between introduction of the circuit and the response of the circuit to environmental conditions.

This delay is caused by the enforced delays in the EuGeneCiM algorithm. The first enforced delay is between

transcription and translation (allowing for phenomena such as time for RNA processing and transport). The

second is between translation and protein activity (allowing for phenomena like protein folder and localiza-

tion). A second point of interest is that, while both tools use Mixed Integer Linear Programming, the curves

produced are non-linear. This is because, in EuGeneCiM, the half-life based degradation of transcripts and

proteins is calculated between time steps as a ‘‘carry over’’ value from one time point to the next (as shown

in the workflow image Figure 4 and described in the STAR Methods).

The first successful example, solution #41 for a Cd2+/Cu2+ responsive AND circuit, is shown in the top third

of Figure 6. Solution #41 was chosen as it is the Cd2+/Cu2+ responsive AND circuit with themaximum objec-

tive function value, likely due to the multiple gated encoding of GFP. This solution contains four triads (pro-

motor/gene/terminator groupings which specify the circuit design): PFRO2/gene_cI/HSPt, Para/gene_cI/

CaMV25St, PRM/gene_GFP/HSPt, and PEXO70B1_11/gene_GFP/HSPt. There are two responsive elements

to the signal ions, promotors PFRO2 (responding to Cd2+) and PEXO70B1_11 (responding to Cu2+). These

then regulate the expression of GFP indirectly and directly, respectively. Note that while Para is regulated

by araC, because araC is not encoded, it will act like a constitutive promotor. Due to the short half-life of cI,

this circuit maintains a constitutive pool of cI which is below the concentration threshold necessary for a cI-

expressing phenotype unless Cd2+ is present. This gates the expression of GFP from the PRM/gene_GFP/

HSPt triad, preventing GFP expression from this triad unless Cd2+ is present. GFP expression induced by

Cu2+ is regulated directly. This causes the circuit to be quicker to respond to the presence of Cu2+ than to

Cd2+ in the modeling results. The double-encoding of the GFP results in the significantly stronger response

of the circuit to both conditions, than to a single condition. This is one potential drawback of the binary

encoding of the conceptualization in that there is no mechanism to ensure equal expression in all cases

where expression is desired, since phenotype is what is desired, rather than strength of that phenotype.

The second successful example, solution #11 of a Cu2+ NIMPLY Zn2+ circuit, is shown in the middle third of Fig-

ure 6 also uses cI as the desired control enzyme which gates expression of GFP. This circuit uses three triads in

the design: PGSTF1/gene_cI/HSPt, PFDR3/gene_cI/NOSt, and PRM/gene_GFP/HSPt. For controlling the expres-

sion of cI, a moderately strong promotor, PFDR3 (which is repressed by Zn2+), is paired with a relatively inefficient

terminator NOSt, which results in a pool of cI transcripts which can quickly build or degrade in the absence or

presence of Zn2+ but which is not sufficient for cI-expression phenotype. The PGSTF1/gene_cI/HSPt triad then is

also a deciding factor in cI phenotype, encoding stable RNA (from an efficient terminator, HSPt) from a mod-

erate promotor (PGSTF1). This second promotor results in a slowly building yet stable pool of cI transcripts.

When both triads produce cI, the concentration is high enough for cI expression. When cI is expressed, the

very strong promotor PRM is activated, resulting in strongGFP expression.Whenmodeled, this mixed approach

to cI production (using from quick- and slow-accumulating pools of cI transcript) in combination with the sort

half-life of cI results in a slow-responding circuit (only beginning to diverge from other conditions at time point

7), as expression fromboth triads is required. Yet, when cI is at sufficient concentration, the circuit responds very

strongly. It is highly possible that the response strength would be greater than what is shown if the circuit were

modeled for more time points. Theoretically, this circuit could be quickly ‘‘shut off’’ by lack of a Cu2+ signal or

especially the presence of a Zn2+ signal. Due to the single-encoded gene_GFP, GFP expression is uniform and

low in non-expressive conditions.

The provided unsuccessful solution is solution #26 for a Cd2+/Zn2+ responsive NAND circuit, shown in the

bottom third of Figure 6. As with the previous example, three triads are used, two of which gate the
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Figure 6. Example EuGeneCiD and EuGeneCiMsolutions

Shown here are three circuit conceptualizations, EuGeneCiD design solutions, and their associated EuGeneCiM models.

The conceptualization is shown as the input logic table. The solution is shown with the design triads and produced

enzymes with regulatory relations shown (green for activation, red for inhibition), including their relative strengths (shown

as numbers on top of the regulation line). The modeled design responses are shown in the rightmost panel; where purple

squares indicate the presence of both signals; blue circles and red crosses denote only one signal (see individual

legends); and gray plus signs indicate no signal. Of the provided solutions, two of were shown to be potentially successful

(Cd2+/Cu2+ OR circuit solution #41 and Cu2+ NIMPLY Zn2+ circuit solution #11) and one shown to be potentially

unsuccessful (Cd2+/Zn2+ NAND Circuit solution #26) by EuGeneCiM.
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expression of GFP through a control enzyme, in this case, araC. The triads of this design are PCdI3/ge-

ne_araC/CaMV25St, PHYP1/gene_araC/NOSt, and Para/gene_GFP/HSPt. One interesting point to note is

that the used promotors are weaker and terminators are less efficient than those generally used with cI
iScience 24, 103000, September 24, 2021 11
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because the control enzyme, araC, has a longer half-life. In this unsuccessful example, the circuit responds

correctly to the presence of both Cd2+ and Zn2+; of Zn2+; and to no signal. This circuit fails in the condition

at which only Cd2+ is present. This is because, while EuGeneCiD partially accounts for enzyme degradation,

it does not account for accumulation as it predicts that under this condition araC will not accumulate suf-

ficiently to be active. However, when accounting for accumulation, EuGeneCiMpredicts that araC will accu-

mulate enough for an araC-expressed phenotype around time point 5, resulting in a sharp decline in GFP

response from this point. This circuit could be potentially corrected by replacing the terminator in the PCdI3/

gene_araC/CaMV25St triad with a less efficient terminator. Unlike the other examples, this also illustrates

that the trend of EuGeneCiM models might change direction and even sign during the simulation. This

change during the simulation may result in a correct circuit response, whereas previous time points might

suggest an incorrect response (consider the condition where both Cd2+ and Zn2+ are present). This sug-

gests that for some circuits it may be useful to look at longer-term behavior in some cases where a designed

circuit may be modeled to show an incorrect response.
EuGeneCiM-modeled repressilator

To demonstrate the utility of EuGeneCiM as an independent modeling tool, it was decided to model a re-

pressilator circuit. Repressilator circuits rely on the degradation of proteins whose expression is repressed

to allow a downstream protein to be expressed, and therefore could not be modeled by non-dynamic ge-

netic circuit modeling tools, or tools which do not consider transcript or protein degradation. A five-triad

repressilator circuit was manually designed (because a repressilator cannot be designed by the non-dy-

namic EuGeneCiD) and is shown in Figure 7. This circuit utilizes araC, cI, and tetR control enzymes from

E. coli, which have been reported to be used in synthetic biology applications in Arabidopsis (Messing,

1998), are well characterized, and which control promotor expression. All these enzyme inhibit one promo-

tor in the biopart library, and importantly two of these enzymes have corresponding promotors which they

activate, araC and cI. No promotor could be found which was activated by tetR. These activated promotors

encode reporting fluorescent enzymes mKO (activated by araC) and GFP (activated by cI) identified

through the fluorescent protein database (fpbase.org). Using EuGeneCiM, it was decided tomodel the first

100 relative time points of the simulation of the repressilator.

