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Abstract: Two types of bifurcation diagrams of cytosolic calcium nonlinear oscillatory systems
are presented in rectangular areas determined by two slowly varying parameters. Verification of
the periodic dynamics in the two-parameter areas requires solving the underlying model a few
hundred thousand or a few million times, depending on the assumed resolution of the desired
diagrams (color bifurcation figures). One type of diagram shows period-n oscillations, that is, periodic
oscillations having n maximum values in one period. The second type of diagram shows frequency
distributions in the rectangular areas. Each of those types of diagrams gives different information
regarding the analyzed autonomous systems and they complement each other. In some parts of the
considered rectangular areas, the analyzed systems may exhibit non-periodic steady-state solutions,
i.e., constant (equilibrium points), oscillatory chaotic or unstable solutions. The identification process
distinguishes the later types from the former one (periodic). Our bifurcation diagrams complement
other possible two-parameter diagrams one may create for the same autonomous systems, for
example, the diagrams of Lyapunov exponents, Ls diagrams for mixed-mode oscillations or the 0–1
test for chaos and sample entropy diagrams. Computing our two-parameter bifurcation diagrams in
practice and determining the areas of periodicity is based on using an appropriate numerical solver of
the underlying mathematical model (system of differential equations) with an adaptive (or constant)
step-size of integration, using parallel computations. The case presented in this paper is illustrated by
the diagrams for an autonomous dynamical model for cytosolic calcium oscillations, an interesting
nonlinear model with three dynamical variables, sixteen parameters and various nonlinear terms of
polynomial and rational types. The identified frequency of oscillations may increase or decrease a few
hundred times within the assumed range of parameters, which is a rather unusual property. Such
a dynamical model of cytosolic calcium oscillations, with mitochondria included, is an important
model in which control of the basic functions of cells is achieved through the Ca2+ signal regulation.

Keywords: periodic dynamics verification; cytosolic calcium oscillations; two-parameter bifurcations;
period-n solutions; frequency diagrams; chaos

1. Introduction
1.1. Preliminaries

Periodic cycles—solutions of nonlinear planar (two variables) systems—are covered
by the celebrated Poincaré–Bendixson theorem proven (under certain assumptions) with
the use of the Green theorem [1]. To verify an absence of limit cycles, one may use the
Dulac’s criterion [2]. Such an approach becomes problematic for multi-variable nonlinear
systems having a wide spectrum of possible steady-state responses that change (bifurcate)
with slowly varying parameters. Verification of periodic (or oscillatory chaotic) responses
in such cases is done by numerical methods, often with a parallel computing approach [3,4].
Determining bifurcations of nonlinear dynamical systems often require a sophisticated
computational approach to visualize the obtained results [5,6].
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In this paper, we deal with the computer-aided verification of oscillatory responses
and qualitative analysis of nonlinear dynamical systems [7]. An application case study
is presented for a rather intriguing cytosolic (with mitochondria) calcium oscillatory dy-
namical model having numerous nonlinear terms and interesting properties, one of which
is a wide change of frequency of oscillations when parameters vary. We compute two-
parameter bifurcation diagrams of that system to identify areas of periodic and non-periodic
steady-state responses.

