
plants

Article

Efficiency of Wheat Straw Biochar in Combination
with Compost and Biogas Slurry for Enhancing
Nutritional Status and Productivity of Soil and Plant

Aown Abbas 1, Muhammad Naveed 1,* , Muhammad Azeem 2, Muhammad Yaseen 1,
Rehmat Ullah 3, Saud Alamri 4, Qurrat ul Ain Farooq 5,6 and Manzer H. Siddiqui 4,*

1 Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Punjab,
Pakistan; aownabbas15@yahoo.com (A.A.); dr.yaseen@gmail.com (M.Y.)

2 College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China;
azeem@nwafu.edu.cn

3 Department of Agriculture, Soil and Water Testing Laboratory, Dera Ghazi Khan 32200, Pakistan;
rehmat1169@gmail.com

4 Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451,
Saudi Arabia; saualamri@ksu.edu.sa

5 Phytophthora Science and Management, Environmental and Conservation Sciences, Murdoch University,
Murdoch, WA 6150, Australia; anniepk_elegant@yahoo.com

6 Institute of Agricultural Sciences, University of the Punjab, Lahore 54590, Punjab, Pakistan
* Correspondence: Muhammad.Naveed@uaf.edu.pk (M.N.); manzerhs@yahoo.co.in (M.H.S.)

Received: 25 September 2020; Accepted: 5 November 2020; Published: 8 November 2020 ����������
�������

Abstract: In the present study, we investigated the impact of different combinations of wheat
straw biochar, compost and biogas slurry on maize growth, physiology, and nutritional status
in less productive soils. The experiment was performed as a completely randomized block design
in a greenhouse pot experiment. The compost and biogas slurry were applied with and without
biochar. The results revealed that a combination of biochar, compost, and biogas slurry enhanced
the cation exchange capacity (31%), carbon (83%), phosphorus (67%) and potassium (81%) contents
in the soil. Likewise, a significant increase in soil microbial biomass carbon (15%) and nitrogen (37%)
was noticed with the combined use of all organic amendments. Moreover, the combined application
of biochar, compost and biogas slurry enhanced soil urease and β-glucosidase activity up to 96% and
67% over control respectively. In addition, plant height, chlorophyll content, water use efficiency and
1000-grain weight were also enhanced up to 54%, 90%, 53% and 21% respectively, with the combined
use of all amendments. Here, biochar addition helped to reduce the nutrient losses of compost and
biogas slurry as well. It is concluded that biochar application in combination with compost and biogas
slurry could be a more sustainable, environment-friendly and cost-effective approach, particularly
for less fertile soils.
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1. Introduction

Nutrient depletion from soils accelerated by nutrient mining, imbalanced use of fertilizers and
poor land management practices pose serious threats to food security [1,2]. Poor nutrient use efficiency
(NUE) of crops causes a significant decline in soil quality and crop yields in developing countries [3,4].
Inorganic fertilizers significantly boost crop yield, and their application has steadily increased due
to per capita land shrinking and deterioration in soil quality [5]. Inorganic fertilizers alone cannot
sustain crop production and their excessive use has caused environmental problems. Eutrophication
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has been caused by nutrients leaching into the water bodies [6,7]. Similarly, extensive farming practices
have reduced soil organic matter (SOM) contents thereby increasing cation exchange capacity (CEC)
of soils and lowering fertilizer use efficiency [8]. Maintaining an optimum level of nutrients through
management practices and organic amendments play a significant role in sustainable crop production
and improving soil fertility [9]. The addition of organic amendments in soils offers economic and
environmentally friendly approaches for sustainable crop production [10]. Organic matter in the soil
has a pivotal role in biological nutrient cycling and soil management. The decline in SOM due to
high temperature and nutrient mining leads to soil degradation processes, such as nutrient deficiency,
erosion, salinization, compaction, destruction of microbial population, and even desertification [11].
Low organic matter soils have lost soil carbon which causes wastage of agriculture inputs and loss
of crop productivity [12].

Various organic amendments such as cover crops, animal manure, mulches, or compost have been
used to enhance nutrients cycling, microbial activities, the utilization efficiency of mineral fertilizers,
and to reduce soil erosion, and suppress diseases and other soil born pathogen [10]. It was observed that
soil amended with manure and compost has a higher content of organic carbon (OC), macronutrients
(P, K, Ca, Mg), and soil microbes, as compared to un-amended soil [13]. It is well documented that
compost addition in soil improves soil structure resulting in reduction in bulk density, and an increase
in soil aeration and water retention [14]. However, toxic constituents such as heavy metals [15] and
other organic compounds in compost may contaminate surface water bodies through runoff and
percolation of contaminated water. It limits the utilization of compost [16]. Adding to these, biogas
slurry (BS) is a secondary product produced after the digestion of animal dung in the process of biogas
production [17]. It is a rich source of nutrients (micro and macronutrients), amino acids, humic acid,
hormones, vitamins, and other low-molecular-mass bioactive substances [18]. It was observed by
many researchers that biogas slurry addition in soil enhanced nitrogen (N) uptake [19,20], improved
microbial diversity, soil microbial biomass (SMB) [21], and increased crop production [22,23]. However,
some limitations are associated with organic amendments application in the soil such as low yield,
as compared to chemical fertilizers [24]. These amendments provide short term benefits to crop and
get decomposed in one cropping season due to high temperature [25].