This simulation highlights several important features of the EuGeneCiM for which there was no opportunity

for discussion when modeling EuGeneCiD-created designs. First, transcript production, transcript level

(shown in Figure 7C), enzyme production, and enzyme level (shown in Figure 7B) are all modeled and

tracked by EuGeneCiM (complete results can be found in the GitHub associated with this work at

github.com/ssbio/EuGeneCiDM). Second, the shape of the response curves is of interest. As shown best

by the tetR response curve (purple), EuGeneCiM models can achieve steady state (or near steady state)

and be perturbed from that state. This curve also shows that EuGeneCiM is capable of modeling oscillatory

circuit designs. This indicates that EuGeneCiM is not wholly dependent on EuGeneCiD and can be used as

an independent modeling tool. Further, upon introducing three enzymes, there is some unsteady-state

start-up period where the enzymes in question are all produced prior to some control enzyme taking domi-

nance. Using GFP as an example, this period is approximately the times from time points 0 to 12. This is the

start-up period, and varies to some extent between enzymes, though it appears that GFP has the longest

such period. It can also be seen in these graphs that the amplitude of enzyme responses are uneven be-

tween enzymes. This is due to differences in promotor strength (stronger promotor, higher peak), termi-

nator efficiency (more efficient terminator, higher peak), and enzyme half-life (longer half-life, higher

peak). These factors also influence the breadth of the peaks, with shallower peaks also being broader,

and taller peaks being narrower, with cI and GFP as the two more extreme cases in each direction, respec-

tively. However, it should be noted that regardless of the breadth or height of the peaks, all enzyme expres-

sions have a period of 22 time points, a period which is indefinitely stable (this repressilator has been

modeled out to 500 time points).

One potential discrepancy with in vivo behavior is that repressilator responses in vivo are generally sinusoi-

dal in behavior, in EGeneCiM models, the behavior is not perfectly sinusoidal in shape with sharp

discontinuities at peak and trough. This is because transcription of a triad is modeled as a binary (either

transcribed or not), rather than as a more continuous process as might occur in vivo. However, this wave

has several similarities to a sine wave including a well-defined period (22 time points), amplitude (approx-

imately 8 units), y-intercept (varies depending on the enzyme of interest, for GFP it is 10.37 units, defined

from the average post-start-up), and x-intercept (varies depending on the enzyme of interest, for GFP this is
12 iScience 24, 103000, September 24, 2021
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Figure 7. Repressilator simulated using the EuGeneCiMtool

While the EuGeneCiD and EuGeneCiM tools were designed to use in concert, they can be used independently, as

evidenced here where EuGeneCiM is used to model a manually-designed repressilator.

(A) Shows the repressilator design with promotors (black), transcripts (green), and terminators (red) (collectively the

design triads) in addition to the transcripts (light purple) and proteins (purple) produced thereby. The shorthand used

throughout this work is used to show the characterization of these parts. Further, regulatory relations are shown (green for

activation, red for inhibition).

(B) Scatterplot showing the dynamic behavior of the enzyme level for each of the enzymes included in the repressilator.

(C) Scatterplot showing the dynamic behavior of the transcript level for each of the enzymes included in the repressilator.
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2 units). Despite their slightly different shape, they still are quite similar to sine waves nonetheless. As a

demonstration of the modeled GFP enzyme level’s similarity to a sine wave, a sine wave with the aforemen-

tioned characteristics of the GFP expression curve, graphs are provided in Table S3 which highlight the

similarity of the GFP enzyme level curve shape and that of a sine wave. This has also been done for cI.

The Pearson correlations between these curves are r = 0.91 and r = 0.97, respectively, showing a strong

linear relationship between the curves produced by EuGeneCiM and the sine waves produced by using

the characteristics of those curves, suggesting that the shape of the curves are very similar. Further, these
iScience 24, 103000, September 24, 2021 13
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curves have the same mean value (about 10.4 units), and similar standard deviations (5.7 units for the sine

wave and 6.0 units for the GFP curve) suggesting very similar magnitude, in addition to similar shape.
DISCUSSION

Synthetic biology holds great potential for technological advancements and applications in a wide variety of

fields. The designing of a new application involves five distinct steps, of which the first three (conceptualization,

design, and modeling) can be performed in silico. Designing and modeling synthetic biology applications in

silico holds several advantages including speed, tractability, advantages associated with certain types of math-

ematics such as optimization, and the potential to develop a pipeline for synthetic biology applications. This has

been recognized by other researchers, who have developed in silico tools for either design or modeling of ge-

netic circuits, which are generally not pairedwith a complimentary tool in the other step (see Figure 1). This work

seeks to address this lack and work toward pipeline development by explicitly and easily linking the modeling

and design steps, as well as expanding and improving upon optimization-based circuit design algorithms. In

this work, it was decided to design and model plant-based heavy metal ion biosensors in Arabidopsis. These

biosensors were designed to detect Cadmium, Copper, and Zinc, which are common metal ion pollutants,

as a potential basis for future synthetic biology applications for phytoremediation. Arabidopsis was chosen

as amodel plant systemwithmany previous synthetic biology applications, and it is eventually intended to apply

EuGeneCiD and EuGeneCiM tools for applications in other plants (e.g., maize).

In the current work, two deterministic optimization-based tools for the design and modeling steps of the

development of synthetic biology applications are introduced, the Eukaryotic Genetic Circuit Design

(EuGeneCiD) and Modeling (EuGeneCiM) tools. These tools together can hypothesize and screen for po-

tential genetic circuit designs which will bemost likely to success when built in vivo. The first tool uses inputs

of a bioparts database and a conceptualization of the desired application (in the form of a logic table) to

design hypothetical genetic circuits. This tool is unique compared to previous tools in that it models tran-

script production; focuses on eukaryotic systems; accounts for transcript and enzyme degradation; and is

more granular in its predictions than previous optimization-based tools. EuGeneCiD is paired with the dy-

namic circuit modeling tool EuGeneCiM, which uses the EuGeneCiD design and the bioparts databases as

inputs. See Figure 4 for a visualization of the workflow.

Once these tools were developed, they were applied to 30 different systems biology conceptualizations which

were created by pairing a logic gate (BUFFER, AND,NIMPLYCNI, HALF ADDER, NAND, NOR,OR, XNOR, and

XOR) with ligands for that gate to respond to (single ligands for the BUFFER, namely Cd, Cu, and Zn, paired

ligands for the other circuits, namely Cd/Cu, Cd/Zn, and Cu/Zn). These conceptualizations were chosen so as

to make Arabidopsis roots as biosensors for heavy metal pollution, which can eventually be used as a basis

for synthetic biology phytoremediation applications. The combined EuGeneCiD and EuGeneCiM workflow

was run for seven days for each of the 30 conceptualization. The results of all 30 circuits are shown broadly in

Figure 5, with some specific solutions to both EuGeneCiD and EuGeneCiM shown in Figure 6, while those of

much simpler BUFFER circuit are shown in Figure S4. Briefly, EuGeneCiM solves more quickly and with higher

fractions of optimal solutions for simpler circuit logic, for example BUFFER, AND, NIMPLY, and NOR and more

slowly formore difficult logics like XOR, HALFADDER, and XNOR. As shown in Figure 6, whenmodeled dynam-

ically, while many EuGeneCiD-created designs functioned correctly, designs did not always function correctly

under dynamic modeling. This showed that EuGeneCiM adds value by screening potentially unsuccessful solu-

tions. This is in part because EuGeneCiD does not design circuits with respect to time, so accumulation of

enzymes and transcripts are not accounted for at the design stage. We also wished to emphasize that the

EuGeneCiM tool could be used as a stand-alone dynamic genetic circuit modeling tool, and to this end,

EuGeneCiM is successfully applied to a manually designed repressilator (see Figure 7). This highlights how

the EuGeneCiM tool crucially accounts for enzyme and transcript degradation allowing modeling of important

dynamic circuits such as repressilators.

