Supplementary Information

Single-Cell Mass Spectrometry Imaging of Lipids in HeLa Cells via Tapping-Mode Scanning Probe Electrospray Ionization

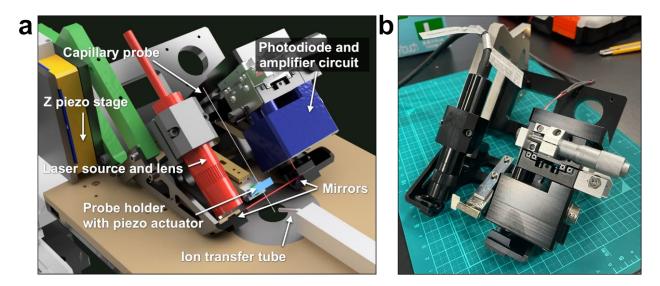
Yoichi Otsuka*^{1,2,3}, Kazuya Kabayama^{2,3,4}, Ayane Miura², Masatomo Takahashi⁵, Kosuke Hata⁵, Yoshihiro Izumi⁵, Takeshi Bamba⁵, Koichi Fukase^{2,3,4}, Michisato Toyoda^{1,2,3}

¹Department of Physics, Graduate School of Science, The University of Osaka, Toyonaka, Osaka, Japan

²Department of Chemistry, Graduate School of Science, The University of Osaka, Toyonaka, Osaka, Japan

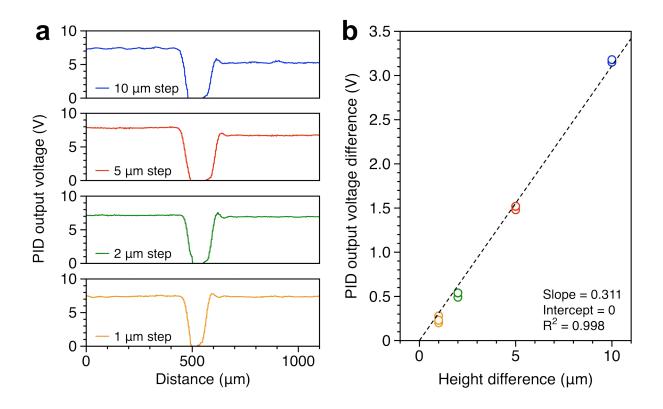
³Forefront Research Center, Graduate School of Science, The University of Osaka, Toyonaka, Osaka, Japan

⁴Interdisciplinary Research Center for Radiation Sciences, Institute for Radiation Sciences, The University of Osaka, Toyonaka, Osaka, Japan

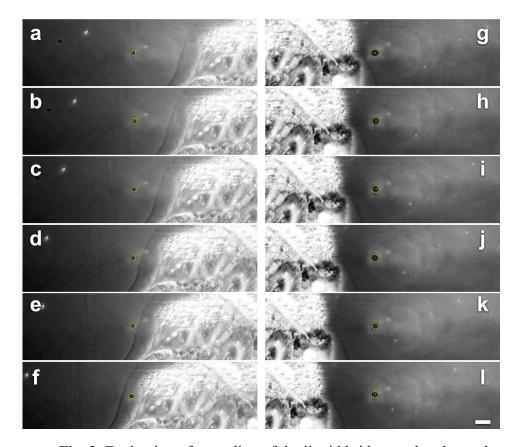

⁵Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, Japan

*Corresponding author

Yoichi Otsuka

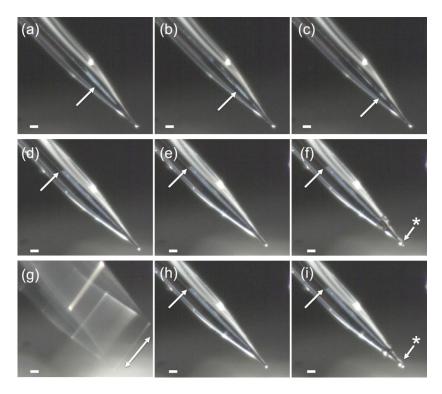

Email: otsuka@phys.sci.osaka-u.ac.jp

Telephone: +81-6-6850-5748



Supplementary Fig. 1. Overview of the new t-SPESI unit for use with an inverted fluorescence microscope.

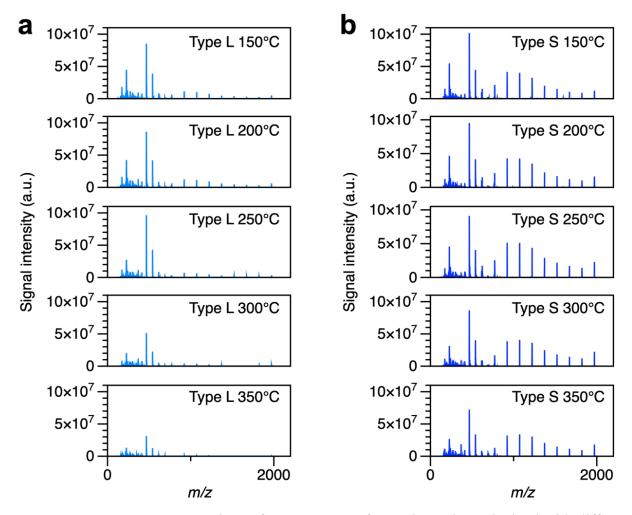
(a) Rendered image of a 3D model, showing the name of each component of the t-SPESI unit indicated by arrows. Each component is color coded for identification. (b) Photograph of the t-SPESI unit.



