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Purpose. This study is aimed at exploring the potential metabolite/gene biomarkers, as well as the differences between the molecular
mechanisms, of osteoarthritis (OA) and rheumatoid arthritis (RA). Methods. Transcriptome dataset GSE100786 was downloaded
to explore the differentially expressed genes (DEGs) between OA samples and RA samples. Meanwhile, metabolomic dataset
MTBLS564 was downloaded and preprocessed to obtain metabolites. Then, the principal component analysis (PCA) and linear
models were used to reveal DEG-metabolite relations. Finally, metabolic pathway enrichment analysis was performed to
investigate the differences between the molecular mechanisms of OA and RA. Results. A total of 976 DEGs and 171 metabolites
were explored between OA samples and RA samples. The PCA and linear module analysis investigated 186 DEG-metabolite
interactions including Glycogenin 1- (GYG1-) asparagine_54, hedgehog acyltransferase- (HHAT-) glucose_70, and TNF
receptor-associated factor 3- (TRAF3-) acetoacetate_35. Finally, the KEGG pathway analysis showed that these metabolites were
mainly enriched in pathways like gap junction, phagosome, NF-kappa B, and IL-17 pathway. Conclusions. Genes such as
HHAT, GYG1, and TRAF3, as well as metabolites including glucose, asparagine, and acetoacetate, might be implicated in the
pathogenesis of OA and RA. Metabolites like ethanol and tyrosine might participate differentially in OA and RA progression via
the gap junction pathway and phagosome pathway, respectively. TRAF3-acetoacetate interaction may be involved in regulating
inflammation in OA and RA by the NF-kappa B and IL-17 pathway.

1. Introduction

Osteoarthritis (OA) and rheumatoid arthritis (RA) are all
inflammatory joint diseases [1]. Globally, approximately
250 million people (3.6% of the population) have OA [2].
Meanwhile, RA will affect about 24.5 million people by the
year 2015 [3, 4]. Although some factors including cytokines
and chemokines help distinguish OA from RA [5], the
unclear differences in the molecular mechanisms underlying
these two diseases impede the choice of the optimal clinical
treatment strategy.

Metabolites have various functions including signaling,
defense, and interactions with other organisms [6]. Numer-
ous studies have shown that metabolites are associated with
the pathological process of OA and RA [7–9]. A previous

study shows that the expression levels of reactive oxygen
metabolites are upregulated in patients with knee OA [10].
Zhang et al. indicated that a total of 14 metabolites extracted
could be potentially used as biomarkers for OA [11]. More-
over, as a biomarker of in vivo mast cell activation, the
activity of prostaglandin D2 metabolites is closely associated
with the progression of RA [12]. In an animal model, Jahreis
et al. showed that mold metabolites drive RA in mice via the
promotion of T cells [13]. However, the interpretation of
metabonomic data is difficult due to the obstacle in data
extraction and disease correlation analysis [14]. A previous
study indicates that the expression of interleukin 1 can
regulate the progression of both OA and RA through direct
stimulation of synoviocytes and augmentation of matrix deg-
radation [15]. Actually, the detection and interpretation of
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metabolite-transcript coresponses using combined profiling
can yield important information on the complex biological
regulation mechanism of the disease [16]. Thus, integrative
analysis of transcriptome and metabonomic data may
contribute to a further understanding of OA and RA
progression.

In the present study, a metabonomic-transcriptome inte-
gration analysis was performed. To investigate the genes and
metabolites that differentially expressed between OA and RA,
the differentially expressed genes (DEGs) and metabolites
were revealed from microarray data and metabolite expres-
sion profile data, respectively. Then, principal component
analysis (PCA) and the linear model were used to explore
the DEG-metabolite interactions. Finally, based on these
interactions, pathway analysis was performed on DEG-
associated metabolites to reveal the pathways that participate
in the process of OA and RA. This study was expected to
investigate the role of key metabolites and genes as well as
their interactions in the pathogenesis of OA and RA, and
further understand the complex biological regulatory mecha-
nisms of metabolites in these two diseases.

2. Materials and Methods

2.1. Data Resource. The transcriptome dataset GSE100786
was downloaded from the Gene Expression Omnibus
(GEO) database. The platform was the GPL570 Affymetrix
Human Genome U133 Plus 2.0 Array. A total of 8 OA bone
marrow (BM) monocyte samples and 8 RA BM monocyte
samples were included in GSE100786.

The metabolite profiling MTBLS564 was downloaded
from the Ensembl-European Bioinformatics Institute
(EMBL-EBI) MetaboLights database (https://www.ebi.ac
.uk/metabolights/index). The platform was Bruker (using

NMR spectroscopy technology). A total of 10 OA synovial
fluid (SF) samples and 14 RA SF samples were included in
MTBLS564.