1.2. The Reliability Issue of the Numerically Computed Periodic and Chaotic Solutions

One of the major reasons of writing this paper follows from the well-documented
issue of the reliability of the chaotic and periodic solutions obtained with finite precision
computations. The central issue is the fact that obtaining entirely identical long-term
chaotic solutions via numerical solvers is practically impossible even when the same
algorithm, time step and initial conditions are applied to a particular nonlinear ordinary
differential equation (ODE) system. Reports on such an issue with interesting findings
for the well-known chaotic systems are discussed in [8]. The concept of critical time,
Tc, has been introduced, to mark the time instant beyond which two chaotic solutions
depart from each other to become completely different. This has been further expanded
in [9,10] and the best description of the problem when dealing with chaotic solutions is
the following quotation from [9]: “. . . even when the initial conditions are exactly the same,
the algorithm is not changed and the step time is kept unchanged, one can find multiple
pseudo-orbits simply by changing the way the model is written” and further in the same
paper: “The question that arises (. . . ) is: with the same initial condition, same scheme of
discretization and equivalent set of differential equations, which orbit is the true one? This
is not an easy question to answer since there is almost no option but to use finite precision
machine.” In [8], the following observation is made: “Parker and Chua [11] pointed out
that a ‘practical’ way of judging the accuracy of numerical results of a non-linear dynamic
system is to use two (or more) ‘different’ routines to integrate the ‘same’ system: the
initial time interval over which the two results agree is then ‘assumed’ to be accurate and
predictable. More precisely speaking, the computed results beyond the critical decoupling
time Tc are not reliable.”

The above issues are, to some extent, related to the results presented in the present
paper, in which we follow the guidance expressed in the above quotations, and study two
different bifurcation 2D diagrams (of n-period and frequency types) for one particular
non-linear model with complex Ca2+ oscillatory solutions. Our goal was to identify and
predict periodic and chaotic solutions using those two types of diagrams. Within the
n-period type of 2D diagrams, we differentiate our calculations by using three maximum
values of n (64, 128 and 182; see Section 3). To further modify our approach and numerical
algorithms, we used two other tools to identify periodic and chaotic oscillations, namely
the sample entropy and 0–1 test for chaos (Section 5). Throughout the paper, we compare
the obtained results (2D diagrams) to conclude that the same types of solutions are obtained
no matter which tool (type of diagram) is used. However, we would also like to point out
that the issues raised in [8–11] are not fully relevant to our study. Even when one obtains
two different chaotic solutions and attractors beyond the critical time Tc, such solutions
will still be identified as chaotic. Thus, our diagrams will stay the same, and the color
indicating particular response will not change (see Sections 2 and 3). The 0–1 test for chaos
(see Section 5) will still result in a number close to 1 indicating chaotic responses.

1.3. Autonomous System of Calcium Oscillations and Its Basic Properties

The slowly varying parameters of nonlinear dynamical systems described by ODEs
may cause significant changes to the systems’ steady-state responses. Typical visualiza-
tion of those changes when one parameter varies slowly has the form of one-parameter
bifurcation diagrams (figures) with the varying parameter representing the horizontal axis
while the vertical axis is a certain quantity characterizing the changing responses. That
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quantity could be the identified maximum values of the response in a chosen time interval,
the output of the 0–1 test for chaos (a number between 0 (for periodic responses) and 1
(for chaotic ones)), the frequency of periodic output, entropy or others [4]. In this paper,
we illustrate our bifurcation diagrams (mostly with two slowly varying parameters) with
the use of an interesting autonomous system described in Appendix A. The system (A3)
has been used in the literature for a qualitative analysis of the oscillatory cytosolic calcium
responses [12–18].

As a result of the many nonlinear terms, a computational approach to analyze is (A3),
but some analytical analysis is also possible [12]. Taking into account the structure of the
right-hand functions f̃i, i = 1, 2, 3, in (A3), it can be shown that for the non-negative initial
conditions, the three solutions, xi(t) are all non-negative and bounded. Furthermore, by
denoting the equilibrium points of the three variables by (x0, y0, z0), one can compute x3
from f̃3, substitute it into f̃2 to express x2 as a function of x1 and then f̃1 can be transformed
into a polynomial equation in x0 only (with the parameters p). Fixing 15 out of possible 16
parameters and considering the remaining parameter as slowly varying, we can establish a
dependence of x0 on that one varying parameter. Moreover, the linearization of (A3) along
x0 will yield a Jacobian with the characteristic polynomial of the form [13]

P(λ, p) = λ3 + a1(p)λ2 + a2(p)λ + a3(p), (1)

which can further be used to analyze the stability properties, and, for example, to find the
Hopf bifurcation points. Such an analysis is not very relevant to the topic of this paper,
therefore it is omitted here.