Conversion of easily decomposed organic matter into biochar is an alternative approach to
tackle these challenges [26,27]. Biochar addition not only improves nutrient use efficiency (NUE)
and fertilizer use efficiency (FUE), but also resists soil carbon (C) decomposition [28]. Biochar is
a carbonaceous dark-colored porous material produced during the thermal degradation of organic
compounds in the absence of oxygen [29]. A variety of feedstock such as agricultural wastes (straw,
rice hulls, nutshells, tree bark, wood chips, and switchgrass), animal wastes and bones etc. are used
in biochar production [29,30]. Physiochemical properties of biochar have an advantage over other
organic materials. These promote long-term carbon persistence in the environment and enhanced soil
nutrient status [31]. Due to large surface area, it plays a significant role in improving soil properties like
an increase in NUE, mitigation of biotic and abiotic stresses, improvement in soil quality, and increase
in crop yield [32]. Biochar addition in soil enhances OC, water holding capacity (WHC) [33] soil
aeration, microbial activity and biodiversity [29], nutrient holding capacity and availability, and reduce
nutrient leaching [28]. It results in improvement of fertilizer use efficiency, C sequestration [34] and
a decrease in metal toxicity in contaminated soils [30].

The sole application of biochar, compost, and biogas slurry has been tested on crop growth and
soil qualities by many researchers [35–37]. However, few studies have been reported to determine the
effects of combined use of biochar, compost, and biogas slurry on the growth and yield of maize under
nutrient-depleted soils. We hypothesize that biochar application will help to reduce the nutrient losses
of compost and biogas slurry by providing large surface area, enhancing cation exchange capacity,
and reducing the toxic effects of compost. Additionally, biochar will provide a suitable habitat for soil
microbes by supplying essential nutrients for a longer period not only for microbes but also for the plant
which may consequently enhance plant growth. The present trial was conducted to assess the effect
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of biochar, compost, and biogas slurry with different combinations on the nutritional status of soil,
and growth and yield of a maize plant.

2. Results

2.1. Soil Properties Influenced with Organic Amendments

The results of soil chemical properties after harvesting of maize revealed that organic amendments
significantly enhanced the chemical properties such as electrical conductivity (EC), cation exchange
capacity (CEC), soil organic carbon (SOC), available phosphorus (P), and potassium (K) of soil, while pH
was found to be reduced with the biochar addition (Table 1). Soil without biochar amendment increased
soil EC (13%), CEC (19%), SOC (67%), P (58%), and K (34%) in T4 treatment (biogas slurry 0.5%
(wt/wt) in combination with compost 0.5% (wt/wt) (BS0.5 + CM0.5)) with respect to control. However,
in biochar amended soil the highest increase was observed in EC (14%), CEC (31%), SOC (83%), P (67%),
and K (81%) with T8 treatment comprising of consortium of biochar, biogas slurry, and compost
(WSB0.3 + BS0.3 + CM0.3), as compared to control. While a significant reduction in pH (0.15 unit) was
noticed with T8 treatment, as compared to T1 treatment set as control.

2.2. Nutritional Status of Maize

The effects of biogas slurry and compost (with and without biochar) addition on the nutritional
status of maize are presented in Table 2. A significant increase in the nutrient contents (N, P, and
K) of shoot and grain was observed with biochar alone (T5) and in combination with compost and
biogas slurry (T8). Without biochar treatments, the highest increase in shoot N (72%), P (43%), K (22%),
and grain N (63%), P (84%), and K (65%) was observed in T4 treatment (BS0.5 + CM0.5) over control.
However, with biochar application, the highest increase in shoot N (96%), P (57%), K (49%), and grain
N (85%), P (97%), and K (92%) was noticed in T8 treatment representing combined application of biochar,
compost, and biogas slurry(WSB0.3 + BS0.3 + CM0.3), as compared to control treatment (T1).

2.3. Physiological Parameters

The separate and cumulative effects of biogas slurry and compost in combination with biochar on
maize physiology are given in Table 3. The results revealed that organic amendments significantly
decreased the physiological parameters such as relative water content (RWC), electrolyte leakage (EL),
transpiration rate (TR), chlorophyll contents (CC), stomatal conductance (SC) and water use efficiency
(WUE). Without biochar treatments, the highest decrease in RWC (15%), EL (23%), TR (44%), CC (70%),
SC (39%), and WUE (76%) was noticed in T4 treatment (BS0.5 + CM0.5), when compared to control.
However, with biochar application, the highest decrease in RWC (23%), EL (39%), TR (77%), CC (90%),
SC (49%), and WUE (97%) was noticed in T8 treatment, representing consortium of biochar, biogas
slurry, and compost (WSB0.3 + BS0.3 + CM0.3), as compared to control treatment (T1).

2.4. Maize Growth Parameters

The effects of biochar application along with biogas slurry and compost amendments on maize
growth parameters are given in Table 4. In the present study, organic amendments significantly
enhanced the SL, SFW, SDW, LA, CL, GY, and 1000-GW of maize plant. The highest increase in SL (56%),
SFW (68%), SDW (70%), LA (46%), CL (30%), GY (47%), and 1000-GW (38%) was noticed in T4 treatment
without biochar (BS0.5 + CM0.5). However, with biochar application, the highest increase in SL (68%),
SFW (91%), SDW (92%), LA (64%), CL (76%), GY (51%), and 1000-GW (43%) was noticed in T8
treatment comprising of consortium of biochar, biogas slurry, and compost (WSB0.3 + BS0.3 + CM0.3),
as compared to control (T1).
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Table 1. Effects of wheat straw biochar, compost, and biogas slurry on soil physico-chemical properties.