As shown in Figure 5, no set of EuGeneCiD solutions for any of the 30 synthetic biology application con-

ceptualizations produced only optimal solutions. For all, some fraction of solutions were integer solutions

with no guarantee of optimality (local or global). The two-input conceptualization with the highest fraction

of optimal solutions is the Cd2+/Zn2+ responsive AND circuit with 84% and that with the lowest fraction is

the Cd2+/Cu2+ responsive HALF ADDER and XOR circuits with slightly less more than 9% of solutions being

optimal. The lack of any conceptualization identifying only optimal solutions has a few possible explana-

tions. The first is that there is some ‘‘best’’ set of solver settings which would achieve only optimal solutions
14 iScience 24, 103000, September 24, 2021
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which we have not been able to identify. Due to the long run time of some circuit designs (seven days), it

was not deemed worth the time and effort to identify this set. A second possibility is the sheer number of

solutions sought in that the runs were set only to terminate when 1000 solutions had been identified, the

sought circuit size exceeded ten triads, or seven days had passed. A third possibility is that stretches of non-

optimal solutions occur when the optimal solution lies along an edge, and the solutions along that edge are

not globally optimal because equivalent designs exist. As shown in output files such as for the Cd2+NIMPLY

Zn2+ circuit conceptualization, stretches of sequential non-optimal solutions occur which have the same

objective value (such as solutions #13 through #15), followed by an optimal solution with the same objective

value. In the output of EuGeneCiD, it was found that for the Cd2+/Zn2+ responsive AND circuit, of the 160

non-optimal solutions returned, 81 of these occur in the last 150 solutions identified. Other non-optimal

solutions occur when only a single solution remains at a given circuit size. In some instances, a non-optimal

solution code might also be returned for a solution with the same objective value as an immediately pre-

ceding optimal solution (to two decimal points), suggesting that in some cases the non-optimality is incon-

sequential. Similar patterns occur for many of the easy to solve conceptualizations such as AND, NIMPLY,

and CNI. By this point, a large number of integer cuts have been defined in the model to prevent repeat

solutions, increasing the difficulty of finding a solution. When more difficult, this result in longer run times

and an increased likelihood of heuristic termination from the solver. These heuristic terminators include

lack of improvement on solution bounds in a certain time frame and reaching the maximum allowed

time for a single solution (set at 1 3 104 seconds). These heuristic terminations also might explain the dif-

ferences between optimality ratios, such as between the Cd2+/Zn2+ responsive AND and Cd2+/Cu2+

responsive HALF ADDER circuits, in that solving the latter is significantly more difficult than the former.

Given the relative positions of optimal to non-optimal solutions, the positions of solutions with the

maximum objective value, and the lengthening solution times at higher solution numbers, for users of

the EuGeneCiD tool it is recommended that only the first 100 solutions need be identified and investigated.

As noted earlier, EuGeneCiD is not a dynamic design tool, although it does attempt to model one half-live

of degradation to attempt to overcome this issue and to include degradation in design criteria. This results

in some design solutions being non-functional under dynamic modeling in EuGeneCiM. EuGeneCiD was

made non-dynamic for one primary reason: computational expense. Given the number of binary variables

inherent in the EuGeneCiD problem, the already long solution times for certain conceptualizations, and the

frequent non-optimality of solutions, it was decided not to create a dynamic EuGeneCiD out of concern for

creating a non-viable tool (or one viable only in niche instances). In future, it is desired to improve the

EuGeneCiD tool, and one of the primary improvements we will aim to implement is to make the tool dy-

namic, potentially creating a hybrid design and modeling tool. Another issue arising from pairing a static

and dynamic tool such as this, is the cumulative effects of concentration buildup in the dynamic model. This

resulted in the need to halve terminator and enzyme half-lives to attempt to reach similar enzyme produc-

tion levels in EuGeneCiD as in EuGeneCiM. Without this adjustment, EuGeneCiM predicted levels often

were one to two order of magnitude larger than in EuGeneCiD, resulting in all enzymes in the design being

‘‘active’’ regardless of regulation. This approach to reduce the half-live seemed best to both minimize the

changes the parameters (such as enzyme concentration level thresholds, half-life, transcriptional efficiency,

etc.) and to still produce results on a similar order of magnitude.

Overall, EuGeneCiD and EuGeneCiM have the potential to design with respect to and model biopart in-

teractions which do not exist in the current bioparts database. Some of these functionalities include alter-

native splicing, changeable transcriptional efficiency (such as might be tuned through codon optimization),

and protein-protein regulatory interactions. In creating a more capable tool, we hope to encompass new

bioparts with sophisticated functionality and regulation which are even now being created by synthetic bi-

ologists for fine-tuned control of designed systems. One example is the Two-Component Systems (TCSs)

for phosphoregulated, chemically induced signal transduction in mammalian cells, a work which shows

great potential for the future designs of sophisticated synthetic biology bioparts (Scheller et al., 2020).

In addition to making EuGeneCiD and EuGeneCiM potentially compatible with future synthetic bioparts,

the choice of system and knowledge of that system has limited the biopart interactions which might be pre-

sent in the library. Arabidopsis was chosen as a test system because it is a model plant to which synthetic

biology applications have previously been applied. A plant system was chosen for the application because,

in future, we hope to use the EuGeneCiD and EuGeneCiM tools to create synthetic biology applications for

Zea mays, particularly those which activate in response to stress conditions to increase plant health and

fitness under these conditions. One potential application is for heavy metal phytoremediation, hence
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the use of heavymetal ligands as signals for designed genetic circuits. Given these desired goals and future

applications, the breadth and types of interactions in the bioparts database was further limited.

Limitations of the study

The EuGeneCiD and EuGeneCiM system essentially applies to a single small cell, as there is no explicit in-

clusion of transport mechanisms, diffusion, or cell differentiation. Cell differentiation, and the resulting dif-

ferential expression of genes, in particular must be considered when defining the bioparts database. This

may be problematic when attempting to model behavior in a multi-cellular organism) and has limited abil-

ity to account for individual variations between cells. In contrast to other techniques, EuGeneCiD and

EuGeneCiM produce relative concentration predictions, rather than exact levels. Additionally, as already

discussed, while in vivorepressilators have sinusoidal behavior, EuGeneCiM-modeled repressilators due

not due to their underlying binary mathematics, though their shape is similar as already discussed. Further,

some current tools (with a more biophysical focus) include considerations of copy number and phenotypic

ranges, which are not accounted for in the EuGeneCiD and EuGeneCiM tools. As shown in Figure 5, a large

number of returned solutions are non-optimal, particularly for circuit logic which are more difficult to

construct such as HALF ADDER, XOR, and others.

Another limitation of these tools whichmay be addressed in future is their deterministic nature, as opposed

to a stochastic approach. These tools were developed as deterministic tools for ease of characterization

(e.g., a deterministic model requires no distribution for the generation of ‘‘noise’’), and lower computa-

tional cost. While gene expression is often noisy and stochastic in nature, these tools will suffice to design

and model circuit behavior to allow for hypothesizing and screening of potential design solutions. Future

improvements (such as a dynamic EuGeneCiD) may be accompanied by the changing of these tool to be

deterministic.

