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Insulin-like growth factor-1 (IGF-1) effects on aging and neurodegeneration is
still controversial. However, it is widely admitted that IGF-1 is involved in the
neuroinflammatory response. In peripheral tissues, several studies showed that IGF-1
inhibited the expression of inflammatory markers, although other studies concluded that
IGF-1 has proinflammatory functions. Furthermore, proinflammatory cytokines such as
TNF-α impaired IGF-1 signaling. In the brain, there are controversial results on effects of
IGF-1 in neuroinflammation. In addition to direct protective effects on neurons, several
studies revealed anti-inflammatory effects of IGF-1 acting on astrocytes and microglia,
and that IGF-1 may also inhibit blood brain barrier permeability. Altogether suggests
that the aging-related decrease in IGF-1 levels may contribute to the aging-related
pro-inflammatory state. IGF-1 inhibits the astrocytic response to inflammatory stimuli,
and modulates microglial phenotype (IGF-1 promotes the microglial M2 and inhibits
of M1 phenotype). Furthermore, IGF-1 is mitogenic for microglia. IGF-1 and estrogen
interact to modulate the neuroinflammatory response and microglial and astrocytic
phenotypes. Brain renin-angiotensin and IGF-1 systems also interact to modulate
neuroinflammation. Induction of microglial IGF-1 by angiotensin, and possibly by other
pro-inflammatory inducers, plays a major role in the repression of the M1 microglial
neurotoxic phenotype and the enhancement of the transition to an M2 microglial
repair/regenerative phenotype. This mechanism is impaired in aged brains. Aging-
related decrease in IGF-1 may contribute to the loss of capacity of microglia to
undergo M2 activation. Fine tuning of IGF-1 levels may be critical for regulating the
neuroinflammatory response, and IGF-1 may be involved in inflammation in a context-
dependent mode.
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INTRODUCTION

Insulin-like growth factor-1 (IGF-1) is a protein produced in several organs, such as gonads,
muscle, bones, liver, gut and brain and is also present in plasma. IGF-1 signals primarily
via IGF-1 receptors (IGF-1R), but IGF-1 can act also through the insulin receptor. IGF-1 is
actively transported to the central nervous system (CNS) from plasma through the choroid
plexus (Carro et al., 2000; Santi et al., 2017), and it is also locally produced in the brain
by neurons and glial cells (Quesada et al., 2007; Suh et al., 2013; Rodriguez-Perez et al., 2016).
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IGF-1 has multiple effects in the CNS, regulating early
brain development, myelination, synapse formation, adult
neurogenesis, production of neurotransmitters and cognition
(Nieto-Estévez et al., 2016; Wrigley et al., 2017). Furthermore,
it is usually considered that IGF-1 is a potent neuroprotective
compound (Carro et al., 2003; Tien et al., 2017), and that this
is, at least partially, due to inhibition of neuroinflammation
(Sukhanov et al., 2007; Park et al., 2011). Consistent with
this, a decrease in IGF-1 signaling has been related with
neurodegeneration, depressive disorders and other brain
diseases, in which IGF-1 has been suggested as a possible therapy
(Torres Aleman, 2012; Guan et al., 2013). Several decades ago,
circulating GH and IGF-1 have been shown to decrease with
aging. However, the possible relationship between IGF-1 effects
and aging is still controversial, and opposite concepts can be
found in the literature. Both the increase in IGF-1 levels and the
inhibition of the IG-1R signal appear to induce beneficial effects
in the CNS, and exert either aging or anti-aging effects (Cohen
and Dillin, 2008; Fernandez and Torres-Alemán, 2012; Sonntag
et al., 2012).