Treatments pH EC (dS m−1) CEC (cmolc
kg−1)

SOC (%) P (mg kg−1) K (mg kg−1)

Without biochar

T1 (CK) 7.92 ± 0.03 a 1.14 ± 0.01 b 6.13 ± 0.20 d 0.49 ± 0.03 e 4.44 ± 0.08 e 84.48 ± 1.2 g

T2 (BS) 7.88 ± 0.02 ab 1.30 ± 0.01 a 6.40 ± 0.12 c 0.60 ± 0.01 c 6.82 ± 0.03 d 98.18 ± 2.45 f

T3 (CM) 7.87 ± 0.02 ab 1.30 ± 0.02 a 6.23 ± 0.11 cd 0.59 ± 0.01 cd 6.95 ± 0.04 c 100.17 ± 0.81 f

T4 (BS0.5 + CM0.5) 7.87 ± 0.02 ab 1.29 ± 0.03 a 6.22 ± 0.11 cd 0.83 ± 0.02 b 7.02 ± 0.01 bc 112.97 ± 1.36 d

With biochar

T5 (WSB) 7.85 ± 0.02 b 1.28 ± 0.03 a 7.26 ± 0.23 b 0.54 ± 0.03 de 7.10 ± 0.1 b 103.53 ± 1.91 e

T6 (WSB0.5 + BS0.5) 7.87 ± 0.03 ab 1.31 ± 0.01 a 7.41 ± 0.14 b 0.87 ± 0.05 ab 7.05 ± 0.03 b 130.13 ± 1.5 c

T7 (WSB0.5 + CM0.5) 7.88 ± 0.01 ab 1.29 ± 0.01 a 7.32 ± 0.13 b 0.83 ± 0.03 b 7.04 ± 0.01 b 134.17 ± 1.53 b

T8 (WSB0.3 + BS0.3 + CM0.3) 7.77 ± 0.06 c 1.31 ± 0.02 a 8.03 ± 0.25 a 0.90 ± 0.04 a 7.42 ± 0.01 a 153.29 ± 1.22 a

Means sharing similar letter(s) in a column do not differed significantly at p = 0.05; Data is average of three replicates ± SE Different abbreviations are as follows: CK (control); BS (biogas
slurry); CM (compost); WSB (wheat straw biochar); EC (electrical conductivity); CEC (cation exchange capacity); SOC (soil organic carbon).

Table 2. Effects of wheat straw biochar, compost, and biogas slurry on nutritional status of maize.

Treatments Straw N (g
kg−1)

Straw P (mg
kg−1)

Straw K (mg
kg−1)

Grain N (g
kg−1)

Grain P (mg
kg−1)

Grain K (mg
kg−1)

Without biochar

T1 (CK) 0.18 ± 0.03 d 0.65 ± 1.95 d 2.39 ± 0.44 c 0.50 ± 0.05 d 1.16 ± 3.47 e 3.75 ± 0.07 f

T2 (BS) 0.23 ± 0.03 cd 0.92 ± 2.76 bc 2.98 ± 0.15 b 0.65 ± 0.01 c 1.43 ± 4.30 cd 4.77 ± 0.02 e

T3 (CM) 0.24 ± 0.04 c 0.89 ± 2.68 c 3.03 ± 0.08 b 0.63 ± 0.02 c 1.40 ± 4.19 d 5.60 ± 0.06 d

T4 (BS0.5 + CM0.5) 0.31 ± 0.01 ab 0.92 ± 2.78 bc 2.91 ± 0.24 b 0.81 ± 0.02 b 2.08 ± 6.23 b 6.20 ± 0.04 b

With biochar

T5 (WSB) 0.30 ± 0.03 ab 0.93 ± 2.80 bc 3.10 ± 0.11 b 0.62 ± 0.01 c 1.48 ± 4.44 c 5.89 ± 0.01 c

T6 (WSB + BS0.5) 0.29 ± 0.06 bc 0.94 ± 2.84 b 3.10 ± 0.11 b 0.82 ± 0.02 b 2.04 ± 6.13 b 6.24 ± 0.07 b

T7 (WSB + CM0.5) 0.29 ± 0.02 bc 0.93 ± 2.79 b 3.09 ± 0.20 b 0.82 ± 0.01 b 2.09 ± 11.67 b 6.25 ± 0.03 b

T8 (WSB + BS + CM0.3) 0.35 ± 0.02 a 1.02 ± 3.06 a 3.55 ± 0.15 a 0.93 ± 0.03 a 2.23 ± 6.69 a 7.18 ± 0.06 a

Means sharing similar letter(s) in a column do not differed significantly at p = 0.05; Data is average of three replicates ± SE Different abbreviations are as follows: CK (control); BS (biogas
slurry); CM (compost); WSB (wheat straw biochar); N (nitrogen); P (phosphorus); K (potassium).
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Table 3. Effects of wheat straw biochar, compost, and biogas slurry on physiological parameters of maize.

Treatments RWC (%) EL (%) TR (mmol m−2

S−1) CC (mg g−1)
SC (mmol m−2

S−1)
WUE (µmol m−2

s−1)

Without biochar

T1 (CK) 49.4 ± 0.70 e 44.3 ± 1.01 a 13.6 ± 1.21 d 27.63 ± 1.34 e 148.9 ± 2.03 d 2.53 ± 0.15 c

T2 (BS) 65.2 ± 8.51 bc 35.6 ± 2.81 c 15.3 ± 0.72 cd 37.53 ± 1.27 d 163.8 ± 2.31 c 4.00 ± 0.62 b

T3 (CM) 65.5 ± 1.21 bc 39.3 ± 1.19 b 16.2 ± 1.62 c 35.00 ± 1.45 d 166.0 ± 11.3 c 3.87 ± 0.47 b