Figure 1 illustrates one of the many one-parameter bifurcation diagrams of (A3) when
kER,ch is the slowly varying parameter and the vertical axis shows the values of maximum
points identified in one period of the steady-state solution of the system. The Ls notation
(with L and s being co-prime integers) indicates a mixed-mode periodic oscillation. L and
s are the numbers of large and small maximum values of oscillations in one period. For
example, the 23 mixed mode oscillation in an interval around kER,ch = 570 has 2 large
maximum values (close to each other) around the value of 0.49 and three small maximum
values around 0.33–0.36. The diagram in the marked rectangle in Figure 1 is shown in more
detail in Figure 2. Note an interesting property of (A3)—the Ls periodic responses form a
Farey sequence of co-prime integers. For example, 23 is formed from the two neighboring
sequences 11 and 12, with 23 = 11 ⊕ 12, where

⊕
is the Farey addition. In general,

Ls = Ls1
1
⊕

Ls2
2 , with L = L1 + L2 and s = s1 + s2. See [14] for more details and the relation

of the Ls type of oscillations to the Ford circles, Stern–Brockot tree, sequences of firing
numbers and the Riemann zeta function. The Ls mixed-mode periodic oscillations have
also been considered in the context of two-parameter bifurcation diagrams for the modified
Chua’s circuits in [6]. The intermingling intervals of periodic and chaotic solutions (as in
Figures 1 and 2) can also be used to determine fractal dimension of (A3) [14]. We chose
to vary the same parameters of (A3) that were used in [12,15–18] for their one-parameter
bifurcation analysis. The remaining parameters are constant in our 2D bifurcation analysis,
as described in Appendix A.
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Figure 1. Bifurcation diagram of (A3) for Kch = 2.1.

Figure 2. Bifurcation diagram of (A3) for Kch = 2.1 (rectangle 23 in Figure 1). Note that 35 = 23 ⊕
12.

1.4. Bifurcation Diagrams of Period-n Responses and Frequency Distribution

In the next section, we use the Ls type of periodic oscillations as (L+s)-periodic os-
cillations, indicating that in one period there are L + s maximum values. Thus, the two-
parameter diagrams of n maximum values, n = 1, 2, . . . , 64, presented next, indicate that
the solutions are periodic, with n = L + s. Thus, no distinction is made to differentiate
between large and small maximum values. For this reason, two different Ls1

1 and Ls2
2 oscil-

lations are both of the same period-n type, if L1 + s1 = L2 + s2. From the point of view of
period-n oscillations, we have a possibility of n + 1 different types of oscillations, called
the period-n ones, as, for example, the following six period-5 oscillations may come from
the 50, 41, 32, 23, 14 and 05 mixed-mode oscillations. All these six mixed-mode oscillations
are marked by the same color and the number n = 5 in the two-parameter bifurcation
diagrams of the number of maximum values in one period.

The above period-n oscillations as illustrated in Figures 1 and 2 (or in the two-parameter
diagrams in the next section) do not provide any information as far as the frequency of
oscillations is concerned. Once a period-n oscillation is established, an extra computational
work can be performed to measure the frequency and, thus, create one- or two-parameter
frequency diagrams. Both, the period-n and frequency diagrams complement each other to
provide a better understanding of how nonlinear dynamical systems behave when their
parameters vary. The frequency diagram may be essential in other kinds of analysis. For
examples, it has been established recently that applying the 0–1 test for chaos may require a
prior knowledge of the maximum frequency of the continuous spectrum of chaotic signals
to properly choose certain parameters used in that test [19,20].