As no other tool or workflow yet exists which accomplishes both the tasks of modeling and design of ge-

netic circuits from a library of available bioparts, it is difficult to compare this work against that of other

studies. It is of interest to the researchers to confirm the usefulness of the EuGeneCiD and EuGeneCiM

tools with in vivo tests of circuits built from these modeled results; however, it was determined that such

a test is outside the scope of this work.
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STAR+METHODS

KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

GitHub www.github.com RRID:SCR_002630

Software and algorithms

Perl Programming Language (version 5.26 for Unix) Perl www.perl.org RRID:SCR_018313

Strawberry Perl version 5.24.0.1 (for Windows) Strawberry Perl Strawberryperl.com RRID:SCR_018313

The world-wide-web library for Perl, module 6.39 LWP Meta CPAN

https://metacpan.org/pod/LWP

N/A

Comprehensive Perl Archive Network (CPAN) https://metacpan.org/ RRID:SCR_007253

Generalized Algebraic Modeling System

(GAMS) version 24.7.4

GAMS Products and Downloads

www.gams.com/products/buy-gams/

RRID:SCR_018312

CPLEX solver version 12.6 GAMS Products and Downloads

www.gams.com/products/buy-gams/

N/A

Other

Holland Computing Center: Crane Computing

Cluster (64 GB RAM, Intel Xenon E5-2670

2.60 GHz processor, 2 CPUs per node)

Holland Computing Center

https://hcc.unl.edu/

N/A

ASUSTeKZyphyrus G model laptop computer

with Microsoft Windows 10.

Any reasonably up-to-date computer, and

alternative OSs, will work for this protocol.

N/A

Dell OptiPlex 790 desktop computer with

Microsoft Windows 10 Enterprise

Any reasonably up-to-date computer, and

alternative OSs, will work for this protocol.

N/A
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Rajib Saha (rsaha2@unl.edu).
Materials availability

This study did not generate new unique reagents.

Data and code availability

The published article does not include all datasets and code generated or analyzed during this study. All

datasets and code generated during this study are available at GitHub in the ssbio/EuGeneCiDM repos-

itory [https://doi.org/10.5281/zenodo.4762590] or at the following URL github.com/ssbio/EuGeneCiDM.
METHOD DETAILS

Symbols used

This section is provided here to increase clarity of the provided equations which follow. For the purposes of

this text, a set is an unordered collection of distinct elements, a parameter is a value which is constant dur-

ing the solution process whereas the value of a variable is altered by the solver to identify optimal solutions.

Sets.

Ahset of all molecules
P3Ahset of promotors
J3Ahset of transcripts

E3Ahset of enzymes
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Ed 4Ehset of enzymes which it is desired for the circuit to respond to

L3Ahset of ligands
 �

Ld 4 Lhset of ligands which it is desired for the circuit to respond to note that

this should always contain a noneÞ

T 3Ahset of all terminators
Rhset of real numbers
+
R hset of nonnegative; real numbers

R�hset of nonpositive; real numbers
Bhbinary set; contains only the numbers 1 and 0; e:g: B= f0;1g

Th trinary set containing only the numbers� 1; 0; and 1; e:g: T= f�1; 0;1g

Parameters.

leL1L2 ˛Bhinput logic matrix value for enzyme e under conditions of
ligands L1; L2˛Ld present

Z ˛Bhnormal state of promotor p˛P
p

z ˛Bhnormal state of enzyme e˛E
e

I ˛ThEffects of a˛A as a ligand upon the activity of promotor p˛P
pa

ð� 1 inhibition; 0 no effect; 1 activationÞ

+
Hpa ˛R hstrength of interaction between promotor p˛P and molecule a˛A
Bea ˛ThEffects of a˛A as a ligand upon the activity of enzyme e˛E
ð� 1 inhibition; 0 no effect; 1 activationÞ
+
Qea ˛R hstrength of interaction between enzyme e˛E and molecule a˛A

V = 1E4han arbitrarily large number
ε = 1E � 4han arbitrarily small number
q ˛R+hconcentration threshold at which the enzyme e˛E must be present
e
to be said to be }active}
+
hj ˛R htranslational efficiency of transcript j˛J

F ˛R+hleakiness of a promotor p˛P
p

G ˛R+hhalf � life of terminator t˛T
t
+
te ˛R hhalf � life of enzyme e˛E
sa1a2 ˛Bhvalue of 1 if a1˛A is the same as a2˛A and zero otherwise; identifies

equivalent elements

+
Sp ˛R hstrength of promotor p˛P

Variables.

apL1L2 ˛Rhinteger net effect of all inhibition and activation on a given promotor p�

˛P under conditions of ligands L1; L2˛Ld present > 0 promotor can be active�
%0 promotor cannot be active

a+ ˛Bhbinary net effect of ligands upon promotor p˛P in circuit under
pL1L2 � �

ligand conditions L1 ; L2˛Ld 1 promotor can be active; 0 promotor cannot be active

g ˛Rhinteger net effect of all inhibition and ativation on a given enzyme e
eL1L2

˛E under ligand conditions L ; L ˛L ð>0 enzyme can be active; %0 enzyme cannotÞ
1 2 d
+
geL1L2

˛Bhbinary net effect of ligands upon enyme e˛E in circuit under ligand

conditions L ; L ˛L ð1 enzyme can be active; 0 enzyme cannot be activeÞ
1 2 d

4 ˛R+hlevel of transcript j expression under ligand conditions L ; L ˛L
jtL1L2 1 2 d
Mpjt ˛Bhbinary variable which creates promotor p˛P; transcript j˛J; and�

terminator t˛T triads representing the design variable in EuGeneCiD;� �
parameter in EuGeneCiS

C ˛R+hconcentration of enzyme e˛E under under ligand conditions L ; L ˛L
eL1L2 1 2 d
+
xpjtL1L2 ˛R hdeliberate transcription of j˛J transcribed from promotor p˛P
and transcript t ˛T under ligand conditions L ; L ˛L
1 2 d
ueL1L2 ˛Bhdetermines if enzyme e˛E is produced under ligand conditions L1; L2˛Ld
20 iScience 24, 103000, September 24, 2021
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YeL1L2 ˛Bhbinary variable determining if the enzyme e˛E has sufficient

concentration to be considered active under ligand conditions L ; L ˛L
1 2 d

W ˛Bhbinary variable determining if enzyme e˛E is both at sufficient
eL1L2
concentration to be active and that it is not inhibited; in short that it will
function underligand conditions L ; L ˛L
1 2 d

k ˛Bhbinary variable determining if enzyme ˛E is produced and can be
eL1L2
active under ligand conditions L1; L2˛Ld
Z ˛Rhobjective variable for EuGeneCiD
D

Z ˛Rhobjective variable for EuGeneCiM
M
+
Dee1 ˛R hdirect attribution of enzyme e activity to e1 through enzyme interactions

K ˛R+hdirect attribution of enzyme e activity to e through enzyme e on triad
ee1 1 1
interactions
U ˛R+hattribution of enzyme e activity to e acting through e through
ee1e2 2 1
enzyme interactions
0 +
Uee1

˛R hnetworked attribution of enzyme e activity to e1 acting through other enzymes
reflecting direct enzyme� enzyme interactions
+
cee1e2

˛R hattribution of enzyme e activity to e2 acting through e1 through enzyme on

triad interactions

X ˛R+hnetworked attribution of enzyme e activity to e acting through other enzymes
ee1 1
reflecting enzyme on triad interactions
L ˛Bhvalue of 1 if enzyme e is encoded by the genetic circuit design; 0 otherwise
e

b ˛Bhvalue of 1 if enzymes e and e are encoded by the genetic circuit design;
ee1 1

0 otherwise
EuGeneCiD problem statement and explanation

Objective function. Objective function (Equation 1)

maximize ZD =
X
e˛Ed

X
L1˛Ld

X
L2˛Ld

�
CeL1L2leL1L2 �CeL1L2

�
1� leL1L2

��
(Equation 1)

Where ZD is the objective value,CeL1L2 is the contraction of enzyme e under conditions with signals L1 and L2
(which includes ‘‘none’’) and leL1L2 is the desired phenotype in response to signals L1 and L2 as encoded in

the conceptualized logic table (this term is order-dependent). See the STARMethods section for the full list

of symbols and their definitions. This equation, Equation (1), seeks to maximize the responses of the

desired enzymes under their desired conditions (in terms of concentration) and minimize the responses

of the undesired enzymes under their undesired condition.