T4 (BS + CM0.5) 56.6 ± 4.02 de 39.3 ± 0.62 b 19.6 ± 1.14 b 46.93 ± 2.54 b 207.7 ± 2.97 b 4.45 ± 0.49 ab

With biochar

T5 (WSB 58.7 ± 1.71 cd 39.8 ± 1.93 b 16.3 ± 0.72 c 41.87 ± 1.17 c 165.4 ± 2.82 c 3.87 ± 0.42 b

T6 (WSB + BS0.5 69.9 ± 1.72 ab 38.5 ± 0.54 b 19.3 ± 0.91 b 42.00 ± 2.02 c 201.5 ± 2.28 b 4.77 ± 0.08 a

T7 (WSB + CM0.5 75.6 ± 4.31 a 34.1 ± 1.62 c 19.5 ± 1.84 b 41.90 ± 1.87 c 205.3 ± 7.25 b 4.72 ± 0.14 a

T8 (WSB + BS + CM0.3) 60.5 ± 6.90 cd 27.1 ± 1.43 d 24.1 ± 0.45 a 52.50 ± 3.30 a 221.3 ± 1.91 a 4.97 ± 0.02 a

Means sharing similar letter(s) in a column do not differed significantly at p = 0.05; Data is average of three replicates ± SE Different abbreviations are as follows: CK (control); BS (biogas
slurry); CM (compost); WSB (wheat straw biochar); RWC (relative water content); EL (electrolyte leakage); TR (transpiration rate); CC (chlorophyll content); SC (stomatal conductance);
WUE (water use efficiency).

Table 4. Effects of wheat straw biochar, compost, and biogas slurry on maize growth attributes.

Treatments Plant Height
(cm)

Plant Fresh
Weight/Pot (g)

Plant Dry
Weight/Pot (g)

Leaf Area
(cm2 g−1)

Cob Length
(cm)

Total Grain
Yield/Pot (g)

1000 Grain
Weight (g)

Without biochar

T1 (CK) 118 ± 4 e 202 ± 7.51 f 64 ± 2.74 e 64 ± 7.56 f 4.13 ± 0.12 c 132 ± 0.95 e 295 ± 13.01 d

T2 (BS) 144 ± 4 d 236 ± 17.80 e 81 ± 2.65 d 84 ± 8.21 e 5.23 ± 0.38 b 147 ± 4.48 d 370 ± 15.52 c

T3 (CM) 146 ± 4 d 230 ± 13.83 e 79 ± 3.66 d 82 ± 4.97 e 5.07 ± 0.31 b 160 ± 5.57 c 376 ± 17.03 c

T4 (BS0.5 + CM0.5) 170 ± 8 ab 339 ± 9.25 b 108 ± 6.67 b 87 ± 8.06 d 5.37 ± 0.23 b 195 ± 2.33 a 408 ± 12.12 ab

With biochar

T5 (WSB) 151 ± 4 cd 287 ± 10.32 d 84 ± 4.80 d 90 ± 8.10 c 5.33 ± 0.42 b 164 ± 6.70 bc 384 ± 12.74 bc

T6 (WSB0.5 + BS0.5) 170 ± 6 ab 308 ± 11.40 cd 100 ± 1.57 c 93 ± 3.18 b 5.27 ± 0.25 b 170 ± 6.09 b 394 ± 14.57 bc

T7 (WSB0.5 + CM0.5) 164 ± 8 bc 315 ± 6.55 bc 105 ± 4.01 bc 89 ± 3.56 d 5.23 ± 0.25 b 166 ± 5.70 bc 391 ± 15.14 bc

T8 (WSB0.3 + BS0.3 + CM0.3) 182 ± 5 a 386 ± 8.22 a 123 ± 3.05 a 98 ± 8.69 a 7.27 ± 1.08 a 200 ± 3.10 a 423 ± 14.50 a

Means sharing similar letter(s) in a column do not differed significantly at p = 0.05; Data is average of three replicates ± SE CK (control); BS (biogas slurry); CM (compost); WSB (wheat
straw biochar).
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Table 5. Effects of wheat straw biochar, compost, and biogas slurry on soil quality parameters.

Treatments SMBC (mg kg−1 Soil) SMBN (mg kg−1 Soil) Urease (µg g−1 dwt h−1) B-Glucosidase
(µg g−1 dwt h−1)

Alkaline Phosphates
(µg g−1 dwt h−1)

Without biochar

T1 (CK) 217 ± 2.63 c 21.4 ± 0.90 d 23.1 ± 0.26 h 11.4 ± 0.04 f 18.0 ± 0.30 f

T2 (BS) 232 ± 2.31 b 23.8 ± 1.17 c 35.0 ± 0.10 e 14.2 ± 0.01 d 20.1 ± 0.25 e

T3 (CM) 229 ± 2.45 b 23.9 ± 0.40 c 33.2 ± 0.43 f 14.1 ± 0.04 d 19.8 ± 0.18 e

T4 (BS0.5 + CM0.5) 233 ± 2.79 b 26.7 ± 0.66 b 40.0 ± 0.10 b 16.6 ± 0.05 b 22.6 ± 0.17 c

With biochar

T5 (WSB) 232 ± 3.16 b 26.3 ± 1.06 b 28.2 ± 0.26 g 13.5 ± 0.02 e 21.2 ± 1.03 d

T6 (WSB0.5 + BS0.5) 233 ± 3.28 b 25.7 ± 0.61 b 38.2 ± 0.20 d 15.6 ± 0.03 c 22.9 ± 0.13 bc