Depending on the ranges of varying parameters, it often happens that the same type
of period-n oscillations differ significantly in frequencies, as we have discovered by creating
diagrams in the next section. The difference could be by a factor of a few hundred times, as
it happens for the system (A3). Further discussion on the range of frequency changes in
the calcium oscillatory systems can be found in [21].
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The wide range of frequencies of oscillations of (A3) cannot be seen from the diagrams
in Figures 1 and 2 or other similar one-parameter diagrams, but it is known that (A3) has
that peculiar feature of a wide range of frequency change and rather small amplitude
change, even with a small interval of the varying parameters, including kER,ch (“In some
cells, time intervals between two Ca2+ spikes change from a few seconds to several minutes
or even tens of minutes. However, in contrast to the large changes in frequency, the
amplitude of Ca2+ oscillations remains nearly constant in many cell types. This likely
allows the cell to encode information in the frequency of Ca2+ oscillations.” See [16]).

2. Two-Parameter Period-n Bifurcation Diagrams

Figure 3 presents two-parameter bifurcation diagrams showing period-1 to period-63
oscillations. The blue color indicates areas with constant steady-state solutions, that is,
starting with the zero-initial conditions, all solutions of (A3) end up at the equilibrium
points. Additionally, there is a degree of ambiguity with the white color associated with
the number 64 in the color vertical bars. Namely, all periodic solutions with 64 (or more)
maximum values in one period and all chaotic responses are marked with the number
64 (white color). The number 64 has no particular significance, and the computations
can be done with a higher upper bound than 64. Notice that the diagram in rectangle
A in Figure 3b is enlarged in Figure 3d. Rectangle B in Figure 3c is enlarged in Figure 3e,
while the diagram in rectangle C in Figure 3d is enlarged in Figure 3f. To create each
of the diagrams in Figure 3, we solved (A3) 360,000 times as 600 × 600 discrete points
were used. As in the case of one-parameter diagrams in Figures 1 and 2, one cannot
deduct any information about the frequency of period-n oscillations from the diagrams in
Figure 3. As explained before, each discrete point with n = 1, . . . , 63 maximum values in
one period indicates the sum L + s (= n) rather than the L and s separately. Of course,
the maximum values of the analyzed variable in one period cannot be retrieved from the
diagrams in Figure 3. On the other hand, the periodic oscillations with n ≥ 64 and chaotic
areas represented by the white color in Figure 3 are identifiable in the same way one can
identify them in one-parameters diagrams. Those are rather narrow intervals with multiple
dots in vertical lines distributed between the lower and upper maximum values seen in
Figures 1 and 2, for example, for the kER,ch values less than 566 and around 578 in Figure 2.

(a) (b)

Figure 3. Cont.
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(c) (d)

(e) (f)

Figure 3. Two-parameter 600× 600 diagrams of the number of maximum values identified in one
period, each obtained by using the Runge–Kutta IV solver with dt = 0.0005 for 0 ≤ t ≤ 1000 when the
solutions in the interval 500 ≤ t ≤ 1000 were used in the identification. Obtaining each of the above
two-parameter diagrams requires solving (A3) 3.6× 105 times. (a) Diagram with kER,pump = 20. (b)
Diagram with kER,ch = 3500. (c) Diagram with kER,ch = 1000. (d) Diagram in area A in subfigure b.
(e) Diagram in area B in subfigure c. (f) Diagram in area C in subfigure d.

3. Two-Parameter Frequency Distribution Diagrams

Figure 4 presents frequency distribution of the periodic solutions of (A3) in the same
rectangular areas as the period-n bifurcation diagrams in Figure 3. Again, the blue color has
the same meaning as that explained before for the blue areas in Figure 3. The extra green
color in Figure 4 is not associated with any frequency value as it represents the solutions of
either period-n oscillations for n ≥ 64 or chaotic solutions for which, obviously, one cannot
find frequency. This means that the green areas in Figure 4 correspond to the white areas in
Figure 3.