2.2. Data Preprocessing. The normalization for transcriptome
data was performed using the Robust Multichip Average
(RMA) [17] method in the Affy package (version: 1.56.0)
[18] of R (version: 3.4.3) software. The normalization process
in this study included background adjustment, quantile
normalization, and finally summarization and log base 2
scale. If different probes mapped to the same miRNA
(miRNA symbol), the mean value of different probes was
considered as the final expression value of this miRNA.
Meanwhile, the metabolomic data could be directly read
from the processed metabolite data file using R software.

2.3. The Investigation for DEGs. The P value between OA
samples and RA samples in transcriptome data was calcu-
lated by the Linear Models for Microarray Data (version:
3.34.9, limma) package [19] in R software. Then, P < 0:05
was selected as the threshold for the identification of DEGs.
Then, based on Euclidean distance, the bidirectional hierar-
chical clustering for DEMs was performed by pheatmap
software (version: 1.0.8) [20]. The results were visualized
using a heat map.

2.4. Principal Component Analysis. In the current study, the
average value of each gene in the transcriptome data was cal-
culated and ranked from high to low (deleting the last 10% of
the genes). Meanwhile, the proportion of the deletion value
in the expression value of each metabolite was counted, and
the metabolites with more than 80% deletion value were
deleted. Then, the principal component analysis (PCA) was
performed on the data in two groups.
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Figure 1: The heat map for differentially expressed genes between osteoarthritis samples and rheumatoid arthritis samples. The blue and red
bars at the top represent the samples in osteoarthritis samples and rheumatoid arthritis samples, respectively. The red color represents low
expression, while the red color represents high expression.
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2.5. Integrating Transcriptome Data and Metabonomic Data
Based on Linear Models. Based on the results of PCA analysis
on gene expression data and metabonomic data, the P values
of DEG-metabolite relevance between OA samples and
RA samples were obtained using the IntLim (version:
0.1.0, https://github.com/mathelab/IntLIM) linear model
algorithm [21]. The computation formula is as follows:

m = β1 + β2g + β3p + β4 g : pð Þ + ε, ð1Þ

where “m” and “g” in the formula represent metabolite
abundance and gene expression level, respectively; “p ”
in the formula represents phenotype (OA samples vs.
RA samples); “ðg : pÞ” in the formula represents the asso-
ciation between gene expression and phenotype; and “ε”
in the formula represents normal distribution. Then, the
difference of correlation coefficients between the two
groups ðjrOA − rRAjÞ > 1 and P value < 0.001 were selected
as the cut-off values for DEG-metabolite interaction
investigation.

2.6. Metabolic Pathway Enrichment Analysis. The clusterPro-
filer software (version: 3.2.11) [22] is an online tool that
provides enrichment analyses including KEGG [23]. Based
on the P value of DEG-metabolite interactions, the KEGG
pathway enrichment analysis was used to investigate path-
ways enriched by the DEGs associated with metabolites.
P value (the significance threshold of the hypergeometric
test) < 0.05 was chosen as the cut-off criterion for the
present enrichment analysis.

3. Results

3.1. DEG and Metabolite Investigation. After preprocessing, a
total of 171 metabolites from metabonomic data were
enrolled for further investigation. Meanwhile, a total of
20,192 genes were obtained from 54,675 probes in the cur-

rent transcriptome data. Among these 20,192 genes, a total
of 416 upregulated genes (such as hedgehog acyltransferase
(HHAT)) and 669 downregulated genes (such as Glycogenin
1 (GYG1), Unc-51 Like Kinase 3 (ULK3), and breakpoint
cluster region protein (BCR)) were revealed between OA
samples and RA samples in transcriptome data. The heat
map for all these DEGs is shown in Figure 1.

3.2. DEG-Metabolite Interaction Analysis. After filtering the
transcriptome data and metabonomic data, the PCA analysis
was performed on 171 metabolites and 976 DEGs. The
results of PCA analysis for these metabolites and DEGs are
shown in Figure 2. Furthermore, the histogram of P values
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Figure 2: The principal component analysis of metabolites and differentially expressed genes. (a) The principal component analysis for
differentially expressed genes in transcriptome data. (b) The principal component analysis for metabolites in metabonomic data. The red
circles represent osteoarthritis (OA) samples; the blue diamonds represent the rheumatoid arthritis (RA) samples.
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Figure 3: The histogram of interaction P values for all differentially
expressed gene-metabolite relations in the current study. The x-axis
represents the P value of certain differentially expressed gene-
metabolite relations, while the y-axis represents the frequency of
this P value.
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of the DEG-metabolite relevance between OA samples and
RA samples is shown in Figure 3. The result of the correlation
analysis between all DEGs and metabolites is shown in
Figure 4(a). Meanwhile, the correlation analysis between
DEGs and metabolites in the OA group or the RA group
is shown in Figure 4(b). These results showed that a total
of 186 interactions including 98 metabolites and 94 DEGs
were revealed among all DEG-metabolite relations with
P < 0:001, such as TRAF3-acetoacetate_35 (Supplemental
Table S1). According to the value of jrOA − rRAj, the
results of the top 5 DEG-metabolite interactions including
HHAT-nacetylaminoacid_29, GYG1-asparagine_54, ULK3-
unknown_129, BCR-malonate_64, and HHAT-glucose_70
are listed in Table 1. Moreover, the correlation analyses of
these 5 interactions are shown in Figure 5.