T7 (WSB0.5 + CM0.5) 234 ± 3.70 b 26.3 ± 0.85 b 39.1 ± 0.59 c 16.7 ± 0.02 b 23.5 ± 0.46 b

T8 (WSB0.3 + BS0.3 + CM0.3) 249 ± 3.99 a 33.7 ± 1.57 a 45.3 ± 0.20 a 18.9 ± 0.38 a 26.1 ± 0.36 a

Means sharing similar letter(s) in a column do not differed significantly at p = 0.05; Data is average of three replicates ± SE Different abbreviations are as follows: CK (control); BS (biogas
slurry); CM (compost); WSB (wheat straw biochar); SMBC (soil microbial biomass carbon); SMBN (soil microbial biomass nitrogen).
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Figure 1. Correspondence analysis of soil physico-chemical and physiological parameters. In Figure 1A,B, the abbreviations are as CEC: cation exchange capacity,
MBN: microbial biomass nitrogen, UA: urease activity, APA: alkaline phosphate activity, SOC: soil organic carbon, BGA: β-glucosidase activity, MBC: microbial
biomass carbon, SFW: shoot fresh weight, SDW: shoot dry weight, PR: photosynthetic rate, GN: grain nitrogen, GP: grain phosphorus, GK: grain potassium, SN: straw
nitrogen, SP: straw phosphorus, SK: straw potassium, KGW: 1000 grain weight, EC: electrical conductivity, P: phosphorus, SPAD: soil plant analysis development,
WUE: water use efficiency, LA: leaf area, RWC: relative water content, EL: electrolyte leakage.
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2.5. Effects of Organic Amendments on SMB and Enzyme Activity

The effects of biogas slurry and compost (with and without biochar) addition to soil on microbial
biomass and enzyme activity are presented in Table 5. The results revealed that organic amendments
significantly enhanced the SMBC, SMBN, UA, BGA, and APA as evidenced from Table 5. The highest
increase in SMBC (7%), SMBN (20%), UA (73%), BGA (46%), and APA (26%) was noticed in T4 treatment
without biochar (BS0.5 + CM0.5), as compared to control (T1). However, with biochar application,
the highest increase in SMBC, SMBN, UA, BGA, and APA was 15%, 37%, 96%, 67%, and 45%, respectively,
in T8 treatment representing consortium of biochar, biogas slurry, and compost (WSB0.3 + BS0.3 + CM0.3),
as compared to control (T1).

2.6. Correspondence Analysis

The improvement in soil properties after amendments corresponded with the soil enzyme activity.
The results revealed that soil EC, SOC, P, K, and CEC best correlated with UA, BGA, and APA activity
(axis-I (91%), axis-II (8%) (Figure 1A). While, pH, SOC, K, CEC, MBN, BGA, and APA best correlated
with EL, SL, GP, and SFW of the plant (axis-I (76%), axis-II (19%) (Figure 1B).

3. Discussion

3.1. Effect of Organic Amendments on Soil Properties

Organic amendments help to enhance the SOC and productivity which ultimately improve plant
growth [38]. Biochar application enhanced CEC, nutrients (K, P, Mg, Ca) uptake, improved soil
quality and maize yield, as observed in the previous study by Sukartono et al. [39]. The combined
use of biochar and manure compost application significantly reduced the soil pH when applied with
a pyroligneous solution (BPC-PS) and 0.3-unit reduction in soil pH over control was observed after
the addition of BPC-PS [35]. This slight manipulation in soil pH may be useful for nutrient uptake by
enhancing nutrient mobilization from alkaline soil, as evidenced in our study. Sarwar et al. [40] also
reported significant alteration in soil pH and SOM that enhanced the nutrient uptake from compost
amended soil. However, contrasting results were noticed by Yuan et al. [41] that biochar addition
significantly increased the soil pH. Similar findings were also noticed by Al-Wabel et al. [42] that
biochar addition significantly enhanced the soil pH, CEC, and base saturation in highly weathered soil.
While findings by Schulz et al. [43] indicated a non-significant alteration in soil pH when co-composted
biochar was incorporated in the soil.

3.2. Effect of Organic Amendments on Nutritional Status of Maize

The sole and combined use of biochar and compost application enhanced the soil fertility due to
nutrients composition of compost, and large surface area, high CEC, WHC, and pyrolysis temperature
of biochar [44]. The sole application of organic amendments (biochar, compost, and biogas slurry)
influenced the soil pH, EC, CEC, and provided essential nutrients (C, N, P, K, and S) to plant [45,46].
The improvement in soil fertility leads to enhanced plant growth via uptake of essential nutrients
supplied by the organic amendments. Liu et al. [47] observed a synergistic relationship between
biochar-compost on nutrient and WHC, and SOM in a field experiment. In our study, biochar
improved plant growth by increasing the NUE, microbial growth, and water-holding capacity in the
soil, as noticed in previous studies [48,49]. However, biochar feedstocks, pyrolysis temperature, and
application rates played a significant role in the yield of the crop [50,51]. Biochar application affects
various factors such as soil physiochemical properties, microbial growth, and nutrients biogeochemical
cycles, especially C and N cycles in soil [52]. Biochar addition increased P availability [53] and K
concentration resulting in higher plant growth [54]. Sarfraz et al. [55] observed increased P uptake
in maize as a result of increasing biochar rate with and without N fertilizers. An increase in plant
N content and maize growth by biochar application [56,57] may be due to the higher surface area
of biochar that retains NH4+ in the soil and its high CEC [58]. It was observed by many studies that
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the combined application of biochar and other organic treatments increases nutrients availability and
moisture retention that ultimately improves plant growth and soil quality [8,34,59].