Furthermore, the diagrams in the larger two-parameter rectangles in Figure 5 (with an
accompanying Figure 6) and Figure 7 (with an accompanying Figure 8) are the period-n and
frequency distribution diagrams, respectively. The smaller rectangles D in those figures are
the rectangles in Figures 3a and 4a, respectively. The purpose of creating Figures 5 and 7
is two-fold. First, notice that the central part of the diagram in Figure 5 is dark brown,
indicating mostly period-1 and period-2 oscillations.
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Two-parameter 600× 600 diagrams of the frequency of periodic oscillations, each obtained
by using the Runge-Kutta IV solver with dt = 0.0005 for 0 ≤ t ≤ 1000 when the solutions in the
interval 500 ≤ t ≤ 1000 were used in the identification. Obtaining each of the above two-parameter
diagrams requires solving (A3) 3.6× 105 times. No frequency values are assigned to the blue and
green areas. (a) Diagram with kER,pump = 20. (b) Diagram with kER,ch = 3500. (c) Diagram with
kER,ch = 1000. (d) Diagram in area A in subfigure b. (e) Diagram in area B in subfigure c. (f) Diagram
in area C in subfigure d.

However, from Figure 7, it follows that some of those oscillations have frequencies
that differ significantly. Notice the very dark brown area next to the blue area on the left
side in Figure 7. The frequencies there are as low as 0.003 Hz. Similar period-1 frequencies
in the very narrow yellow strip next to the blue area in the lower right corner are around
0.6 Hz. Thus, the frequencies of the same type of period-1 oscillations differ by the factor of
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around 200. Selecting a point on the line a for kER,ch = 4400 in Figure 3a indicates period-1
oscillations to which we assign the corresponding point on line a in Figure 4a on the narrow
yellow band with frequency around 0.6 Hz. Similar significant change in the frequency
values can be observed between the yellow and brown areas in the lower right corner areas
in Figure 4b–d. This confirms the second reason for the usefulness of the two-parameter
diagrams: they give a broader view of the possible changes as far as the types of period-n
solutions and their corresponding frequencies are concerned.

Figures 6 and 8 show one-parameter diagrams of the n values and frequency, respec-
tively, as functions of kER,ch for three values of Kch. Those are simply horizontal cross-cuts
of Figures 5 and 7. The narrow intervals with spikes at n = 64 in Figure 6 indicate intervals
of kER,ch yielding white bands in Figure 5 and green bands in Figure 7. Similarly, the
frequency spikes in Figure 8, reaching the values close to 0.6 Hz, correspond to the points in
a narrow yellowish-white band close to the blue area in the lower right corner in Figure 7.

The two types of the two-parameter diagrams for (A3) are not the only ones that can
be created for the same autonomous system. It is certainly possible to compute the two-
parameter diagrams for Lyapunov exponents [22], stability domains [23], Poincaré return
maps [24], entropy [25] and the 0–1 test for chaos [26]. The later two-parameter diagrams
for the electric circuits, Lorenz and Rössler chaotic systems, are presented in [20,27,28].

In addition, notice that while the maximum value of n used in the diagrams in Figure 3
is 64, the character of the diagrams is preserved when that value is increased. For example,
Figure 9a,b show how the diagram from Figure 3b changes when the maximum value
of n is increased to 128 (Figure 9a) and 182 (Figure 9b). The reduction of the amount of
pure white color with the increased maximum of n is clearly noticeable. This indicates
that for many of those pairs of parameters of (Kch, KER,pump), for which n = 128 (the white
color in Figure 9a), the color changes to yellow in Figure 9b. There are rather few pairs of
parameters (Kch, KER,pump) with n values close to 182, as shown in Figure 9b. The sharp
jump of n from single digits (i.e., n < 10 represented by the brown color) to high values (i.e.,
n around 182 represented by the white color) is an indicator of the changes in oscillatory
behavior similar to a periodic to chaotic bifurcation or periodic to bursting transition. This
happens, for example, around the area of (Kch, kER,pump) = (5.5, 17) in Figures 3b and 9a,b.

Figure 5. Maximum values diagram of (A3).
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Figure 6. The n values of (A3) as functions of kER,ch for Kch = {2.1, 5.0, 7, 0}.