This apparent contradiction has been related to different
explanations. Mild decrease in IGF-1 signal may lead to
mild metabolic changes that induce protective defenses
against more intense and deleterious conditions associated
to aging, finally leading to an increase in lifespan (Fernandez
and Torres-Alemán, 2012; Sonntag et al., 2012). IGF-1
decrease may lead to increased resistance to oxidative stress
(OS), mild mitochondrial dysfunction leading to hormesis
(Troulinaki and Bano, 2012), or increased resistance to
proteotoxicity (Cohen et al., 2009; George et al., 2017). It has
also been proposed that deletion of IGF-1R may counteract
possible deleterious IGF-1R signaling independently of
IGF-1 (Torres Aleman, 2012). Inhibition of IGF-1-related
tumor development may also result in increased longevity
(Novosyadlyy and Leroith, 2012). We suggest that development
of compensatory mechanisms against mild dysregulation
of the neuroinflammatory response may also be involved.
Actions of IGF-1 may be context-dependent (Fernandez
and Torres-Alemán, 2012), and IGF-1 may be involved
in inflammation in a context-dependent mode, which
may explain controversial results on the role of IGF-1 in
neuroinflammation.

In summary, it is known that IGF-1 plays a major role
in regulation of brain cells in health and disease conditions,
although this role is controversial and has not been totally
clarified. However, it is widely admitted that IGF-1 levels increase
in response to brain injury, and IGF-1 is involved in the
neuroinflammatory response to injury. Since neuroinflammation
plays a major role in brain aging and neurodegeneration,
clarification of the role of IGF-1 in the neuroinflammatory
process may shed light on the above mentioned controversy.

IGF-1 AND NEUROINFLAMMATION

In peripheral tissues, several studies have shown that IGF-1
regulates macrophagic functions, inhibits expression of
pro-inflammatory cytokines and decreases disease progression

(Sukhanov et al., 2007; Hijikawa et al., 2008). However, other
studies concluded that IGF-1 has proinflammatory functions,
as it was observed that IGF-1 increased chemotactic migration
and TNF-α expression in macrophages (Renier et al., 1996).
Conversely, proinflammatory cytokines such as TNF-α impaired
IGF-1 signaling (Hotamisligil et al., 1993). Controversial
results on effects of IGF-1 in neuroinflammation have also been
reported. IGF-1 (Park et al., 2011) and IGF-1 gene transfer (Hung
et al., 2007; Dodge et al., 2008) inhibited neuroinflammatory
responses. However, other studies observed that inhibition
of IGF-1R signaling decreased neuroinflammation and
neuronal death in Alzheimer’s disease (AD) mice models:
IGF1R-deficient mice were more resistant to amyloid-β
oligomer-induced proteotoxicity, showing notably less activated
astrocytes and less microgliosis (Cohen et al., 2009; George
et al., 2017). As previously observed in peripheral tissues,
TNF-α inhibited IGF-1 signaling in neurons (Venters et al.,
1999).

The mechanisms responsible for the above mentioned effects
are unclear. The anti-inflammatory properties of IGF-1 may
be related to regulation of infiltration of inflammatory cells
into tissues (Motani et al., 1996), including CNS, rather than
a direct effect on the inflammatory cells (i.e., IGF-1 may act
on the blood brain barrier; BBB). Consistent with this, IGF-1
ameliorated the breakdown of the BBB in a traumatic lesion
of the spinal cord (Sharma, 2005), and in a model of multiple
sclerosis (Liu et al., 1995). However, other studies showed that,
IGF-1 enhanced BBB permeability and leukocyte infiltration
(Pang et al., 2010): co-administration of IGF-1 with LPS further
enhanced BBB permeability induced by LPS alone, while no
change of BBB integrity was found in rats treated with IGF-1
alone. It was suggested that the effects of IGF-1 may depend
on pathological conditions, and that in an acute inflammation,
IGF-1 may have detrimental effects. However, several in vitro
experiments revealed direct anti-inflammatory effects of IGF-1
on astrocytes and microglia (Bluthé et al., 2006; Palin et al.,
2007). A simultaneous effect on the BBB and glial cells was also
suggested (Bake et al., 2014).

On the basis of the anti-inflammatory effects of IGF-1,
it has been suggested that development of resistance to
IGF-1 may contribute to neuroinflammation and progression
of major brain diseases. Furthermore, neuroinflammation
may contribute to disease progression by decreasing levels
of neuroprotective molecules such as IGF-1. Therefore,
aging-related decrease in IGF-1 levels may contribute to
the aging-related pro-inflammatory state and vice versa.
However, the molecular mechanisms involved in the above
mentioned controversial effects of IGF-1 have not been clarified.
Investigation of the specific role of IGF-1 in neurons, astrocytes
and microglia in different experimental contexts may shed light
on the controversy (Figure 1).