3.3. Effect of Organic Amendments on Maize Growth Parameters

Soil management practices could improve soil health and enhance crop yield through different
organic amendments. The results of our study demonstrated that the incorporation of biochar,
compost, and biogas slurry has a beneficial effect on the agronomic parameters of maize. It is well
documented that manure and compost additions enhanced the SOC content and other essential
nutrients (P, K, Ca, Mg), as compared to un-amended soil [13]. Application of compost in soil improves
soil structure resulting in reduced bulk density and increased soil aeration, water retention, and crop
growth [14]. While biochar application slowly releases the available nutrients to plants in their whole
growing period and reduced the leaching of nutrients (C, N, P, and K) after the addition of compost
and slurry [60]. Butnan et al. [61] studied different rates of biochar (1, 2, and 4%) prepared at 350 ◦C
in loam sand (pH = 5.5) and silty clay loam soil (pH = 6). They observed 115–600% increase in maize
dry weight over control. Similarly, 62–113% increase in dry weight was noticed by Inal et al. [62]
when biochar prepared at 300 ◦C was applied in clay loam soil (pH = 7.8) with different rates (0, 2.5, 5,
10, and 20 g kg−1). Ali et al. [63] study reported an increase of 23% in plant height and 17% in leaf
area by biochar application. Many researchers noticed that biochar application in soil increased plant
height, growth, and grain quality [64–66]. This increase may be due to improved nutrient and moisture
content availability. The CCA results also confirmed that improved soil properties (pH, SOC, K, CEC,
MBN, BGA, and APA) were the main drivers for enhancing plant growth and yield. Our results are
similar to Uzoma et al. [67] that animal manure biochar addition to soil enhanced the WUE (91–139%)
and maize yield (98–150%). In another study, compost and biochar application along with chemical
fertilizer significantly increased chlorophyll content [68]. The soil amended with biochar, biogas slurry,
and compost has high organic carbon, improved porosity, and enriched nutrients (P, K), as compared
to control which could be the reason for improved crop growth and other physiological parameters.

3.4. Effect of Organic Amendments on SMB and Enzyme Activity

Soil microbial biomass is a living component of the soil which is directly linked to the mineral
nutrition and has been considered as a sensitive indicator for short-term nutritional and environmental
changes in soil [69]. In addition, soil microbial activity plays significant role in soil health involving
carbon and nutrient cycling and their sustainability [70,71]. The results of our study showed that
organic inputs (biochar, compost, and biogas slurry) had a positive effect on the SMB and enzyme
activity. Biochar application enhanced the SMB which might be due to several reasons such as nutrients
availability to microbes [72], labile organic compounds [73], and stimulation of microbial activities on
biochar particles through sorption of organic C [74]. Biochar surface has numerous pores that provide
shelter to microbes against stress [75], which results in an increase in SMB. Similar findings were also
observed in the previous studies which reported an increase in SMBC due to biochar application [76–78].
However, in contrast, no change in MBC under biochar application was observed by Bruun et al. [73].
Dempster et al. [79] noticed a reduction in MBC and MBN as a result of biochar addition in the soil.

Soil enzymes worked as soil fertility indicators and influenced the micro-environment of the
soil [80,81]. Soil physicochemical properties [82], crop type [83], microbial population, and anthropogenic
activities directly control the activities of enzymes in the soil [84] and biochar addition in soil enhance
soil enzyme activities [85,86]. Our results showed that sole or combined application of biochar, compost,
and biogas slurry increased the soil urease and β-glucosidase activity. This enhanced enzyme activity
could be due to the increased substrate concentration or microbial use and other processes [87]. Various
soil factors like texture, soil structure, moisture content, soil temperature, pH, and SOM influence
enzyme activity in soil [88,89]. The correspondence analysis also revealed that improvement in soil
properties such as EC, SOC, P, K, and CEC plays a dominant role in improving the soil enzyme activity.
Pokharel et al. [90] also observed that different levels of biochar increased UA in the soil. In another



Plants 2020, 9, 1516 10 of 18

study by Mehmood et al. [91], UA in the soil after 60 and 120 days of sugarcane residues biochar
(10 t ha−1) application increased by 7.9 and 12.7% over control. Similarly, 2% biochar prepared at
500 ◦C increased β-glucosidase in sandy loam soil [80,92].

4. Materials and Methods

4.1. Compost and Biogas Slurry Production

The compost was prepared from fruit and vegetable wastes in a locally fabricated composter unit.
The fruits and vegetable wastes were collected from the market, and sun-dried to remove moisture and
unwanted material especially plastic bags, stones, etc. After drying, organic wastes were grounded and
put into a composter having 500 kg capacity. During composting, 60% moisture level was maintained
for proper composting and rotated at 50 rpm for fifteen days. The finished product was odorless and
dark brown in color. Biogas slurry (BS) is a secondary product produced in the process of biogas
production. The slurry was collected from the biogas unit at the farmhouse of animal husbandry at the
University of Agriculture, Faisalabad. The biochar, compost, and biogas slurry were characterized
for the basic properties (Table 6).

Table 6. Characterization of soil, wheat straw biochar, compost, and biogas slurry.