Supplementary Fig. 2. Relationship between the sample height and feedback controller output. (a) Section profiles showing the relationship between the output signal from the feedback control circuit (PID output voltage) and the probe position when the probe scans between samples of different heights. (b) Relationship between the height difference of the samples and the PID output voltage difference. The linear fit result is shown as a dashed line. The inset shows the slope and R^2 value of the dashed line. It was confirmed that the calibration data could be linearly fitted. In addition, the position resolution of the piezo stage for controlling the height of the probe was 1 nm, and the repeat positioning accuracy was ± 1 nm; therefore, the height of the sample in the range of up to 10 μ m could be evaluated with nanoscale accuracy.

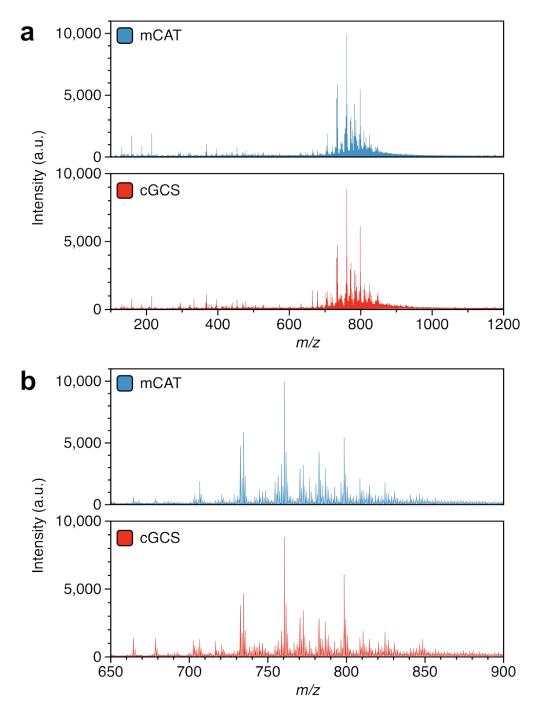
Supplementary Fig. 3. Evaluation of spreading of the liquid bridge on the glass substrate during a single-line scan of the probe.

(a) and (l) correspond to the snapshots at the beginning and end of the probe scan, respectively, and the others are snapshots taken during the scan, arranged in order of increasing time. The area of the liquid bridge is indicated by the yellow circles. Scale bar: $10 \mu m$.

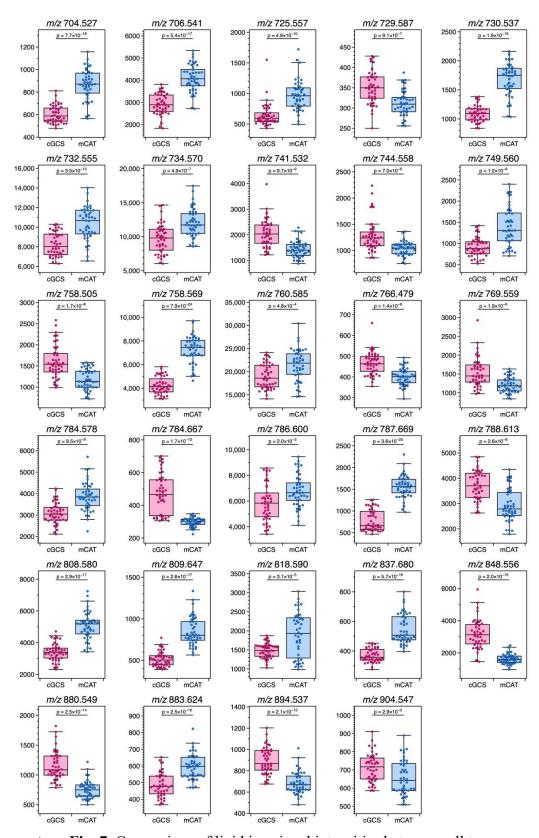


Supplementary Fig. 4. Comparison of the movements of octadecylsilyl-group-modified and amino-group-modified particles in a capillary probe.

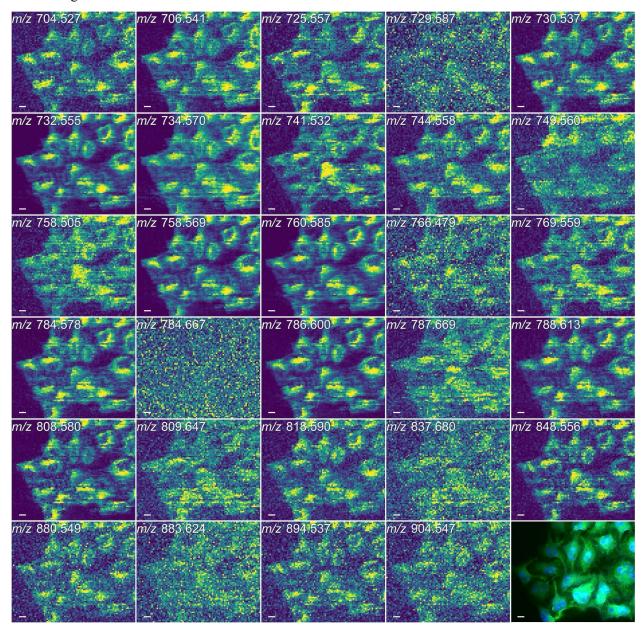
(a-c) Observation results when +4 kV was applied to the solvent using a probe filled with octadecylsilyl-group-modified particles (O-particles). (a), (b), and (c) Images before applying the voltage, 45 s after applying the voltage, and 100 s after applying the voltage. During voltage application, the particles moved upward with time, and the number of particles at the tip of the probe (arrows in (a), (b), and (c)) decreased.