IGF-1 AND NEURONS

Our recent studies and others (Zhou et al., 1999; Rodriguez-
Perez et al., 2016) have shown the presence of IGF-1
and IGF-1R in neurons, astrocytes and microglia. IGF-1 is
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FIGURE 1 | Schematic model showing the possible role of Insulin-like growth factor-1 (IGF-1) in neuroinflammation. IGF-1 is actively transported from plasma and
locally produced in the brain by neurons and glial cells (blue arrows). Microglial cells are a major source of IGF-1(blue arrow) in comparison with astrocytes and
neurons (dashed blue arrows). IGF-1 receptors are predominantly expressed in neurons and astrocytes, which appear to be targeted by IGF-1 in lesioned regions.
IGF-1 promotes neuronal survival and the M2 microglial repair/regenerative phenotype (green arrows), and inhibits the astrocytic response to inflammatory stimuli and
the M1 microglial phenotype (red arrows). Therefore, IGF-1 induces repression of the M1 microglial neurotoxic phenotype and enhancement of the transition to M2
(black arrow). Aging-related decrease in IGF-1 may contribute to the loss of capacity of microglia to undergo M2 activation, leading to an aging-related
pro-inflammatory state. Brain IGF-1, estrogen and angiotensin interact to modulate the neuroinflammatory response. However, these regulatory mechanisms are
impaired in aged brains. Abbreviations: BBB, blood-brain barrier; E2, estrogen; RAS, renin-angiotensin system. Figure was produced using Servier Medical Art
(http://www.servier.com).
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synthesized by both neurons and glial cells, although its
role is different in each cell type. IGF-1 protects neurons
from neurotoxins in the presence of glia, which may be
related to direct IGF-1 regulation of the glial inflammatory
response (Nadjar et al., 2009). However, IGF-1 may also
modulate neuroinflammation indirectly through effects on
neurons, which modulate the neuroinflammatory response.
IGF-1 directly protects neurons in pure neuronal cultures (Offen
et al., 2001; Rodriguez-Perez et al., 2016). The mechanisms
responsible for the direct neuronal protection of IGF-1 have
not been clarified. However, effects on mitochondrial function
(Puche et al., 2008), inhibition of OS, Sirtuin-1 activation
(Vinciguerra et al., 2009; Tran et al., 2014) and other possible
mechanisms have been suggested (Fernandez and Torres-
Alemán, 2012; Torres Aleman, 2012; Werner and Leroith,
2014).

IGF-1 AND ASTROCYTES

IGF-1 is also synthesized by astrocytes, and several studies
indicate that IGF-1 plays a major role in modulating the
astrocytic activity. IGF-1 regulates astrocytic glucose control
and CNS glucose metabolism (Hernandez-Garzón et al., 2016).
Furthermore, astrocytes contribute to regulation of IGF-1R
expression in neurons (Costantini et al., 2010). Astrocytic
IGF-1 protects neurons against oxidative damage (Genis et al.,
2014) and traumatic brain injury (Madathil et al., 2013). IGF-1
administration or IGF-1 gene therapy inhibited expression of
toll-like receptor 4, and reduced the astrocytic response to
inflammatory stimuli (Bellini et al., 2011) and the expression of
inflammatory mediators such as TNF-α, IL-1β and iNOS (Park
et al., 2011). However, it was also found that IGF1R-deficient
mice showed less amyloid-β oligomer-induced activation of
astrocytes and less microgliosis (Cohen et al., 2009; George
et al., 2017). Furthermore, astrocytes modulate the inflammatory
response both directly and indirectly by releasing mediators
that control the microglial response (Dominguez-Meijide et al.,
2017).