Parameters Soil Wheat Straw
Biochar Compost Biogas Slurry

pH 7.95 ± 0.03 7.03 ± 0.16 7.53 ± 0.05 7.43 ± 0.02
Electrical conductivity (dS m−1) 1.15 ± 0.01 0.89 ± 0.02 3.05 ± 0.05 2.93 ± 0.02

Cation exchange capacity
(Cmolc kg−1) 5.79 ± 0.62 45.53 ± 0.84 – –

Total nitrogen (%) 0.04 ± 0.003 1.38 ± 0.08 1.52 ± 0.03 1.98 ± 0.01
Available P (%) 4.01 ± 0.60 0.45 ± 0.02 0.31 ± 0.02 1.64 ± 0.01

Extractable K (%) 85.4 ± 2.34 1.06 ± 0.04 1.61 ± 0.01 1.43 ± 0.01
Ash content – 25 ± 1.02 – –

C/N ratio – 38 ± 1.82 13±0.82 31 ± 1.02
Sand 49.80 ± 0.43 – –
Silt 27.57 ± 0.51 – – –

Clay 21.20 ± 0.88 – – –

Textural class Sandy clay
loam – – –

Data is average of three replicates ± SE.

4.2. Biochar Production and Characterization

For biochar production, wheat straw feedstock was obtained from the “Agronomy Research
Field” and brought to the biochar furnace unit for biochar production. The feedstock was washed to
remove dust, air-dried and crushed (<0.5 cm) until feedstock was filled in 2 liters (L) flask, made up
of Pyrex glass which can bear a higher temperature up to 1000 ◦C. The bent glass rod was attached to
a flask outlet with silicone grease for gases and water vapor removal. Pyrolysis process was carried
out at 350 ◦C for biochar production with 10 ◦C min−1 increase in temperature, sustained for 30 min
for proper pyrolysis [93] and left for cool down. Furnace lid was opened when the temperature was
below 30 ◦C and biochar was stored after grinding (0.28 mm) in plastic bags for further processing.

The standard procedures were followed for the characterization of biochar, compost, and biogas
slurry (Table 1). Biochar, compost, and biogas slurry’s pH and electrical conductivity (EC) were
measured by using 1:20 (solid: solution) with distilled water after shaking on a mechanical shaker
(90 rpm). The modified NH4-acetate method was applied for CEC measurement [94]. The nutrient
status of biochar, compost, and biogas slurry especially, nitrogen (N), phosphorous (P), and potassium
(K) was determined by the protocol described by Wolf [95]. The wet digestion of biochar samples was
carried out with sulphuric acid (H2SO4) and hydrogen peroxide (H2O2). After digestion, samples
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were preserved for analysis. Total nitrogen was determined with the Kjeldahl method [96]. The flame
photometer (PFP7, Jenway, Essex, UK) was used for K determination and P was determined by
spectrophotometer (UV-1201, Shimadzu, Tokyo, Japan), following vanadate-molybdate procedure [97].

4.3. Pot Experiment

A pot trial was conducted at the greenhouse of the “Institute of Soil and Environmental Science,
University of Agriculture, Faisalabad, Pakistan” to observe the effect of different organic amendments
on soil quality, growth and yield of maize plant. For this purpose, 30 kg air-dried sandy clay loam
soil free of stones and stubbles (31.439082◦ N, 73.069365◦ E) was used in each pot. The recommended
rate of N, P, and K (220:180:120 kg ha−1) was used by mixing urea, di-ammonium phosphate (DAP),
and sulfate of potash (SOP) fertilizers, and were added to soil in each pot. Different levels of compost
and biogas slurry with and without biochar were homogeneously blended in soil. Maize variety
FH-1046 was used as a test crop and 5 seeds were sown on Feb-15, 2018 in each pot. The experiment
was carried out with different treatment combinations as described below:

T1: Control (CK)
T2: Biogas slurry 1% (BS)
T3: Compost 1% (CM)
T4: Biogas slurry 0.5% + Compost 0.5% (BS0.5 + CM0.5)
T5: Wheat straw biochar 1% (WSB)
T6: Biochar 0.5% + Biogas slurry 0.5% (WSB0.5 + BS0.5)
T7: Biochar 0.5% + Compost 0.5% (WSB0.5 + CM0.5)
T8: Biochar 0.3% + Biogas slurry 0.3% + Compost 0.3% (WSB0.3 + BS0.3 + CM0.3)

4.4. Pre-Soil Analysis

The soil samples were homogenized for basic soil analysis, sealed in plastic bags to prevent
contamination and brought to the laboratory for analysis. Soil pH was measured with a pH meter
(JENCO Model- 671 p) from saturated soil paste. Soil extract was used for the determination of electrical
conductivity (EC). EC meter was standardized with 0.01 N KCl solutions [98]. Soil texture determination
was done by the hydrometer method described by Bouyoucos (1962) [99] and SOM was determined
by following the standard method described by Moodie et al. (1959) [100]. Total N in the soil was
measured using the Kjeldahl apparatus by taking 10 g soil in digestion flask and 40 mL of H2SO4 with
digestion mixture (K2SO4. FeSO4. CuSO4). Soil available P was determined by using the extraction
solution of 0.5 M NaHCO3 [101], at 880 nm wavelength by using a spectrophotometer (Milton Roy
Company), while soil K was estimated after extraction with ammonium acetate (1 N) using a flame
photometer (Jenway PFP-7) [98].