(**d-f**) Observation results when +4 kV was applied to the solvent using a probe filled with aminogroup-modified particles (N-particles). (**d**) and (**e**) Images immediately after and 150 s after voltage application, respectively. The particles in the probe (arrows in (**d**) and (**e**)) did not move with time and remained at the same position. In addition, when the voltage was set to 0 V, the particles in the probe did not move with time and remained at the same position (arrows in (**f**)). The solvent was confirmed to flow out of the tip of the probe (asterisk in (**f**)).

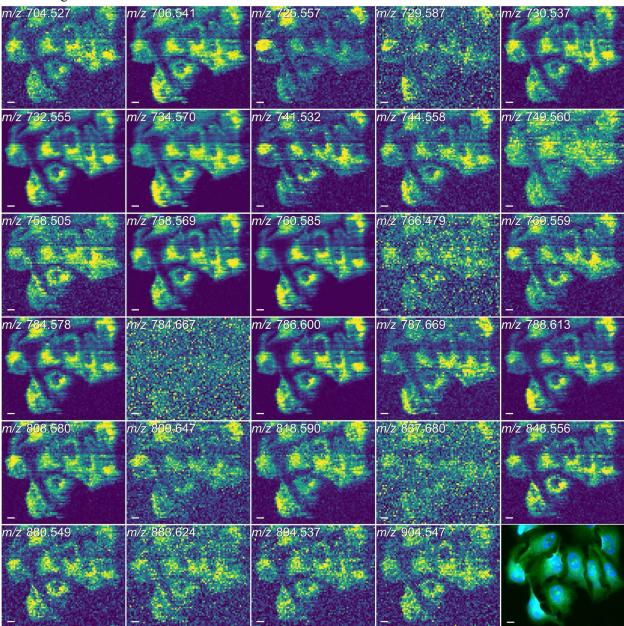
Next, with a voltage of +4 kV applied to the solvent, the probe was oscillated in the vertical direction for 110 s at a resonant frequency of 523 Hz. The arrows in (\mathbf{g}) indicate the oscillation direction. When the oscillation stopped, the particles in the probe were observed to be present at the same position (arrows in (\mathbf{h})). Furthermore, even when the voltage was set to 0 V, the particles in the probe did not move with time and remained at the same position (arrow in (\mathbf{i})). In addition, the solvent flowed out of the tip of the probe (asterisk in (\mathbf{i})). Scale bar: 100 μ m.


Supplementary Fig. 5. Comparison of mass spectra of NaI cluster ions obtained with different ion transfer tubes

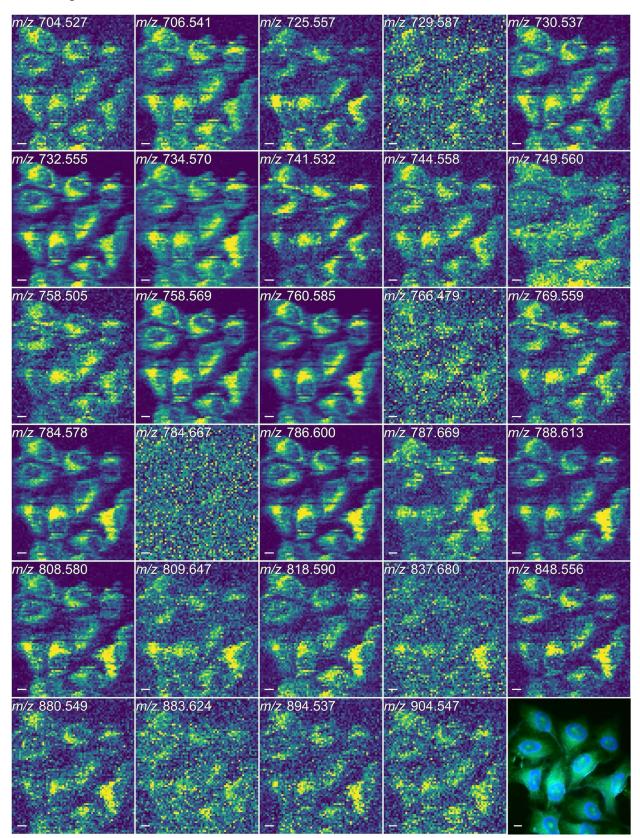
(a) and (b) Mass spectra of the NaI cluster ions generated by ESI using different ion transfer tubes (types L and S, respectively). The temperature of the ion transfer tube was varied in the range of 150–350°C.