IGF-1 AND MICROGLIA

Microglia act as resident macrophages in the CNS and
major mediators of neuroinflammatory responses (Prinz and
Priller, 2014). Classically, microglia present two functional
states (i.e., resting and activated microglia). In a healthy state,
neurons release immunosuppressive signals, which induce the
classical inactivated state in the surrounding microglial cells
(Harrison et al., 1998). However, it is now considered that the
classical microglial activation comprises a group of ‘‘activated’’
states, and that microglia, in response to their environment,
can adopt multiple phenotypes and functions to control
CNS homeostasis (Ransohoff, 2016; Labandeira-Garcia et al.,
2017; Nissen, 2017). Appropriate progression of the microglial
response from the so-called proinflammatory/M1 to the so-called
immunoregulatory/M2 phenotype is required for an efficient
repair of brain injuries. A dysregulation of this process, leading

to continued release reactive nitrogen species (RNS), reactive
oxygen species (ROS) and inflammatory cytokines, results in
progression neuronal death and brain diseases (Kettenmann
et al., 2011; Labandeira-Garcia et al., 2017).

Microglial cells are a major source of IGF-1, which is
upregulated during the inflammatory process. IGF-1R are
predominantly expressed in neurons and astrocytes, which
appear to be targeted by IGF-1 in lesioned regions (Butovsky
et al., 2006; Suh et al., 2013) to promote neuronal survival
(Arroba et al., 2011; Ueno et al., 2013; Figure 1). The
immunoregulatory/M2 phenotype is typically promoted by
cytokines such as IL-4 or IL-13. However, a number of data
suggest that IGF-1 may also modulate the microglial phenotype:
an increase in IGF-1 levels promotes the M2 phenotype (Lee
et al., 2013), and treatment with IL-4 increases IGF-1 release
by microglial cells (Ferger et al., 2010). IGF-1 also inhibits
microglial ROS and markers of M1 phenotype such as TNF-α
(Grinberg et al., 2013). Consistent with this, microglia showed
a marked upregulation of IGF-1 levels and down-regulation
of IL-6 in a transgenic mouse model of amyotrophic lateral
sclerosis, which was related to modulation of a beneficial
inflammatory response to neuronal damage (Chiu et al., 2008).
Similarly, in rat models of ischemic lesion, IGF-1 mRNA
was overexpressed in astrocytes and microglia surrounding
surviving neurons (Beilharz et al., 1998), and elimination of
proliferating microglia enhanced infarct volume and reduced
levels of IGF-1 induced by the ischemic lesion (Lalancette-
Hébert et al., 2007). Furthermore, microglia may be responsible
for the neuroprotective effects of peripheral IGF-1 transported
into the CNS, since treatment of microglia with IGF-1
was mitogenic (O’Donnell et al., 2002), and proliferation
of microglia is usually considered a major regulator of the
neuroinflammatory response, and a source of neuroprotective
molecules such as IGF-1 (Lalancette-Hébert et al., 2007).
Apparently controversial results were also observed: activation of
humanmicroglia with LPS reduced IGF-1 levels, which suggested
that chronic neuroinflammation and increased inflammatory
cytokines may lead to neurodegeneration by inhibiting the
release of microglia-derived neuronal trophic factors, such as
IGF-1 (Suh et al., 2013). However, a sudden increase in IGF
levels may induce feedback signals decreasing responsiveness
of the IGF-1R and IGF signaling, which may be different
to the aging and neurodegenerative context (Suh et al.,
2008).

Interestingly, aging (Lee et al., 2013) and mitochondrial
dysfunctions (Ferger et al., 2010) inhibited IL-4-induced
M2 phenotype and IL-4-induced increase in IGF-1 levels. This
is consistent with recent studies suggesting that mitochondrial
metabolism may modulate microglial polarization (Orihuela
et al., 2016).