4.5. Plant Physiochemical Parameters

Photosynthetic rate (PR), water use efficiency (WUE), stomatal conductance (SC), transpiration
rate (TR), and transpiration rate per unit of leaf area (EL) were measured by using a portable CIRAS-3
(PP Systems, Hitchin, UK). SPAD-502 (Minolta, Osaka, Japan) was used for chlorophyll content (CC)
measurement. The relative water content (RWC) of the leaf was measured by using the following
formula [102]:

RWC = Turgid Weight − Dry weight/Fresh weight − Dry weight (1)

4.6. Plant Nutritional Analysis

The nutrient analysis of maize was determined by taking sulfuric acid (H2SO4) and hydrogen
peroxide (H2O2) as a digestion mixture [95]. In brief, digestion was carried out by taking 2 mL of conc.
H2SO4 in digestion flask that contained 0.5 g plant sample, covered with aluminum sheet and left
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overnight. The next day, H2SO4 (1 mL) was added in digestion flasks and put on a hot plate in a fume
hood for escape of vapors and fumes safely. Another 1 mL of H2O2 was added and the sample was
heated until a clear solution was obtained. After digestion, the sample was filtered with filter paper
and the final volume was made to 50 mL with distilled water and stored for further analysis.

4.7. Total Nitrogen Determination (%)

The Kjeldahl method was used for N determination. So, 5 mL of digested sample and 10 mL
of 40% sodium hydroxide (NaOH) were poured into the ammonium distillation flask placed in the
distillation setup. Then, 5 mL of boric acid (2%) and few drops of indicator (Bromocresol green+

methyl red) were taken in 100 mL conical flask and removed after receiving 35-40 mL of distillate and
left for cooling for a few minutes. The sample was titrated against standard H2SO4 (0.01N) till the
pink color endpoint was observed. To determine the percent nitrogen (% N), the following formula
was used.

% N = (T*N*1.4) sample weight
Where, T = acid volume used, N = H2SO4 normality, and sample weight = 0.1 g.

4.8. Post-Harvest Soil Analysis

Soil samples of each treatment after harvesting were collected and stored for post-harvest soil
analysis. Soil pH was determined by making a saturated paste and ECe (1:20) was measured according
to U.S. Salinity Laboratory Staff (1954) [98]. The Kjeldahl method was used to measure the total N and
the Walkley-Black titration method (with K2Cr2O7-H2SO4 mixture for organic carbon oxidation) was
used for soil organic carbon (SOC) determination [103].

4.9. Microbial Biomass Carbon (MBC) and Microbial Biomass Nitrogen (MBN)

The MBC and MBN in soil were estimated using the chloroform fumigation-extraction procedures
(Brookes et al. 1985). For this, a moist soil sample (10 g) was taken in the crucible and fumigated with
30 mL of alcohol-free chloroform (CHCl3). While the other 10 g of sample was placed in desiccator
without chloroform and placed at room temperature for 24 h [104]. The soil samples with 0.5 M
K2SO4 (50 mL) were kept shaking on a horizontal shaker for 30 min with a speed of 200 rev min−1

that contained lysed microorganisms and were filtered further. The MBC was determined by using
a standard curve at 600 nm wavelength on a spectrophotometer (UV-VIS/1201, Shimadzu), while MBN
was measured with the Kjeldahl method. Both MBC and MBN were calculated by using the following
equation [105]:

MBC (mg) = Ec/k
Ec = Extracted C produced as a result of fumigation
k = Fraction of biomass extracted as C under standard conditions and is 0.35 for C and 0.45 for N [106].

The soil urease activity (UA) was measured by taking 5 g of sample mixed with urea (2.5 mL) and
KCl (50 mL) solution in a conical flask [107]. The sample was centrifuged at 180 rpm for 30 min and
transferred into an incubator for 2 h at 37 ◦C. After incubation, 1:9 filtrate and ddH2O solution were
prepared and 5 mL sodium salicylate/NaOH along with cyanide (2 mL) were added and cooled at room
temperature. The samples were run at 690 nm wavelength for urease determination. The β-glucosidase
(BGA) in soil was determined by following Eivazi and Tabatabai [108] method. Sample (1 g) was
mixed with 0.25 mL toluene, 1 mL of ρ-nitrophenyl-β-glucosidase (PNG), and 4 mL of modified
universal buffer (MUB) in 50 mL flask. After incubation at 37 ◦C for 1 h., 1 mL of CaCl2 (0.5 M), 4 mL
buffer solution (hydroxyl methyl aminomethane solution) of pH 12, and sample were measured at
wavelength of 400 nm [108]. Alkaline phosphatase activity (APA) was determined by taking 1 g of soil
mixed with 1 mL p-nitrophenyl phosphate (p-NPP), toluene (0.25 mL), and 4 mL modified universal
buffer (pH 11) and incubated. After incubation, 1 mL of CaCl2 (0.5 M) and 4 mL of NaOH (0.5 M)
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was added and filtered. The absorbance of sample was measured at 400 nm on a spectrophotometer
(UV-VIS/1201, Shimadzu, CA, USA).

4.10. Statistical Analysis

The significant differences among treatments were analyzed using a two-way analysis of variance
(ANOVA) by taking biochar as a factor using Statistix 8.1 software(Statistix, Tallahassee, FL, USA).
The correspondence of soil variables (soil properties and enzymes) with plant variables (nutrient
composition, physiology, and growth) was analyzed using canonical correspondence analysis (CCA)
(Past 3.0).

5. Conclusions

Application of organic amendments to the soil is an environmental-friendly, easily available, and
cost-effective method to increase nutrient use efficiency and to reduce chemical fertilizers up to 50%.
The integrated use of biochar, compost, and biogas slurry improved soil carbon and nutrient status (N,
P, and K), as well as restored soil fertility. Moreover, the combined use of all these organic amendments
improved the plant length and weight (fresh and dry), RWC, WUE, and chlorophyll contents over
their sole use. Here, biochar addition significantly reduced the nutrient losses of compost and biogas
slurry. Thus, organic amendments of different composition (biochar, compost, and biogas slurry) can
be potentially utilized in combination under the current scenario as a sustainable tool for improving
the fertility of agricultural soils.
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