3.3. Enrichment Analysis for Metabolites. The KEGG path-
way enrichment analyses were performed on 26 metabolites
in DEG-metabolite interactions. The results showed that
these metabolites were mainly enriched in pathways like the
pathogenic Escherichia coli infection pathway (hsa05130;

P = 1:77e‐02; metabolites: ethanol_13, isoleucine_3, tyro-
sine_59, etc.), gap junction (hsa04540; P = 1:77e‐02;
metabolites: ethanol_13, isoleucine_3, tyrosine_59, etc.),
phagosome (hsa04145, P = 2:04e‐02; metabolites: ethanol_
13, isoleucine_3, tyrosine_59, etc.), NF-kappa B signaling
pathway (hsa04064; P = 1:27e‐02; metabolite: acetoace-
tate_35), IL-17 signaling pathway (hsa04657; P = 1:25e‐02;
metabolite: acetoacetate_35), and inflammatory mediator
regulation of TRP channels (hsa04750; P = 2:63e‐02;
metabolites: alanine_18, guanidoacetate_125, and lysine_
23) (Figure 6).

4. Discussion

Although metabolites are proven to be associated with the
pathological process of OA and RA, the difficulty in inter-
preting metabonomic data impedes the understanding of
the differences of the molecular mechanisms between these
two diseases. The current metabonomic-transcriptome inte-
gration analysis revealed a total of 976 DEGs and 171 metab-
olites between OA samples and RA samples. The PCA and
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Figure 4: The volcano plot and heat map for correlations between differentially expressed genes and metabolites. (a) The volcano plot: x-axis
represents the difference in correlation between differentially expressed gene and metabolites; y-axis represents the P value of correlation. (b)
The heat map: OA—the correlation between differentially expressed genes and metabolites in the osteoarthritis group; RA—the correlation
between differentially expressed genes and metabolites in the rheumatoid arthritis group; the different colors represent the correlation
difference.

Table 1: The top 5 differentially expressed gene-metabolite interactions.

Metabolites DEGs OA_cor RA_cor diff.corr P

Nacetylaminoacid_29 HHAT -0.952 0.833 1.786 1:12e‐06
Asparagine_54 GYG1 0.905 -0.857 -1.762 3:77e‐04
Unknown_129 ULK3 0.857 -0.905 -1.762 3:40e‐04
Malonate_64 BCR 0.762 -0.952 -1.714 5:83e‐04
Glucose_70 HHAT -0.905 0.810 1.714 9:34e‐04
Notes: DEGs: differentially expressed genes; OA_cor: the correlation between DEGs and metabolites in the osteoarthritis group; RA_cor: the correlation
between DEGs and metabolites in rheumatoid arthritis correlation; diff.corr: the DEG-metabolite correlation between the OA group and the RA group;
P < 0:001 was selected as the cut-off value.
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linear module analysis explored 186 DEG-metabolite inter-
actions including GYG1-asparagine_54, HHAT-glucose_70,
and TRAF3-acetoacetate_35. Finally, the KEGG pathway
analysis showed that these metabolites were mainly enriched
in pathways like pathogenic Escherichia coli infection, gap
junction, phagosome, NF-kappa B signaling pathway, and
IL-17 signaling pathway.

HHAT is an enzyme in the endoplasmic reticulum that
palmitoylates hedgehog proteins [24]. HHATs participate