Figure 7. Frequency bifurcation diagram of (A3).

Figure 8. Frequency values of (A3) as functions of kER,ch for Kch = {2.1, 5.0, 7, 0}.



Entropy 2021, 23, 876 10 of 15

(a) (b)

Figure 9. Two-parameter 600 × 600 diagrams of the number of maximum values identified in one
period with (a) max(n) = 128 and (b) max(n) = 182. See Figure 3b for comparison and other
parameters. (a) Diagram as in Figure 3b. (b) Diagram as in Figure 3b.

4. Details of Computations of the Two-Parameters Bifurcation Diagrams

Generally, if an oscillation system has periodic solution then for any two variables,
say xi(t) and xj(t), we have a homoclinic orbit F(xi, xj) = 0 in the form of closed loops.
The number of loops n is equal to the number of local maxima (or minima) of both xi(t)
and xj(t) occurring within one period, as shown in Figure 10 for n = 1 and in Figure 11 for
n = 5.

To identify the number n, it is first necessary to determine the geometrical center of
the innermost loop, denoted by O(x2m, x1m) in Figures 10 and 11 for the variables x1 and
x2. It is well-known that for any two-dimensional area A in variables x and y, the center is
determined by the double integrals

xm =

∫ ∫
x(dA)∫ ∫

dA
, ym =

∫ ∫
y(dA)∫ ∫

dA
. (2)

When we consider the most inner loop (the loop of the smallest area), then an approxi-
mate method to find the center of that loop uses the four points P1, . . . , P4 defining the
quadrangle P1P2P3P4, as is shown in Figures 10 and 11. The center of that quadrangle has
been determined by the values max(x2min), min(x2max), max(x1min) and min(x1max) (see
Figure 11), where, in general, max(xjmin) denotes the largest local minimum of xj(t), while
min(xjmax) denotes the smallest local maximum of xj(t). As the computations showed, the
above method of determining the center O proved to be accurate. To avoid any transients,
such an analysis was carried out in this paper in the interval of identification [500, 1000]
seconds, while the solution of (A3) was computed in the interval 0 ≤ t ≤ 1000.

The number of intersections of the graph F(xi, xj) = 0 with the positive half axis x2new
(the points Ci in Figures 10 and 11) is exactly equal to the number of local maxima of x2(t)
in one period. The solution values of x(t) are computed at discrete points. The intersections
values (coordinates of the points Ci) were obtained as a result of linear interpolation, based
on the two nearest discrete values (below and above the x2new axis). The value of the time
variable t, for which the intersections with the positive half axis x2new happen, is determined
analogously by linear interpolation. The period T0 was determined as T0 = ti+n − ti, where
n is the number of different intersections of the positive half axis of x2new. We assumed in
this paper that the intersections of the positive half axis x2new are considered identical if
the values obtained by linear interpolation do not differ by more than the assumed certain
error value ε. We assumed ε = 0.0001 for all computations of both one- and two-parameter
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diagrams in this paper. When a chaotic response is obtained, then the calculations of both
n and T0 are not possible, as no homoclinic orbits occur, as illustrated in Figure 12.

The number of intersections of the graph F(xi, xj) = 0 with the positive half axis x2new
(the points Ci in Figures 10 and 11) is exactly equal to the number of local maxima of x2(t)
in one period. The solution values of x(t) are computed at discrete points. The intersection
values (coordinates of the points Ci) were obtained as a result of linear interpolation, based
on the two nearest discrete values (below and above the x2new axis). The value of the time
variable t for which the intersections with the positive half axis x2new happen, is determined
analogously by linear interpolation. The period T0 was determined as T0 = ti+n − ti, where
n is the number of different intersections of the positive half axis of x2new. We assumed in
this paper that the intersections of the positive half axis x2new are considered identical if
the values obtained by linear interpolation do not differ by more than the assumed certain
error value ε. We assumed ε = 0.0001 in all computations of both one- and two-parameter
diagrams in this paper. When a chaotic response is obtained, then the calculations of both
n and T0 are not possible, as no homoclinic orbits occur, as illustrated in Figure 12.