Note that in the above equation, the order of set elementsmatters, e.g.,CGFP;Zn2+ ;none is mathematically distinct

from CGFP;none;Zn2+ though efforts have been made to ensure that they will have the same value. Nonetheless,

the issue of combinations (of which there are a total of 8 for any given ligand set in this work, where the set in-

cludes the two ligands to which the system should respond as well as ‘‘none’’) affects the objective function.

From this, an AND circuit would only have 1 of 8 values of leL1L2 with a 1 and the remainder would be 0. Similarly,

a NOR circuit would only have a single non-zero value in its order-dependent conceptualization matrix (leL1L2 ).

This results in these circuits having unusually lowobjective values, asmost terms are subtractive. The tendency in

optimal designs then is to strongly favor designs with minimal expression leakage. Conversely, OR and NAND

circuits have only one or two zero values in their order-dependent conceptualization matrix (leL1L2 ), and there-

fore most terms are additive. Therefore, optimal circuit designs here tend to favor high inducible expression.

Therefore, in Figure 7, it is best to not compare objective function values between different conceptualizations,

but to only compare within conceptualizations. Depending on the tendencies of circuit design due to the circuit

type, more complex circuits could result in lower expression leakage or higher inducible expression, and these

complexities cannot be built into small circuits consisting of one or two triads.
Constraint equations

Circuit size limitations. Circuit size limitations are defined in Equations 2, 3, 4, and 5.These equations

limit the number of:
iScience 24, 103000, September 24, 2021 21
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1) Maximum number of copies of a single promotor which can be used in the circuit design (Np;max ),

Equation (2).

2) Maximum number of copies of a single transcript which can be used in the circuit design (Nj;max ),

Equation (3).

3) Maximum number of copies of a single terminator which can be used in the circuit design (Nt;max ),

Equation (4).

4) Total number of promotors, transcripts, and terminator triads which the circuit design can use

(Ncircuit;max ), Equation (5).

X
j˛J

X
t˛T

Mpjt%Np;max c p˛P (Equation 2)XX

p˛P t˛T

Mpjt%Nj;max c j˛J (Equation 3)XX

p˛P j˛J

Mpjt%Nt;max c t˛T (Equation 4)XXX

j˛J p˛P t˛T

Mpjt%Ncircuit;max (Equation 5)

Note that by the nature of the variables used (e.g.,Mpjt being binary), only one copy of any given triad may

be present in the designed circuit. However, any number of promotor/transcript, promotor/terminator, and

transcript/terminator pairs may be repeated. This is important to later constraints. It should be noted that

Ncircuit;max is set to 1 in the first attempt to solve EuGeneCiD and incremented by 1 each time no solution is

found or the problem is deemed infeasible. In this way, the simplest circuit designs possible are identified

and precluded from future solutions so that each solution is the simplest possible (Equations 2, 3, 4, and 5).

Promotor state under conditions. These equations determine if a promotor is active under the given

conditions of ligand 1 and/or/nor 2 being present. Equations perform as follows (Equations 6, 7, and 8):

1) Determines the net effect of (by term): i) promotor normal state, ii) activation or inhibition by enzymes

produced by the circuit, iii) inhibition or activation by ligand L1, iv) inhibition or activation by ligand

L2, v) prevent duplicate activation/inhibition if L1 and L2. Equation (6).

2) Ensures that if apLdLd1>0then a+
pL1L2

= 1, and if apLdLd1%0 then a+
pL1L2

= 0. Equations (7) and (8).

apL1L2 = Zp +
X
e˛E

�
WeL1L2 IpeHpe

�
+ IpL1HpL1 + IpL2HpL2 � IpL1sL1L2HpL1 c p˛P; L1; L2˛Ld (Equation 6)�

+
�

+
apL1L2R� V 1� apL1L2
+ εapL1L2

c p˛P; L1; L2˛Ld (Equation 7)

a %Va+ c p˛P; L ; L ˛L
pL1L2 pL1L2 1 2 d (Equation 8)

Transcription under conditions. These equations determine if and to what extent transcript j is inten-

tionally transcribed from promotor p under ligand L1 and L2 conditions (xpjtL1L2 ). The following equations

accomplish the following:

1) A transcript cannot be transcribed from a given promotor unless the promotor and transcript are

paired in the circuit design.

2) Transcription will not occur unless the promotor is ‘‘on’’.

3) All three constraints are equivalent to: xpjtLdLd1 = SpMpjta
+
pL1L2

, Equations (9), (10), and (11).

xpjtL1L2%SpMpjt c p˛P; j˛J; t˛T ; L1; L2˛Ld (Equation 9)

x %S a+ c p˛P; j˛J; t˛T ; L ; L ˛L
pjtL1L2 p pL1L2 1 2 d (Equation 10)�
+

�

xpjtL1L2RSp Mpjt +apL1L2

� 1 c p˛P; j˛J; t˛T ; L1; L2˛Ld (Equation 11)
22 iScience 24, 103000, September 24, 2021
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The following equations determine the transcript level (4jLdLd1 ) as the sum of positive effects on the tran-

script level, including deliberate (xpjL1L2 ) and leaky (MpjtFp) transcription. This is scaled by a half-life-based

amount of RNA degradation to simulate the fact that degradation occurs and factors this into circuit design

(Equations 9, 10, 11, and 12).

4jtL1L2
=
X
p˛P

2
64�xpjL1L2 +MpjtFp

�0B@0:5

�
1

Gt + ε

	1
CA
3
75 c j˛J; t˛T ; L1; L2˛Ld (Equation 12)

Translation under conditions. The following equation determines the enzyme concentration level

(CeLdLd1 ) as the sum of effects on the enzyme concentration level (CeLdLd1 ), Equation (17), reduced by a

half-life-based enzyme degradation multiplicative factor (Equations 13, 14, 15, 16, and 17).

CeL1L2 =
X
j˛J


�
rjehj4jL1L2

��
0:5

1
Re + ε

	�
c e˛E; L1; L2˛Ld (Equation 13)

The following equations determine if the enzyme is being produced ueL1L2 = 1 if produced and zero

otherwise.

ueL1L2%VCeL1L2 c e˛E; L1; L2˛Ld (Equation 14)
ueL1L2RεCeL1L2 c e˛E; L1; L2˛Ld (Equation 15)

The following equations, Equations (18) and (19), determine if the concentration of the enzyme is at suffi-

cient levels (qe) to say that the enzyme could be active, C +
eL1L2

= 1 if sufficient concentration, zero otherwise.

ðqe + εÞC +
eL1L2

%CeL1L2 c e˛E; L1; L2˛Ld (Equation 16)

C %ðV � ðq � εÞÞC + + ðq � εÞ c e˛E; L ; L ˛L
eL1L2 e eL1L2 e 1 2 d (Equation 17)

Enzyme regulation and activity under conditions. Determine the net effect of ligands on the enzyme

(geLdLd1 ) to determine if the protein is active or inactive due to the present ligands (deLdLd1 , concentra-

tion incorporated through interaction strength QeLd1 ) (Equations 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,

and 28).

1) Sum of the effects of present ligands and enzymes on the possibility of enzyme e being able to be

activated (geLdLd1 ), Equation (18).