in the expression of the sonic hedgehog signaling pathway
[25]. The sonic hedgehog signaling pathway can regulate
the neuronal-like differentiation of bone mesenchymal stem
cells [26]. It also promotes carcinoma cells associated with
bone destruction [27]. A previous study shows that sonic
hedgehog signaling pathway-associated factors are upregu-
lated in synovial tissues of RA [28]. Wang et al. indicated that
genes such as HHAT in the sonic hedgehog signaling
pathway are novel therapeutic targets for RA [29].
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Interestingly, sonic hedgehog alleviates the inhibitory effects
of high glucose on the osteoblastic differentiation of bone
marrow stromal cells [30]. Glucose deficiency is closely
related with the development of OA [31]. A clinical and epi-
demiological survey shows that the plasma glucose concen-
tration is associated with the severity of OA [32]. Data from
the OA investigation indicates that glucose homeostasis can
influence the risk of knee OA. Moreover, GYG1 is an enzyme
that is involved in the biosynthesis of glycogen [33]. It plays a
role in glycogen metabolism regulation and in the maximal
glycogen level attainment in skeletal muscle [34]. A previous
study shows that the inhibition of GYG synthase kinase
attenuates the glucocorticoid-induced bone loss [35]. A study
of hepatic glycogen catabolism and glycogen levels in rats
with chronic arthritis shows that GYG expression level is
closely related with arthritis progression [36]. Meanwhile, a
previous study reveals that asparagine-linked glycosylation
of bone morphogenetic protein is required for secretion
and osteoblast differentiation [37]. In a clinical study, Tong
et al. indicated that asparagine levels were all below the lower
limit of quantification in the bone marrow of leukemia
patients [38]. In this study, the PCA and linear module anal-
ysis showed that GYG1-asparagine and HHAT-glucose were
two of the most outstanding DEG-metabolites. Thus, we
speculate that GYG1-asparagine and HHAT-glucose interac-
tion might be implicated in the pathogenesis of OA and RA.

A previous study shows that gap junctions have an
important function in the control or coordination of bone
cell activity [39]. The intercellular gap junctions play a vital

role in skeletal physiology and bone cell mechanosensing
[40]. The metabolite ethanol decreases gap junction perme-
ability in primary cultures from defined brain regions [41].
Actually, ethanol had been successfully used in the treatment
of distal tarsal joint OA [42]. Meanwhile, Jonsson et al.
indicated that ethanol could prevent the development of
destructive RA [43]. Although the increased intercellular
communication through gap junctions may contribute to
the progression of OA [44], so far, no study has shown that
the gap junction pathway is involved in RA progression. Fur-
thermore, a previous study indicated that phagosome-
lysosome fusion participates in the biological function of bone
marrow macrophages [45]. Based on a fluorescence and elec-
tron microscope study, Zuckerfranklin showed that phago-
somes participated in the regulation of synovial fluid
leukocytes during RA development [46]. A previous study
showed that some metabolites including tyrosine participated
in the phagosome pathway [47]. An expression profile analysis
of tyrosine genes in humanOA proves the relationship between
tyrosine expression and OA progression [48]. Meanwhile,
Murakami et al. indicated that the tyrosine kinase promotes
the development of RA through the activation of macrophages
[49]. In this study, KEGG pathway analysis showed that the
DEG-associated metabolites between OA samples and RA
samples such as ethanol and tyrosine were mainly enriched
in pathways like the gap junction and phagosome, respectively.
Thus, we speculated that the gap junction pathway enriched by
the ethanol and phagosome pathway enriched by tyrosine
might participate differentially in OA and RA progression.
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Studies had reported the roles of NF-kappa B and IL-17
on regulating inflammation in RA [50–52]. Shui et al. sug-
gested that inflammation could be alleviated by blocking
IL-17 in RA rats [53]. Zhang et al. indicated that overexpres-
sion of microRNA-125b could facilitate inflammation in RA
by activating the NF-κB signaling pathway [54]. In this study,
metabolite acetoacetate was significantly enriched in the
NF-kappa B and IL-17 signaling pathway, and TRAF3-
acetoacetate_35 interaction was identified. TRAF3 is an
intracellular protein that belongs to the TNF receptor-
associated factor protein family which is implicated in
NF-kappa B activation [55, 56]. Reportedly, the Tengmei
Decoction could improve inflammatory injury of synovium
in collagen-induced arthritis rats probably by regulating the
TRAF3/NF-κB signaling pathway [57]. Liu et al. showed that
miR-671-3p played a crucial role in the pathogenesis of OA
by targeting TRAF3 and regulating chondrocyte apoptosis
and inflammation [58]. Thereby, we speculated that the
NF-kappa B and IL-17 pathway enriched by acetoacetate
was implicated in regulating inflammation in OA and RA
probably by targeting TRAF3. However, there were some
limitations in the current study including small sample size
and lack of verification analysis. Thus, a further verification
study based on a large sample size is needed to confirm all
speculations in this study.

5. Conclusions

In conclusion, genes such as HHAT, GYG1, and TRAF3, as
well as metabolites including glucose, asparagine, and acetoa-
cetate might be implicated in the pathogenesis of OA and RA.
Metabolites like ethanol and tyrosine may participate
differentially in OA and RA progression via the gap junction
pathway and the phagosome pathway, respectively. TRAF3-
acetoacetate interaction may be involved in regulating
inflammation in OA and RA by the NF-kappa B and IL-17
pathway.
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