Figure 10. Period-1 solution of (A3) for Kch = 10.

Figure 11. Period-5 solution of (A3) for Kch = 5.15.

Figure 12. Chaotic solution of (A3) for Kch = 4.683.

Finally, in the identification interval 500 ≤ t ≤ 1000 used in this paper, we have 57,
205 and 254 points Ci in Figures 10–12, respectively. The number n was determined to
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be respectively 1, 5 and undefined for the three cases. Due to the long computation time
required for the creation of two-parameter diagrams, all computations presented in this
paper were done by using a 12-core computer and parallel algorithms described in the
previous work [28].

5. Comparison with the Sample Entropy and 0–1 Test for Chaos Diagrams

The diagrams in Figures 3a and 4a are compared with the sample entropy (SE) [29,30]
and 0–1 test (T01) [19,20] for chaos diagrams in Figure 13 in the same rectangular areas
of the two varying parameters. The diagrams in Figure 13 are of size 1000 × 1000. Thus,
system (A3) was solved 106 times in the assumed rectangular areas. The sample entropy
diagrams in Figure 13a,b show the values of sample entropy, between being very close to 0
for non-oscillatory value of parameters (black color) to the maximum values of 0.4871 and
0.5556 in the two figures. The higher the entropy value is, the more complex the oscillations
are in Figures 3a and 4a (period-n oscillations with large n value or chaotic oscillations). On
the other hand, the two 0–1 test diagrams in Figure 13c,d have the K values close to 0 for
periodic oscillations and the K values are close to 1 for chaotic ones. Notice the very good
agreement between the nature of the diagrams in Figures 3a and 4a and those in Figure 13.

(a) (b)

(c) (d)

Figure 13. (a,b) Two-parameter 1000× 1000 diagrams of the sample entropy values corresponding to
the diagrams in Figure 3a,b, respectively; (c,d) two-parameter 1000× 1000 diagrams of the 0–1 test
for chaos (K values) corresponding to the diagrams in Figure 3a,b, respectively. The Runge–Kutta
method of order 4 with constant step-size of integration 0.001 was used to solve (A3). The sample
entropy diagrams were obtained with m = 3, r = 0.025 and N = 10, 000 (see [29]). The SE diagrams
in (a,b) and the T01 diagrams in (c,d) were identified based on the solutions for 1000 ≤ t ≤ 2000 and
300 ≤ t ≤ 500, respectively. The parameter T = 40 in the 0–1 test method (see [19,28]). (a) SE diagram
with kER,pump = 20. (b) SE diagram with kER,ch = 3500. (c) T01 diagram with kER,pump = 20.(d) T01
diagram with kER,ch = 3500.
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6. Conclusions

Two types of two-parameter bifurcation diagrams (with the period-n responses and
frequency distributions) were presented in this paper. Those diagrams provide useful
information about the nature of the steady-state solutions of the nonlinear autonomous
system of calcium oscillations with the mitochondria included. The same type of diagrams
can be, in principle, created for any other nonlinear autonomous system with varying
parameters. In general, because the two-parameter diagrams give different information
about the changes in the steady-state responses than the one-parameter diagrams do,
both kinds of diagrams complement each other. Our computations were done using
parallel computing algorithms, since to create one diagram with two varying parameters
requires solving the nonlinear autonomous system a few hundred thousands or even
millions of times, depending on the two-parameter area and the resolution one desires.
The identified possible chaotic oscillations occur in very narrow intervals of the parameter
kER,ch in Figures 1 and 2 and scattered areas of white and green colors in Figures 3 and 4,
respectively. Those scatter areas of chaotic solutions are identical for both types of diagrams.
Further comparisons with the sample entropy and 0–1 test for chaos diagrams also show a
very good agreement of the obtained solutions.