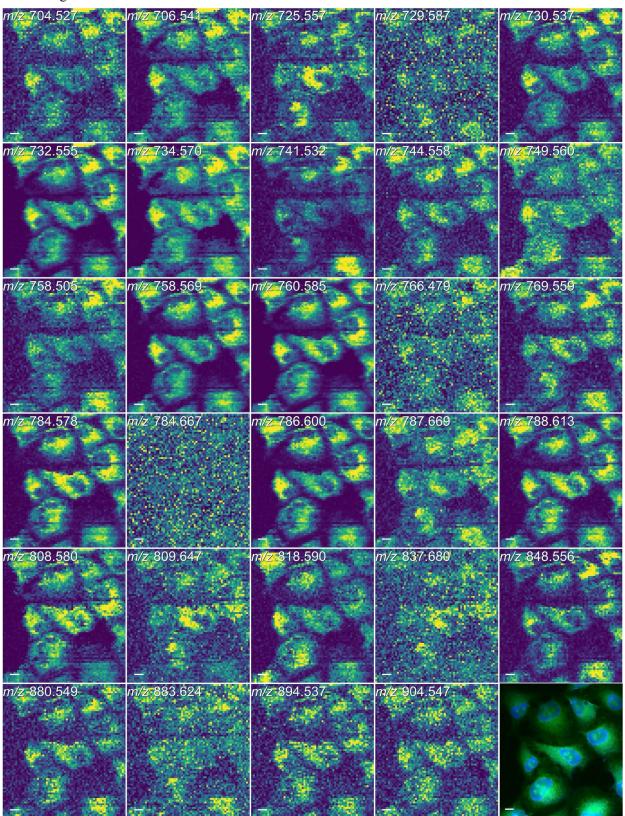

Supplementary Fig. 6. Mass spectra of HeLa cells.

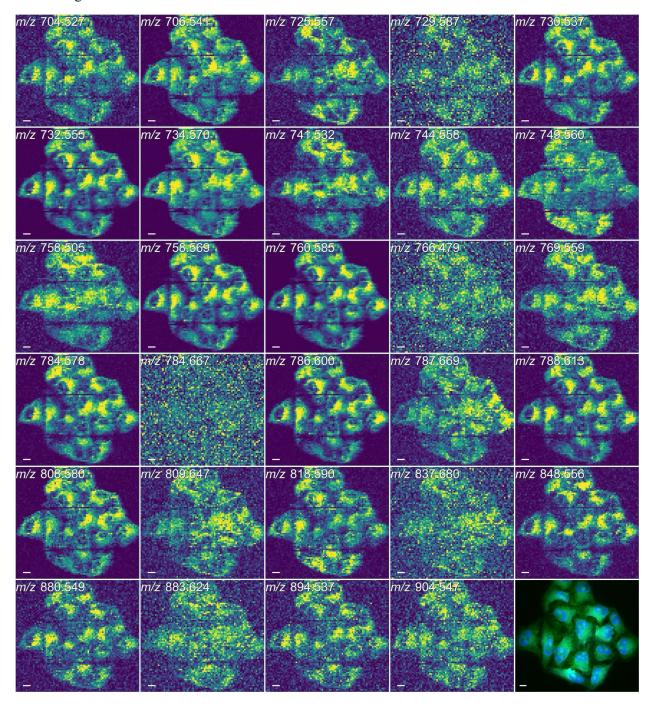
Average mass spectra of mCAT and cGCS cells. (a) Mass spectra in the range of m/z 100–1200, and (b) enlarged mass spectra in the range of m/z 650–900.