2) Determine net effect of activation/inhibition on the enzyme (deLdLd1 ) Equations (19) and (20).

geL1L2
= ze +

X
e1˛E

�
We1L1L2Bee1Qee1

�
+BeL1QeL1 +BeL2QeL2 � BeL1QeL1sL1L2 c e˛E; L1; L2˛Ld

(Equation 18)�
+

�
+
geL1L2

R� V 1� geL1L2
+ εgeL1L2

c e˛E; L1; L2˛Ld (Equation 19)

g %Vg+ c e˛E; L ; L ˛L
eL1L2 eL1L2 1 2 d (Equation 20)

Determine if the protein is both produced and can be active. These three constraints, Equations (21), (22),

and (23), are equivalent to keLdLd1 =ueLdLd1deLdLd1 (this works because all the variables are binary).

keL1L2%ueL1L2 c e˛E; L1; L2˛Ld (Equation 21)

k %g+ c e˛E; L ; L ˛L
eL1L2 eL1L2 1 2 d (Equation 22)
+
keL1L2RueL1L2 +geL1L2

� 1 c e˛E; L1; L2˛Ld (Equation 23)

Determine if the protein is produced, active, and at sufficient concentration for it to function. These three

constraints, Equations (24), (25), and (26), are equivalent toWeLdLd1 = keLdLd1YeLdLd1 (this works because all the

variables are binary).

WeL1L2%keL1L2 c e˛E; L1; L2˛Ld (Equation 24)

W %C + c e˛E; L ; L ˛L
eL1L2 eL1L2 1 2 d (Equation 25)

W Rk +C + � 1 c e˛E; L ; L ˛L
eL1L2 eL1L2 eL1L2 1 2 d (Equation 26)

Force the logic table to be true in Equation (27).
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WedL1L2 = ledL1L2 c ed˛Ed ; L1; L2˛Ld (Equation 27)

Attribution of enzyme activity to given conditions under conditions. Given all these equations, it is

not guaranteed that the circuit produced thus far will truly respond to the input ligands. One persistent

issue with the formulation to this point is that a Bistable Orthogonal Design (BOD) can be returned which

is independent of the input ligands and the optimization solver will simply choose the appropriate state to

appear to meet the logic table. This causes a circuit which appears to the solver to meet design criteria, but

in fact does not because it does not respond to ligand conditions. This issue is addressed through what we

are choosing to call the attribution constraints. These constraints are created to determine what changes

the activity of a protein in a given genetic circuit (e.g., what is the change attributable to?). This is done with

several stages of equations (Equations 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,

48, 49, and 50).

Set 1: Determine if a particular enzyme pair is encoded. These equations are used to determine if a

particular enzyme is encoded (encoded in the binary Le). This is important in that an enzyme has no attri-

bution from other enzymes and is not attributable to other enzymes (Equations 28, 29, 30, 31, and 32).

LeRε

X
p˛P

X
j˛J

X
t˛T

�
Mpjtrje

�
c e˛E (Equation 28)XXX� �
Le%V
p˛P j˛J t˛T

Mpjtrje c e˛E (Equation 29)

Note that this is formulated as such to allow for multiple transcript copies in a given circuit design. Next, a

determination is made as to whether enzyme pairs are encoded (encoded in the binary bee1 ); attribution

cannot exist between enzymes.

bee1%Le c e˛E (Equation 30)
bee1%Le1 c e1˛E (Equation 31)
bee1RLe + Le1 + 1 c e;e1˛E (Equation 32)

Set 2: Determine if a particular enzyme affects another enzyme’s expression. Next, we determine the

effect of one enzyme upon the expression of another, through various means. First, through directly

affecting enzyme activity (effect of e1upon e). Note that the variable Dee1 is restricted to be strictly non-

negative (Equations 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, and 47).

Dee1 =
��Bee1

��bee1 c e;e1˛E (Equation 33)

Note that the above is linear because Bee1 is a parameter. It was discovered during debugging procedures

that attempting to track the sign of attributions can lead to numerical issues (such as an attribution

canceling itself out, but still existing); therefore, only the fact of attribution is determined using absolute

values. The next group of equations determines the effect of e1 upon e through controlling the triad ex-

pressing e. Note that the variable Kee1 is restricted to be strictly non-negative.

Kee1%Vbee1 c e;e1˛E (Equation 34)" #

Kee1%

X
p˛P

X
j˛J

��Ipe1 �� �X
t˛T

Mpjtrje +V
�
1� bee1

�
c e; e1˛E (Equation 35)

" #

Kee1R

X
p˛P

X
j˛J

��Ipe1 �� �X
t˛T

Mpjtrje � V
�
1� bee1

�
c e;e1˛E (Equation 36)

In combination with the domain of Kee1 , Kee1 = 0 if bee1 = 0, and Kee1 =
P
p˛P

P
j˛J


��Ipe1 �� �P
t˛T

Mpjtrje

�
otherwise.

Next, the effect of one enzyme (e2) upon another enzyme (e) through another enzyme (e1). This passing

of attribution might be through direct enzyme effects (Dee1 ) or through the effect of one enzyme upon

the triad of another (Kee1 ). The variable n0e1e2 below is a binary variable noting if there is attribution of enzyme

e2 upon enzyme e1 (e.g., e2 in some way affects the activity of e1).

Uee1e2%Vbee1 c e;e1; e2˛E (Equation 37)�� �� 0 � �

Uee1e2% Bee1 ne1e2 +V 1� bee1 c e;e1;e2˛E (Equation 38)�� �� 0 � �

Uee1e2R Bee1 ne1e2 � V 1� bee1 c e; e1;e2˛E (Equation 39)
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This can then be condensed into the variable U0
ee1

which removes the middle enzyme:

U0
ee1

=
X
e2˛E

�
Uee2e1

�
1� see1se1e2

��
c e; e1;e2˛E (Equation 40)

Therefore, U0
ee1

represents the indirect attribution of e1 to the activity of e through direct attributions. This

allows any number of intermediates between two enzymes to still count toward attribution due to the ef-

fects of networking. Note that the ð1�see1se1e2 Þ term prevents an enzyme attributing to itself through itself.

This prevents a potential self-referential problem which occurs with the definition of n0ee1 . It should be noted

that U0
ee1

tracks only enzyme-enzyme interaction networks. Similarly, Xee1 will track enzyme attribution net-

works through effects on enzyme triads, though due to the need to track triads the formulation is neces-

sarily more complex. Together, U0
ee1

and Xee1 allow for full networked tracking of attribution through any

number of intermediary enzymes and regulatory mechanisms.

cee1pjt%VMpjt c e;e1˛E;p˛P; j˛J; t˛T (Equation 41)Xh� � 0
i � �
cee1pjt%
e2˛E

�Ipe2 �ne2e1rje +V 1�Mpjt c e;e1˛E;p˛P; j˛J; t˛T (Equation 42)Xh� � i � �

cee1pjtR

e2˛E

�Ipe2 �n0e2e1rje � V 1�Mpjt c e; e1˛E;p˛P; j˛J; t˛T (Equation 43)XXXh i

Xee1 =

p˛P j˛J t˛T

cee1pjt c e;e1˛E (Equation 44)

Now that the direct (Dee1 and Kee1 ) and networked (U0
ee1

and Xee1 ) attribution variables have been deter-

mined, the total attribution can be determined.

nee1 =Dee1 +Kee1 +U0
ee1

+Xee1 c e; e1˛E (Equation 45)

Note that nee1 is a nonnegative variable, sinceDee1 , Kee1 , U
0
ee1

, and Xee1 are all nonnegative values whichmay

have values greater than 1 depending on the definitions of Ipa (for p˛P and a˛A) and Bea (for e˛ E and a˛A).