The diagrams presented in this paper complement other types of one- and two-
parameter diagrams one can create for nonlinear autonomous systems, such as, for example,
those showing the Lyapunov exponents, Poincaré maps [31], the 0–1 test results [28] and
entropy distribution [29,30].
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Appendix A. Model of Cytosolic Calcium Oscillations

One of the store models considered in the literature for complex Ca2+ oscillations,
with mitochondria included, is the model considered in [15–18]. The three compartments
considered are: the cytosol, endoplasmic reticulum (ER) and mitochondria yielding the
three dynamical variables, free Ca2+ concentration Cacyt, CaER and Cam, respectively (see
Figure 1 in [16]). Denoting x1 = Cacyt, x2 = CaER and x3 = Cam, the nonlinear autonomous
system is

x′1 = JER,ch − JER,pump + JER,leak + JCaPr − JPr
+ ρm

βm
(Jm,out − Jm,in)

x′2 = βER
ρER

(JER,pump − JER,leak − JER,ch)

x′3 = Jm,in − Jm,out

(A1)
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where the ′ stands for the time derivative, and

JER,ch = kER,ch
x2

1
K2

ch+x2
1
(x2 − x1)

JER,pump = kER,pumpx1
JER,leak = kER,leak(x2 − x1)

JCaPr = k−CaPr
JPr = k+x1Pr

Catot = x1 +
ρER
βER

x2 +
ρm
βm

x3 + CaPr
Prtot = Pr + CaPr
Jm,in = km,in

xn
1

Kn
m+xn

1
Jm,out = km,outx3

(A2)

with the parameters n, kER,ch, Kch, kER,pump, kER,leak, k−, k+, Catot, ρER, βER, CaPr, Prtot, Pr,
ρm, βm, km,in, km,out and Km being all positive. These parameters denote various physical
quantities in the above model [16].

After substituting (A2) into (A1), we obtain

x′1 = kER,ch
x2

1
K2

ch+x2
1
(x2 − x1)− kER,pumpx1+

kER,leak(x2−x1)+
k−(Catot− x1

ρER
βER

x2− ρm
βm

x3)−
k+(Prtot − Catot + x1 +

ρER
βER

x2 +
ρm
βm

x3)x1+
ρm
βm

(km,outx3 − km,in
xn

1
Kn

m+xn
1
) ≡ f̃1(x1, x2, x3, p)

x′2 = βER
ρER

(kER,pumpx1 − kER,leak(x2 − x1)−

kER,ch
x2

1
K2

ch+x2
1
(x2 − x1)) ≡ f̃2(x1, x2, p)

x′3 = km,in
xn

1
Kn

m+xn
1
− km,outx3 ≡ f̃3(x1, x3, p)

(A3)

Notice the presence of many parameters denoted by the vector p in (A3) and the nonlin-
ear terms of polynomial and rational types. All computations presented in this paper were
done with the following parameters kept constant: n = 8, kER,leak = 0.05 s−1, ρER = 0.01,
βER = 0.0025, k− = 0.01 s−1, k+ = 0.1 µM−1s−1, Catot = 90 µM, Prtot = 120 µM,
ρm = 0.01, βm = 0.0025, km,in = 75 µMs−1, km,out = 0.1265625 s−1, Km = 0.8 µM. The
varying parameters are identified in the bifurcation diagrams. The zero initial conditions
for the three variables xi, i = 1, 2, 3, were used. For the one-parameter diagrams shown
in Figures 1 and 2, the ode45 solver was used with the values dt = 0.001 (the output step
size), 0 ≤ t ≤ 500 (time horizon) and abserr = relerr = 10−8. The maximum values in
the diagrams in Figures 1 and 2 were identified with 750 discrete values of the horizontal
parameter kER,ch between its lower and upper bounds. For all two-parameter diagrams, the
Runge–Kutta IV solver was used for 0 ≤ t ≤ 1000, with the number of maximum values
and frequencies identified in the second half of that period.
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