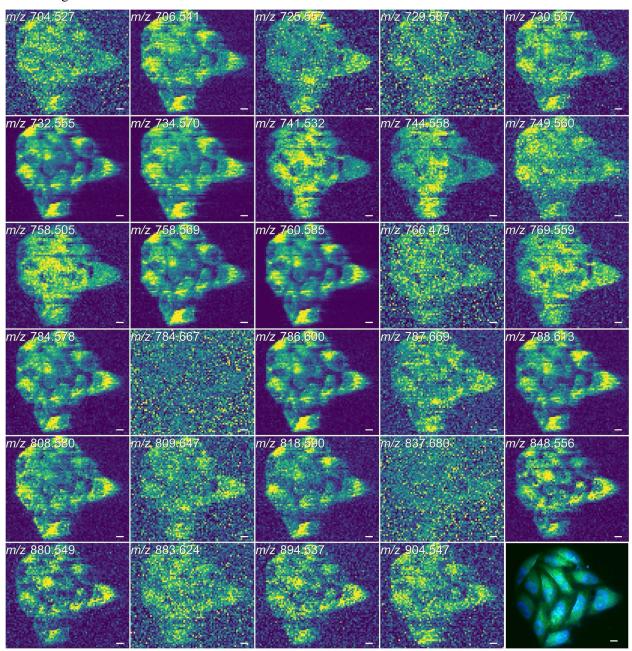


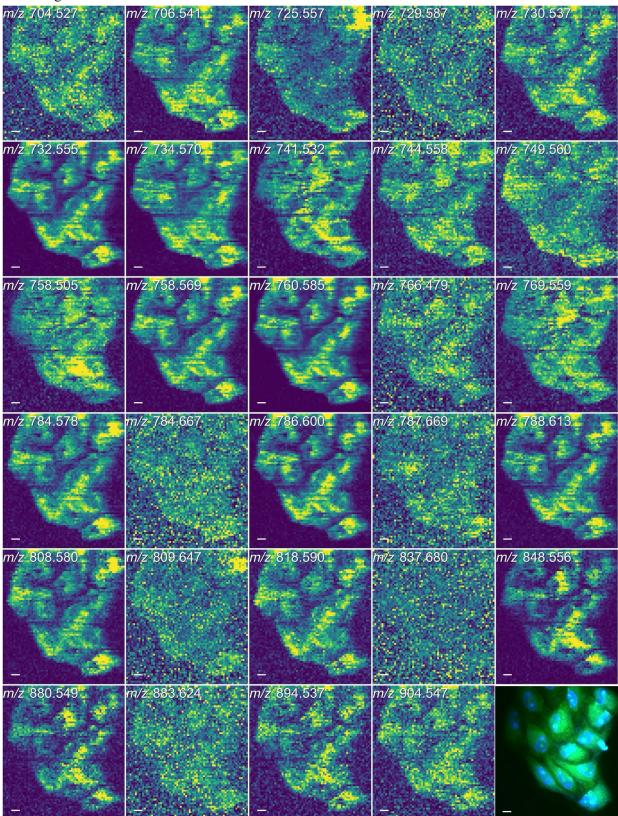
Supplementary Fig. 7. Comparison of lipid ion signal intensities between cell types.