INTERACTION BETWEEN IGF-1 AND
ESTROGEN IN NEUROINFLAMMATION

Sex hormones induce trophic effects on neurons and glia,
enhance neuron survival and modulate several CNS functions
(Rettberg et al., 2014). As in the case of IGF-1, estrogens are

Frontiers in Aging Neuroscience | www.frontiersin.org 4 November 2017 | Volume 9 | Article 365

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Labandeira-Garcia et al. IGF-1 and Neuroinflammation

transported to the brain through the BBB and, in addition,
the CNS can synthesize some endogenous estrogens (Azcoitia
et al., 2011). Several studies have shown the presence of
estrogen receptors (ERs) in neurons, astrocytes and microglia
(Rettberg et al., 2014; Rodriguez-Perez et al., 2015). The
mechanism responsible for estrogen-induced neuroprotection
is still unclear. Direct anti-apoptotic (Brendel et al., 2013)
and trophic (Campos et al., 2012) effects on neurons
have been observed. However, a number of recent studies
have revealed that regulation of the neuroinflammatory
response constitutes a major mechanism involved in estrogen
neuroprotective effects (Morale et al., 2006; Vegeto et al.,
2008).

Several studies have shown that neurons and glial cells
co-express ERs and IGF-1R (Cardona-Gómez et al., 2000;
Quesada et al., 2007), and that estrogen and IGF-1 interact in
the CNS for regulation of developmental and synaptic plasticity
events and adult neurogenesis (Garcia-Segura et al., 2010).
Furthermore, IGF-1 may mediate neuroprotection induced by
estrogen. In aged ovariectomized rats, JB-1 (IGF-1R inhibitor)
inhibited the beneficial effects of estrogen administration,
suggesting that the IGF-1R signaling may mediate the effects
of estrogen (Witty et al., 2013). Similarly, in a rat model
of stroke, JB-1 blocked the estrogen neuroprotective effects
(Selvamani and Sohrabji, 2010; Sohrabji, 2015). Several possible
molecular mechanisms have been involved in the IGF-1/estrogen
interaction, such as cross-regulation of ER and IGF-1R
expression, IGF-1 regulation of ER-induced transcription, or
regulation of IGF-1R signaling by estrogen (Garcia-Segura et al.,
2010). Estrogen and IGF-1 may also stimulate common signaling
pathways such as MAP kinases, PI3kinase/AKT ERK1 and ERK2
(Singh et al., 1999; Sohrabji, 2015).

Administration of either IGF-1 or estrogen can modify
the inflammatory response and microglial and astrocytic
phenotypes. However, they may also induce synergistic effects
on neuroinflammation by still unclear mechanisms. Brain
lesions stimulate production of IGF-1 and estrogen by reactive
astrocytes, and increase ER and IGF-1R expression in activated
glial cells (Garcia-Estrada et al., 1992; Blurton-Jones and
Tuszynski, 2001; García-Ovejero et al., 2002; Hwang et al.,
2004). Similar to IGF-1, estrogen has complex effects on
the inflammatory response (Bellini et al., 2011; Rodriguez-
Perez et al., 2015, 2016). Both estrogen and IGF-1 produced
by activated glial cells may act directly on the same glial
cells and on the surrounding neurons, modulating both
the neuroinflammatory response and neuronal survival.
Furthermore, as indicated above for IGF-1, effects of estrogen on
neuroinflammation may be in part related to regulation of the
BBB, since estrogen-deficient conditions such as menopause or
reproductive senescence increase permeability of BBB (Bake and
Sohrabji, 2004).

Consistent with the important interactions between estrogen
and brain IGF-1 system, gender differences have been observed
in several responses mediated by IGF-1 such as effects of
exercise (Munive et al., 2016). Furthermore, in a series of
studies using cell cultures, young rodents and menopausal
rats (Rodriguez-Perez et al., 2010, 2011, 2012, 2015, 2016;

Labandeira-Garcia et al., 2016), we have revealed important
interactions and mutual regulation between estrogen and
brain renin-angiotensin system (RAS). Interestingly, we also
observed mutual regulation between RAS and IGF-1 (see
below).