For instance, in some cases it is useful to have values greater than 1 in Ipa or Bea to indicate that some ef-

fectors are stronger than others. Due to the need for referencing total attribution within the network attri-

bution variables (U0
ee1

and Xee1 , which themselves are part of the total attribution) there arises an issue

related to the use of multiplication. If a value other than zero or one is used in calculating the total attribu-

tion’s effect on the network attribution variables, attributions which influence each other could quickly in-

crease in magnitude through recursion. Another potential issue is the possibility that if total attributions are

not equal in magnitude, this could result in solution infeasibility as the two attributions cannot exist

together. Therefore, there is a need to transform the non-negative nee1 into the binary n0ee1 so that multipli-

cative identity Equations 38, 39, 42, and 43 might apply and bypass both these issues. Therefore, n0ee1 is a
binary which is determined using the following constraints.

nee1Rn0ee1 c e;e1˛E (Equation 46)

n %Vn0 c e; e ˛E
ee1 ee1 1 (Equation 47)

Set 3: Preventing self-controlling enzymes. Now that attribution of one enzyme to another can be

determined (n0ee1 ), we have used this variable to prevent an enzyme from directly or indirectly controlling

its own expression (which can lead to BODs). This can be prevented by ensuring that there is no self-attri-

bution (Equations 48 and 49).

n0ee1Rsee1 � 1 c e;e1˛E (Equation 48)

n0 %1� s c e;e ˛E
ee1 ee1 1 (Equation 49)

Set 4: Prevent the addition of meaningless bioparts. The above equations prevent self-attribution and

BODs, but do not prevent the addition of meaningless triads to a solution. It was found during develop-

ment that the addition of meaningless triads was one way for a solution to be reported again at larger cir-

cuit sizes. This can be relatively easily fixed with a single equation, which ensures that any encoded enzyme

affects circuit reporter enzymes (Equation 50).

Le%
X
ed˛Ed

h
n0ede

i
+Eval

d;e c e˛E (Equation 50)

where Eval
d;e = 1 if e is a member of the set Ed and Eval

d;e = 0 otherwise. This ensures that each encoded enzyme

in some way influences the activity of at least one reporter enzyme or is itself a reporter enzyme.
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Speed boosting constraints. The following constraints should be implicitly true given all of the previous

constraints, yet it was discovered, as with the OptFill tool (Schroeder and Saha, 2020), that explicitly

defining implicit relationships can result in quicker solution times. The following relationship where explic-

itly defined (Equations 51, 52, 53, 54, 55, and 56):

1) Equation 51 ensures that all response enzymes are encoded in the genetic circuit.

2) Equations 52, 53, and 54 ensures that no enzyme has activity unless encoded in the genetic circuit.

3) Equations 55 and 56 ensure that no enzyme has concentration unless encoded in the genetic circuit.

Eval
d;e%Le c e˛E; L1; L2˛Ld (Equation 51)
WeL1L2%Le c e˛E; L1; L2˛Ld (Equation 52)

k %L c e˛E; L ; L ˛L
eL1L2 e 1 2 d (Equation 53)

u %L c e˛E; L ; L ˛L (Equation 54)
eL1L2 e 1 2 d
CeL1L2%Le c e˛E; L1; L2˛Ld (Equation 55)

C + %L c e˛E; L ; L ˛L
eL1L2 e 1 2 d (Equation 56)

EuGeneCiM problem statement and explanation. While the EuGeneCiM formulation is based upon

that of EuGeneCiD, it is markedly less complex due to three factors: i) the design is already known, so

Mpjt becomes a parameters as opposed to a variable; ii) the design is already complete, attribution

need not be tracked; and iii) the transcript an enzyme levels at the current time point are those produced

at previous time point(s) and EuGeneCiM is simply solving for the production rate of enzymes and tran-

scripts for the current time point.

Objective function. Objective function (Equation 57)

The selected objective function is to maximize the production of proteins

maximize ZM =
X
e˛E

X
L1˛Ld

X
L2˛Ld

�
CeL1L2

�
(Equation 57)

Note that the objective function is largely unimportant however, as the constraint equations which follow

are generally equality constraints, some of which lack variables.
Constraint equations

Determining the level of transcript production. The first set of constraint equations determine the level

of transcript production. First, the activity of the promotor under each condition set is evaluated in the

same manner as in EuGeneCiD (Equations 6, 7, and 8 and 58):

apL1L2 = Zp +
X
e˛E

�
WeL1L2 IpeHpe

�
+ IpL1HpL1 + IpL2HpL2 � IpL1sL1L2HpL1 c p˛P; L1; L2˛Ld (Equation 6)�

+
�

+
apL1L2R� V 1� apL1L2
+ εapL1L2

c p˛P; L1; L2˛Ld (Equation 7)

a %Va+ c p˛P; L ; L ˛L
pL1L2 pL1L2 1 2 d (Equation 8)

Then, the level of transcript production under each condition can be evaluated, similar to as is done in

Equations (9), (10), (11), and (12) with two distinct simplifications: i) as Mpjt is a parameter, the linearization

of SpMpjta
+
pL1L2

accomplished in Equations (9), (10), and (11)is no longer needed, and is substituted directly

into Equation (12) and ii) degradation of RNA is handled in another programmatic step between the time

points, rather than at a single time point as in EuGeneCiD, therefore this is not included.

4
prod
jtL1L2

=
X
p˛P

h�
SpMpjta

+
pL1L2

+MpjtFp

�i
c j˛J; t˛T ; L1; L2˛Ld (Equation 58)

Note that the superscript prod is added to 4
prod
jtL1L2

to indicated that this is the transcript production at the

current time point. This is an important distinction as the transcript carried over from the previous time

point is denoted 4
tn�1

jtL1L2
and is used to calculate the protein production at time tn. This arrangement allows

for the simulation of the delay between triad activation and transcript production, as well as between
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transcript production and enzyme expression. Also, note that the identity of the terminator is tracked in

4tn
jtL1L2

as the terminator determines the half-life of its associated transcript.

Determining the level of protein production. Asmentioned, the amount of protein produced at time tn
is calculated from the amount of transcript carried over from the previous time point tn�1. This is calculated

in the following equation, which is analogous to Equation (13) without the degradation term (Equation 59).

Cprod
eL1L2

=
X
j˛J

"
rjehj

X
t˛T

4
tn�1
jtL1L2

#
c e˛E; L1; L2˛Ld (Equation 59)

Note that Cprod
eL1L2

represents to protein production at time tn, and that the activity of those proteins is deter-

mined by the carry-over from the previous time point, Ctn�1

eL1L2
.

Determining the activity of the proteins. Using the carry-over protein concentration, Ctn�1

eL1L2
, the activity

of the enzyme is calculated in the same way as in EuGeneCiD and utilizing the same equations. These equa-

tions are restated here, see the symbols used section for symbol definitions (Equations 18, 19, 20, 21, 22, 23,

24, 25 and 26).

geL1L2
= ze +

X
e1˛E

�
We1L1L2Bee1Qee1

�
+BeL1QeL1 +BeL2QeL2 � BeL1QeL1sL1L2 c e˛E; L1; L2˛Ld

(Equation 18)�
+

�
+
geL1L2

R� V 1� geL1L2
+ εgeL1L2

c e˛E; L1; L2˛Ld (Equation 19)
+
geL1L2

%VgeL1L2
c e˛E; L1; L2˛Ld (Equation 20)

k %u c e˛E; L ; L ˛L
eL1L2 eL1L2 1 2 d (Equation 21)

k %g+ c e˛E; L ; L ˛L
eL1L2 eL1L2 1 2 d (Equation 22)
+
keL1L2RueL1L2 +geL1L2

� 1 c e˛E; L1; L2˛Ld (Equation 23)

W %k c e˛E; L ; L ˛L (Equation 24)
eL1L2 eL1L2 1 2 d
+
WeL1L2%CeL1L2

c e˛E; L1; L2˛Ld (Equation 25)

W Rk +C + � 1 c e˛E; L ; L ˛L
eL1L2 eL1L2 eL1L2 1 2 d (Equation 26)

Modeling degradation of transcripts and enzyme. Between time points, and attempted solutions of

EuGeneCiM, degradation of the bioparts are calculated as follows:

4tn
jtL1L2

=
�
4
prod
jtL1L2

+4
tn�1
jtL1L2

�0B@0:5

�
1

Gt =1+ ε

	1
CA c j˛J; t˛T ; L1; L2˛Ld (Equation 60)

0 � 	1

Ctn

eL1L2
=
�
Cprod

eL1L2
+Ctn�1

eL1L2

�B@0:5
1

Re=2+ ε CA c e˛E; L1; L2˛Ld (Equation 61)

Note that there is one major difference in the degradation terms of Equations (60) and (61): the half-lives

are reduced by half in EuGeneCiM compared to EuGeneCiD. This in attempt to reconcile the differences

between EuGeneCiD and EuGeneCiM when considering the cumulative effects of dynamic modeling.