mCAT: Region 1

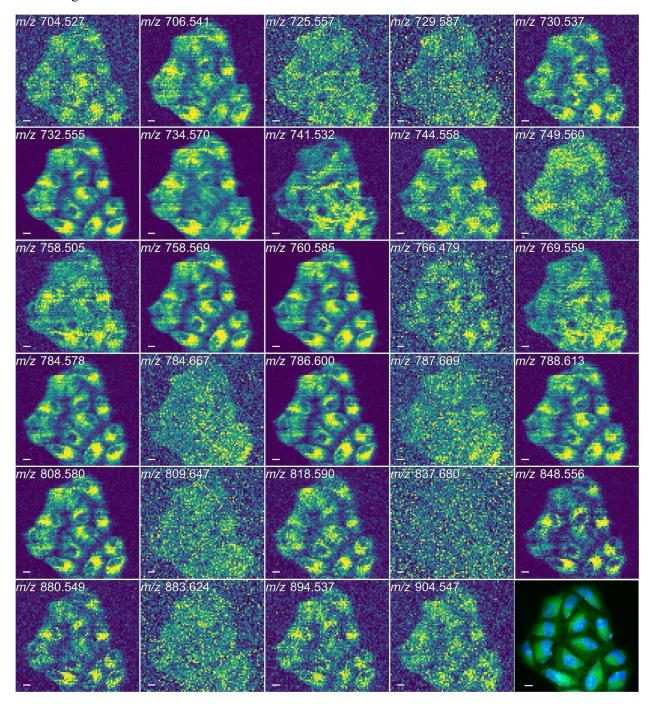

mCAT: Region 2

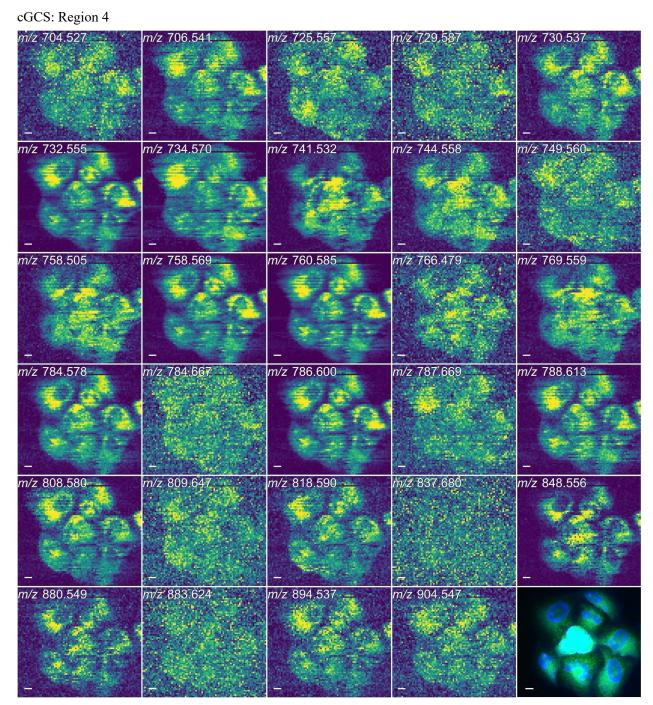

mCAT: Region 3

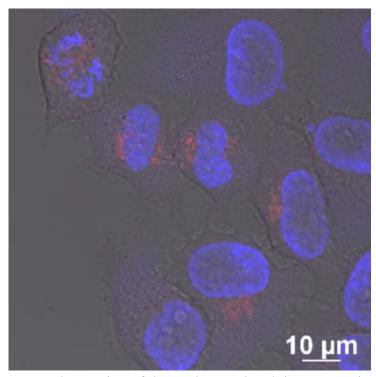

mCAT: Region 4



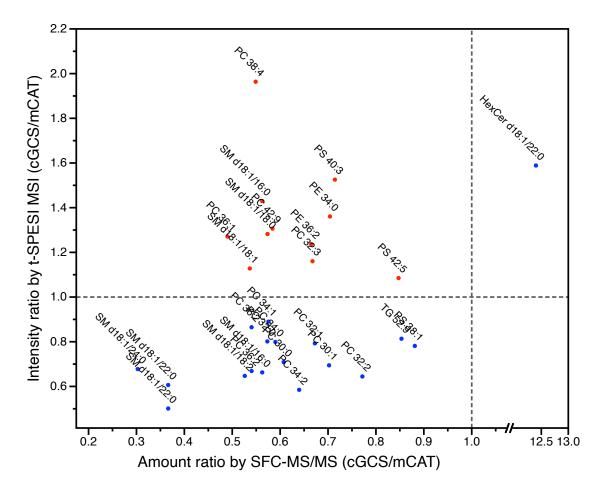
mCAT: Region 5



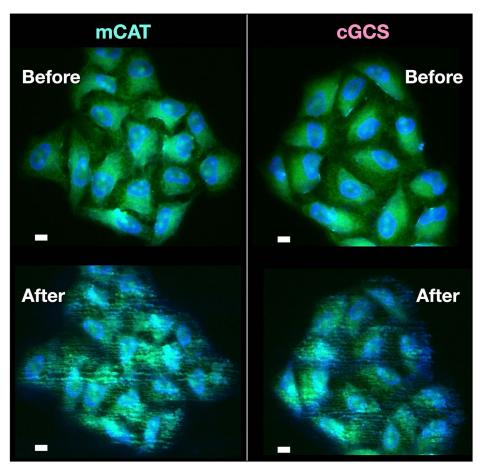

cGCS: Region 1



cGCS: Region 3



Supplementary Fig. 8. Ion images of HeLa cells obtained by t-SPESI-MSI. Scale bar: 10 μm.


Supplementary Fig. 9. Observation of the nucleus and Golgi apparatus in HeLa cells.

To visualize the nucleus and Golgi apparatus in HeLa mCAT cells, the nucleus was stained with Hoechst 33342 (blue region), and red fluorescent protein for binding to N-acetylgalactosaminyltransferase in the Golgi apparatus was expressed. To show the shape of the cell, a fluorescence image was overlaid on the bright-field image.

Supplementary Fig. 10. Comparison of lipid ion signal intensity ratios acquired via t-SPESI MSI and lipid amount ratios measured via SFC-MS/MS.

The horizontal axis shows the ratio of the amounts of lipids in cGCS and mCAT cells obtained via SFC-MS/MS. The vertical axis shows the ratio of the signal intensities of lipid ions in cGCS and mCAT cells obtained via t-SPESI MSI. The numerical values for each ratio are listed in Supplementary Table 5. Each data point is labeled with a lipid species. The blue dots indicate that the ratios determined via SFC-MS/MS and t-SPESI MSI are positively correlated, and the red dots indicate that they are negatively correlated.

Supplementary Fig. 11. Comparison of fluorescence microscope images of HeLa cells before and after single-cell imaging. Scale bar: $10~\mu m$.

Supplementary Table 1. Analysis results for spreading area of liquid bridge. The types of images correspond to those shown in Fig. 3.

Image name	Area (μm²)	Diameter (µm)
a	6.5	2.9
b	8.4	3.3
с	7.8	3.2
d	7.8	3.2
e	8.4	3.3
f	10.1	3.6
g	22.0	5.3
h	20.6	5.1
i	18.1	4.8
j	20.6	5.1
k	14.9	4.4
1	16.1	4.5

Supplementary Table 2. Parameters of P-2000 for the fabrication of capillary probes.

	HEAT	FIL	VEL	DEL	PUL
LINE 1	235	0	15	225	0
LINE 2	235	0	15	225	0
LINE 3	235	0	15	225	0
LINE 4	235	0	15	225	0
LINE 5	235	0	10	225	0
LINE 6	235	0	10	225	0
LINE 7	235	0	10	225	0

Supplementary Table 3. List of NaI cluster ions in positive ion mode mass spectra.

m/z	Ion
172.884	(NaI)Na ⁺
322.778	(NaI) ₂ Na ⁺
472.673	(NaI) ₃ Na ⁺
622.567	(NaI) ₄ Na ⁺
772.461	(NaI) ₅ Na ⁺
922.355	(NaI) ₆ Na ⁺
1072.250	(NaI) ₇ Na ⁺
1222.144	(NaI) ₈ Na ⁺
1372.038	(NaI) ₉ Na ⁺
1521.932	(NaI) ₁₀ Na ⁺
1671.827	(NaI) ₁₁ Na ⁺
1821.721	(NaI) ₁₂ Na ⁺
1971.615	(NaI) ₁₃ Na ⁺

Supplementary Table 4. List of equipments used in the t-SPESI measurement system.