INTERACTION BETWEEN IGF-1 AND RAS
IN NEUROINFLAMMATION

As in the case of IGF-1, the brain RAS has been associated
with longevity, neuroinflammation and aging-related neuronal
vulnerability to degeneration (Labandeira-Garcia et al., 2011,
2013, 2017; Labandeira-García et al., 2014). Angiotensin II (AII)
is classically considered the main effector peptide of the RAS.
AII signaling is mediated via AII type 1 and 2 receptors (AT1R
and AT2R). AT2R induce effects that counteract those induced
by AT1R stimulation (McCarthy et al., 2013). Overstimulation of
the local/paracrine/tissue RAS, through AT1R, leads to OS due
to NADPH oxidase overactivation, and triggers inflammatory
responses. Consistent with this, RAS overactivation reduces
longevity and induces aging-related degeneration in several
tissues (Benigni et al., 2009, 2013; de Cavanagh et al.,
2015).

Mutual regulation between RAS and IGF-1 was observed in
peripheral cells, particularly in vascular smooth muscle cells (Ma
et al., 2006; Jia et al., 2011) and cardiomyocytes (Leri et al., 1999;
Kajstura et al., 2001). In a recent study, we have investigated
possible interactions between both systems in the brain and in the
neuroinflammatory process in particular (Rodriguez-Perez et al.,
2016), and the results may shed light on the role of IGF-1 in the
neuroinflammatory response. We observed reciprocal regulation
between RAS and IGF-1: IGF-1 administration decreased RAS
activity in neurons and glial cells (i.e., IGF-1 decreased AT1R,
increased AT2R and reduced angiotensinogen/angiotensin
levels). Inversely, AT1R activation increased IGF-1 and IGF-1R
levels in microglia, while AT2R stimulation reduced IGF-1 and
IGF-1R expression. AII administration promoted the microglial
M1 phenotype via AT1R, which was blocked by activation
of AT2R. Consistent with the above-mentioned interactions,
the AII-induced enhancement of M1 phenotype markers was
inhibited by administration of IGF-1. This suggests that
induction of microglial IGF-1 production by AII, and possibly
by other OS and pro-inflammatory inducers, plays a major
role in the repression the M1 microglial neurotoxic phenotype
and the enhancement of the transition to an M2 microglial
repair/regenerative phenotype.

According to previous observations in plasma, and other
brain regions and tissues (Bartke et al., 2003; Brown-Borg, 2015),
we observed a reduction in IGF-1 levels in the substantia nigra
of aged rats in comparison with young controls. In young
animals and cultures, AT1R stimulation induced an increase in
IGF-1 levels (see above). Since AII/AT1R activity is enhanced
in the nigra of aged rats (Villar-Cheda et al., 2012, 2014), a
counterregulatory increase rather than a decrease in IGF-1 levels
may be expected. This suggests an aging-related loss of the IGF-
1-mediated counterregulatorymechanism, whichmay lead to the
pro-oxidative and pro-inflammatory state observed aged brains
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(Villar-Cheda et al., 2012; Lee et al., 2013). Low levels of IGF-1
may contribute to the loss of capacity of microglia to undergo
M2 activation in the aged brain.

In addition to IGF-1-induced neuronal protection by
modulation of the microglial inflammatory response, IGF-1
mediate a direct effect on neurons (see above), which may
lead to indirect (i.e., neuron-mediated) modulation of the glial
inflammatory response. This is consistent with our recent studies
on the intraneuronal or intracrine RAS, in which we observed
that activation of nuclear AT1R induces several intraneuronal
protective mechanisms that may counteract the deleterious
effects of activation of plasmatic membrane pro-oxidative
AT1R (Valenzuela et al., 2016; Villar-Cheda et al., 2017). This
protective response includes an increase in transcription of
IGF-1. Interestingly, this intracrine protective response was
impaired in nuclei isolated from aged brains (Villar-Cheda et al.,
2017).

CONCLUSION

Experimental manipulation of IGF-1 and IGF-1R led to some
controversial findings, possibly because a fine tuning of IGF-1
levels is necessary for each specific situation. This may be critical
for regulating the neuroinflammatory response, as well as other
IGF-1 functions and brain health. Furthermore, IGF-1 may be

involved in inflammation in a context-dependent mode. Views of
IGF-1 as beneficial or detrimental appear over-simplistic. Future
studies taking into account different experimental contexts and
progression in the knowledge of the microglial responses and
phenotypes will help to solve current controversies.
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