This occurs because, while EuGeneCiD accounts for a single time point and EuGeneCiM accounts for

several, the enzyme and transcript accumulations in EuGeneCiM were generally one or two order of

magnitude higher than that predicted in EuGeneCiD. This was an issue because the same concentration

thresholds existed for enzyme activity, and therefore resulted in no enzyme being in an ‘‘off’’ state after

sufficient time in EuGeneCiM. This fix reduces the half-life of transcripts and enzymes, resulting in closer

parity in concentration and modeling of circuit designs while minimizing the number of parameters

perturbed.

Other important aspects of EuGeneCiM formulation. Constraints not included in the formulation can

be as important as those which are and can serve to highlight the function of the problem. Specifically, no

constraints are included which force the provided conceptualization (in the form of a logic table) to be true.

This is for two reasons. The first is that, in solving in a point by point manner, there will inevitably be time

points in which the logic table is not true, particularly due to the delays between transcription and
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translation built into the tool. Secondly, this allows EuGeneCiM to be a screening process to remove any

designs which function differently when no longer optimizing for desired behavior or when considering dy-

namic behavior.
Designing and modeling genetic circuits

See Figure 4 for a visual representation of the overall workflow and to specifically illustrate how the EuGeneCiD

and EuGeneCiM formulations fit into this workflow. This work began with the conceptualization of synthetic

biology interventions. For the purposes of demonstrating these design and modeling tools, simple circuit con-

ceptualizations were selected, namely the two input circuits of AND, NIMPLY, HALF ADDER, NAND, NOR,

XNOR, and XOR. Note that logic gates will be capitalized throughout this text to avoid confusion. These partic-

ular conceptualizations were chosen because they are easy to represent in logic table format, and well-known,

and often studied in the context of genetic circuits (particularly NOR andNIMPLY) (Borujeni et al., 2020) (Tan and

Ng, 2021). A library of bioparts (consisting of promotors, transcripts, terminators, and proteins) was then

selected which were i) native to Arabidopsis (particularly promotors), ii) demonstrated to be functional in syn-

thetic biology applications in Arabidopsis, or iii) were from related plant species which we judged were likely

to function in synthetic biology applications. Note that when a particular biopart had different expression or

regulation patterns at different stages in growth or in different tissues, the pattern related to seedling root

was selected. These parts are described in detail in Table S2 These two items, conceptualizations and the

bioparts library, are then appropriately formatted as input files utilizing a Perl script (included in the associated

GitHub at github.com/ssbio/EuGeneCiDM) which reads a database file appendedwith the desired circuit logic,

example is provided in Table S3 with the full set used here in the associated GitHub at github.com/ssbio/

EuGeneCiDM), and writes the input files accordingly. EuGeneCiD was implemented in the Generalized Alge-

braic Modeling System (GAMS) language and run using the CPLEX solver. At this point, the workflow diverts

to several possible outcomes. First, EuGeneCiD found no designs of the appropriate size, indicated by no so-

lution or an ‘‘integer infeasible’’ model status. This is addressed by incrementing the allowedmodel size by one,

provided the maximum allowable circuit design size has not been exceeded, and re-attempting to solve EuGe-

neCiD. The second possibility is that EuGeneCiD found a potential design which fits the current criteria. This

design will be the output of EuGeneCiD and the input of EuGeneCiM. EuGeneCiM then simulates the designed

circuit, beginning at time point zero with no initial concentration of any enzyme or transcript. EuGeneCiM will

return, as an output, the relative production of enzymes and transcripts at the given time point. The concentra-

tion of enzymes at the current time point is reduced according to the half-life characteristics of the enzyme or

transcript terminator, and the newly produced amount of each is added to this value as the carry over to the next

time point. EuGeneCiM is then solved for the next time point, and the process is repeated until all time points

have a solution. From this, the dynamic behavior of the designed circuit may be plotted as a visual representa-

tion of the circuit simulation. This can be done through an additional Perl script (included in the associated Gi-

tHub at github.com/ssbio/EuGeneCiDM). The cycle of design (through EuGeneCiD) and simulation (through

EuGeneCiM) continues until case two occurs. The final possible outcome of EuGeneCiD is that no designs of

the appropriate size can be found, and that incrementing the sizewould result in exceeding themaximumallow-

able circuit design size (here, ten triads). In this case, it will be concluded that there are no further designs, and

the design and simulation results should bemanually screened to pick the most promising design candidate(s).

The example given here is a set of Cd/Cu responsive AND circuit from which is selected solution number 41,

which has the highest objective value.
Computing, language, and solving resources in implementation

This study has produced several unique software codes in the form of GAMS or Perl programming lan-

guages/tools. For implementing and solving EuGeneCiD and EuGeneCiM the Generalized Algebraic

Modeling System (GAMS), version 24.7.4 was used in conjunction with the CPLEX solver version 12.6.

Scripts which automate certain tasks utilize Perl version 5.26 for Unix or Strawberry Perl 5.24.0.1 for Win-

dows. The code provided is compatible with both versions. The main workflow (previously described)

was implemented on the Holland Computing Center Crane Cluster and allowed to run for at most seven

days (168 hours) before being terminated. CPLEX solver settings used are included in the associated Gi-

tHub at github.com/ssbio/EuGeneCiDM.
QUANTIFICATION AND STATISTICAL ANALYSIS

Many values used in the definition of the bioparts in the database used were defined throughmanual quan-

tification of quantitative data. For promotors, normal state was determined by literature evidence (either
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normally on or off). Strength and leakiness were determined, when possible, from western or northern blot

images, with strong expression being given a value of 5 and no expression being given a value of 1. In some

cases, the fold change in expression of a gene associated with a given promotor was known under induced

cases. In these cases, the ratio or strength to leakiness was adjusted to reflect these known expression

changes. Inducer and repressor identities were identified using literature evidence. The base strength of

induction or repression was set to 1; however, if some ligand showed greater activation or repression

than another, a value of 2 was assigned to model a greater effect on the activity of that particular promotor.

For transcripts, the transcriptional efficiency can represent various design elements of the gene, codon

optimization for instance, which can change the speed or efficiency of translation of the gene. A value of

0 would indicate that the gene cannot be translated and a value of 3 would indicate efficient translation.

In this work, there was no such adjusting of the translational properties of the genes; therefore, a base value

of 2 was assumed for all translational efficiencies. A small set of three terminators were identified from

Nagaya et al. (2010) and the relative half-lives of these terminators were determined as follows. The scale

used was from 0 representing near instant of mRNA to 3 representing slow degradation of associated

mRNA. Based on Nagaya et al. (2010) values of associated mRNA half-life for each terminator was quanti-

fied. For enzymes, the default state was determined from literature. The default expression and half-life

were assumed to be 5 and 2, respectively. These values were changed if literature evidence was found

to warrant the need to adjust these values. For instance, cI was noted as being rapidly degraded in registry

of standard biological parts, and therefore given a shorter half-life.
ADDITIONAL RESOURCES

This work accompanies a protocol paper for ease of replication, in addition to allowing others to utilize the

EuGeneCiD/S tools for their own studies. This protocol can be found in the journal STAR Protocols.
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