Unit name	Name	Model	Manufacturer	Country
	PXI controller	cRIO-9047	NI	USA
	A/D converter	NI9215	NI	USA
	D/A converter	NI9263	NI	USA
	Relay	NI9482	NI	USA
Control unit	Power supply for PXI controller	PS-16	NI	USA
Control unit	Lock-in amplifier	LI5650	NF	Japan
	High voltage source for ESI	610C	Trek	USA
	PC (microscope)	Precision 3660	DELL	USA
	PC (t-SPESI)	Precision 3640	DELL	USA
	Laser unit	TC-20-DCGS- RP	NEO ARK	Japan
	Piezo actuator	PMF-3020	NTK Ceratek	Japan
	Laser controller	DPS-5004	NEO ARK	Japan
	Probe XYZ stage controller	HIT-S/HIT-M	OptoSigma	Japan
t-SPESI unit	Probe X stage	SGSP26-50	OptoSigma	Japan
	Probe Y stage	SGSP20-35	OptoSigma	Japan
	Probe Z stage	OSMS20-85	OptoSigma	Japan
	Probe Z piezo stage controller	NCS-7102C	THK Precision	Japan
	Probe Z piezo stage	B22-083	THK Precision	Japan
	Probe vibration piezo amplifier	M-26109-OU	MESS-TEK	Japan
	Optical microscope	TE2000-U	Nikon	Japan
	Microscope stage	BIOS-206T	OptoSigma	Japan
	Microscope stage controller	FC-101G	OptoSigma	Japan
Microscope	Light source for fluorescence imaging	C-HGFIE	Nikon	Japan
unit	Camera	DS-Fi3	Nikon	Japan
	Capture software	NIS-Elements	Nikon	Japan
	USB camera	IC1500CU	Shodensha	Japan
	USB camera	IC1300CU	Shodensha	Japan
	Macro zoom lens	MLH-10X	Computar	Japan
Ion transfer tube	Temperature controller	MTCS	Misumi	Japan
Others	Background reduction	ABIRD	ESI Source Solutions	USA
Omers	Isolation table	HAX-0806	JVI	Japan
	Oscilloscope	DSOX2004A	KEYSIGHT	USA

Supplementary Table 5. Optimized MRM parameters for lipidomic analysis via SFC/MS/MS.

Polarity	Positive	Negative
Sheath gas flow rate	10 arb	50 arb
Aux gas flow rate	0 arb	10 arb
Spray voltage	3.5 kV	-2.0 kV
Ion transfer tube temperature	320 °C	320 °C
S-lens level	60	60
Vaporizer temperature	100 °C	100 °C
Polarity	Positive	Negative
Full MS		
Resolution	60000	60000
AGC target	1×10^6	1×10^6
Maximum IT	200 ms	200 ms
Scan range	200-2000	200-2000

Supplementary Table 6. List of lipids.

Experiment Formata F								_													_							_		_
Eacht mass Adapt	PC 42:9 PS 42:5	TG 52:9	PS 40:3	PC 38:4	SM d18:1/24:0	PS 38:1	SM d18:1/22:0	PC 36:2	PC 36:1	SM d18:1/22:0	PC 36:2	HexCer d18:1/22:0	PC 34:0	SM d18:1/18:0	PC 32:3	PC 34:1	PC 34:2	PE 34:0	SM d18:1/18:2	PE 36:2	SM d18:1/16:0	PC 32:0	PC 32:1	PC 32:2	SM d18:1/18:1	SM d18:1/16:0	PC 30:0	PC 30:1	Lipid name	
Major Majo	C50H82N1O8P1 C48H84N1O10P1	C55H88O6	C46H84N1O10P1	C46H84N1O8P1	C47H95N2O6P1	C44H84N1O10P1	C45H91N2O6P1	C44H84N1O8P1	C44H86N1O8P1	C45H91N2O6P1	C44H84N1O8P1	C46H89N1O8	C42H84N1O8P1	C41H83N2O6P1	C40H74N1O8P1	C42H82N1O8P1	C42H80N1O8P1	C39H78N1O8P1	C41H79N2O6P1	C41H78N1O8P1	C39H79N2O6P1	C40H80N1O8P1	C40H78N1O8P1	C40H76N1O8P1	C41H81N2O6P1	C39H79N2O6P1	C38H76N1O8P1	C38H74N1O8P1	Formula	
	855.5778052 865.5832845	844.6580905	841.5832845	809.5934553	814.6927754	817.5832845	786.6614753	785.5934553	787.6091053	786.6614753	785.5934553	783.6588188	761.5934553	730.598875	727.515205	759.5778052	757.5621552	719.5465051	726.5675749	743.5465051	702.5675749	733.5621552	731.5465051	729.530855	728.583225	702.5675749	705.530855	703.515205	Exact mass	
Column C	[M+H]*	[M+NH4]*	[M-H]	[M+H] ⁺	[M+H]	[M-H]-	[M+H] ⁺	[M+H]*	[M+H]	[M+H]*	[M+H] ⁺	[M+H]	[M+H] ⁺	[M+H] ⁺	[M+H]*	[M+H] ⁺	[M+H]*	[M+H] ⁺	[M+H]	[M+H] ⁺	[M+H]	[M+H] ⁺	[M+H]	[M+H] ⁺	[M+H] ⁺	[M+H] ⁺	[M+H] ⁺	[M+H]	Adduct	
CoCS amount CoCAT amount CoCS	856.5856052 864.5754845	862.6924396	840.5754845	810.6012553	815.7005754	816.5754845	787.6692753	786.6012553	788.6169053	787.6692753	786.6012553	784.6666188	762.6012553	731.606675	728.523005	760.5856052	758.5699552	720.5543051	727.5753749	744.5543051	703.5753749	734.5699552	732.5543051	730.538655	729.591025	703.5753749	706.538655	704.523005	Measured m/z	
	7.75±0.02 17±0.02	4.1±0.02	17.58±0.03	7.53±0.03	7.95±0.02	17.46±0.04	7.97±0.02	7.48±0.01	7.41±0.02	7.97±0.02	7.48±0.01	7.63±0.01	7.41±0.03	8.03±0.02	7.54±0.01	7.44±0.01	7.51±0.01	9.12±0.02	8.14±0.02	9.17±0.02	8.05±0.02	7.42±0.02	7.47±0.01	7.53±0.02	8.11±0.02	8.05±0.02	7.44±0.02	7.5±0.01	RT (min)	SFC-MS
	2.349 397.555	0.250	22.918	116.267	66.894	48.338	106.753	1160.222	132.987	106.753	1160.222	33.231	136.404	113.219	9.312	1993.658	1335.567	560.148	0.881	18077.309	807.615	580.219	1779.388	366.988	39.604	807.615	446.050	134.448	GCS amount (amol/cell)	/MS results
	4.022 469.256	0.293	32.080	211.815	221.045	54.857	291.424	2147.009	271.316	291.424	2147.009	2.680	231.174	197.347	13.949	3464.749	2087.701	795.620	1.674	27183.895	1435.566	1012.155	2645.875	475.550	73.805	1435.566	734.354	191.477	mCAT amount (amol/cell)	
Delta Inc. CSC averaged mCAT averaged Signal intensity related P-value	0.584	0.853	0.714	0.549	0.303	0.881	0.366	0.540	0.490	0.366	0.540	12.400	0.590	0.574	0.668	0.575	0.640	0.704	0.526	0.665	0.563	0.573	0.673	0.772	0.537	0.563	0.607	0.702		
Delta	894.537 904.547	883.624	880.549	848.556	837.680	818.590	809.647	808.580	788.613	787.669	786.600	784.667	784.578	769.559	766.479	760.585	758.569	758.505	749.560	744.558	741.532	734.570	732.555	730.537	729.587	725.557	706.541	704.527	Measured m/z	
	894.541 904.546	883.621	880.546	848.557	837.682	818.591	809.651	808.583	788.616	787.669	786.601	784.666	784.583	769.562	766.478	760.585	758.569	758.510	749.557	744.554	741.531	734.569	732.554	730.538	729.591	725.557	706.538	704.523	Matched m/z	
I-SPES results	0.2	3.3	2.8	0.8	2.9	1.1	4.1	3.5	3.8	0.4	0.5	1.7	5.9	3.5	0.6	0.2	1.2	6.4	4.0	5.5	1.9	0.2	1.7	1.7	4.3	8.0	3.4	5.8	Delta (ppm)	
Ins Incompact Signal intensity ratio signal retarsity (GCS/mCAT) P-value 870.0 0.69 7.7E-18 4094.3 0.7T 5.4E-17 971.3 0.66 4.9E-10 10408.1 1.76 1.8E-19 10408.1 1.76-08 1.76-0	[M+K]	[M+K]	[M+K]*	[M+K]*	[M+Na]*	[M+H]*	[M+Na]*	[M+Na]*	[M+H]*	[H+M]	[M+H]	[M+H]	[M+Na]*	[M+K]	[M+K]*	[H+M]	[H+M]	[M+K]	[M+Na]*	[M+H]	[M+K] ⁺	[M+H]*	[M+H]*	[H+M]	[M+H]	[M+Na]*	[M+H]	[M+H]*	lon	
Signal intensity ratio (GCSimCAT) P-value (GCSimCAT) P-value 0.69 7.7E-18 0.69 7.7E-18 0.69 0.7F-0.9 3.5E-10 0.80 4.9E-07 1.43 9.7E-08 1.2E-08	893.6 712.5	484.2	1152.2	3182.7	370.8	1485.2	513.3	3396.6	3722.5	779.4	5879.7	473.1	3083.2	1542.9	464.7	19057.5	4242.8	1599.2	912.4	1287.9	2063.1	9691.3	8249.8	1089.6	351.4	643.8	2902.3	604.2	GCS averaged signal intensity	t-SPESI resul
t-test p-value 7.77E-18 5.4E-17 4.9E-10 9.1E-07 1.6E-19 3.5E-10 4.9E-07 9.7E-09 9.7E-09 9.7E-09 1.7E-08 1.1	684.0 656.7	595.2	755.2	1620.7	547.1	1901.2	846.6	5078.1	2929.7	1555.4	6798.1	297.8	3858.3	1203.5	400.5	21417.0	7254.5	1175.4	1410.0	1041.6	1443.1	12093.8	10408.1	1690.6	311.5	971.3	4094.3	870.0		l ss
t-test p-value 7.77E-18 5.4E-17 4.9E-10 9.1E-07 1.6E-19 3.5E-10 4.9E-07 9.7E-09 9.7E-09 9.7E-09 1.7E-08 1.1	1.31	0.81	1.53	1.96	0.68	0.78	0.61	0.67	1.27	0.50	0.86	1.59	0.80	1.28	1.16	0.89	0.58	1.36	0.65	1.24	1.43	0.80	0.79	0.64	1.13	0.66	0.71	0.69	Signal intensity ratio (GCS/mCAT)	
	2.1E-13 2.9E-03	2.5E-10	2.5E-14	2.0E-15	5.7E-16	3.1E-05	2.6E-17	3.0E-17	2.6E-08	3.6E-25	2.0E-03	1.7E-12	9.5E-09	1.9E-06	1.4E-08	4.8E-04	7.9E-24	1.7E-08	1.2E-08	7.0E-06	9.7E-09	4.9E-07	3.5E-10	1.6E-19	9.1E-07	4.9E-10	5.4E-17	7.7E-18		
	_	_	_	-	1.9E-07	-		_	-		-		2.6E-01	-	1.4E-01	_	-		-	1.2E-04	1.5E-03	-		1.6E-05			-	-	Levene's test p-value	