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A B S T R A C T   

The impact of estrogen on brain function, especially in individuals with diabetes, remains uncertain. This study 
aims to compare cerebral glucose metabolism levels in intact rats, ovariectomized (OVX) rats, and 17β-estradiol 
(E2)-treated OVX diabetic female rats. Sixteen rats were administered a single intraperitoneal injection of 70 mg/ 
kg streptozotocin (STZ) to induce diabetes (intact, n = 6; OVX, n = 6; OVX+E2-treated, n = 4). Additionally, 18 
rats received an equivalent solvent dose via intraperitoneal injection (intact, n = 6; OVX, n = 6; OVX+E2-treated, 
n = 6). After 4 weeks of STZ or solvent administration, positron emission tomography scans with 18F-fluo
rodeoxyglucose (18F-FDG) injection were employed to assess cerebral glucose metabolism. The diabetic rats 
exhibited substantial reductions in 18F-FDG uptake across all brain regions (all P < 0.01), in contrast to the 
control rats. Moreover, intact and OVX + E2-treated diabetic female rats displayed more pronounced decreases 
in cerebral glucose metabolism in the amygdala and hippocampus compared to OVX diabetic female rats (P <
0.05). These findings suggest that diabetes creates an environment wherein estrogen exacerbates neuropathology 
and intensifies neuronal activity.   

1. Introduction 

Estrogen is a pivotal hormone vital for maintaining reproductive 
health. Its significance, however, extends beyond reproduction, 
encompassing diverse functions in essential bodily processes such as 
cerebrovascular and cognitive functions. Notably, estrogen promotes 
the production of nitric oxide by endothelial cells [1], facilitating 
vasodilation and thereby conferring neuroprotective effects. Post
menopausal women have shown enhanced brain metabolic activity 
following estrogen replacement initiation, underscoring estrogen’s po
tential in safeguarding against neuronal activity decline [2,3]. Preclin
ical investigations using animal models have also showcased the 
promising role of estrogen in conditions like cerebral ischemia [4] and 
neurodegenerative diseases [5]. While a wealth of evidence from clinical 
and preclinical studies supports estrogen’s neuroprotective attributes, 
clinical trials have yielded divergent outcomes regarding its impact, 

with certain studies reporting negligible benefits of estrogen therapy on 
stroke [6] and cognitive function [7,8]. Given the frequent prescription 
of estrogen to women following surgical or natural menopause, in-depth 
exploration of estrogen’s modulatory role in brain function remains 
imperative. 

Evidence suggests that the neuroprotective and vasculoprotective 
impacts of estrogen depend on various factors, encompassing treatment 
protocols, physiological conditions, and comorbidities [9], where the 
presence of diabetes wields significant influence. Numerous animal 
studies have demonstrated that diabetes might hinder estrogen’s 
vascular protective prowess [10], thus intensifying brain damage asso
ciated with strokes [11,12]. Building upon this premise, we postulated 
that the combined influences of estrogen and chronic hyperglycemia 
could potentially dampen cerebral activity, establishing an environment 
that heightens the brain’s susceptibility to disease progression. Yet, in
sights into how estrogen affects cerebral activity within the context of 
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the diabetic brain remain relatively sparse. 
In this study, we conducted a comparative analysis of cerebral 

glucose metabolism levels among intact, ovariectomized (OVX), and 
17β-estradiol (E2)-treated OVX diabetic female rats. We employed 
positron emission tomography (PET) with 18F-fluorodeoxyglucose (18F- 
FDG) injection for this purpose. Given that glucose serves as the brain’s 
primary energy source, numerous studies have underscored cerebral 
glucose metabolism as a pivotal biomarker of cerebral activity [13]. The 
diabetic brain is characterized by a reduction in cerebral metabolism 
[14,15]. Our study extends the scope of diabetes-related investigations, 
which have hitherto primarily focused on comparing cerebral meta
bolism levels between control and diabetes groups. Instead, we delve 
into the impact of estrogen therapy on cerebral metabolism within the 
diabetic brain. The insights from this study hold the potential to deepen 
our comprehension of how estrogen operates in diverse brain 
conditions. 

2. Materials and methods 

2.1. Animal preparation 

This study employed thirty-six female Sprague-Dawley rats aged 7 
weeks, weighing between 180 and 215 g. These rats were provided 
unrestricted access to a standard rodent diet along with tap water. The 
research protocol received approval from the Institutional Animal Care 
and Use Committee of China Medical University (CMUIACUC- 
2022–421), and the study adhered strictly to the endorsed guidelines 
(https://grants.nih.gov/grants/olaw/guidebook.pdf). 

Following a week of acclimatization, the animals were allocated at 
random to either the control group (intact, n = 6; OVX, n = 6; OVX+E2- 
treated, n = 6) or the streptozotocin (STZ)-induced diabetic group 
(intact, n = 6; OVX, n = 6; OVX+E2-treated, n = 6). Ovariectomies were 
performed by the vendor (BioLASCO Taiwan CO., Ltd) three days prior 
to shipment. The method for establishing the type 1 diabetic rodent 
model was derived from a previously published protocol [14,16]. STZ 
was purchased from Sigma Chemical Co. (St. Louis, MO, USA) and was 
freshly dissolved in 0.1 mol/L citrate buffer (pH = 4.5) before injection. 
Animals within the diabetic group received a single intraperitoneal (IP) 
dose of 70 mg/kg STZ, leading to pancreatic beta-cell-specific cytotox
icity. Control animals were given an equivalent volume of vehicle alone. 
The E2 treatment protocol was modeled on the approach proposed by 
Isaksson et al. [17]. E2 was initially dissolved in olive oil. OVX+E2-
treated animals in both control and diabetic groups were administered 
an IP injection of 20 μg/kg/30 μL of E2 three times weekly for a 
continuous period of 4 weeks. Weekly monitoring of body weight and 
non-fasting blood glucose levels began subsequent to the STZ or citrate 
buffer administration. A glucometer (Accu-Chek, Basel, Switzerland) 
was used to ascertain plasma glucose concentration. Diabetic rats were 
identified as those exhibiting non-fasting blood glucose levels exceeding 
250 mg/dL. It is pertinent to note that due to glucometer limitations, 
readings above 600 mg/dL were recorded as 600 mg/dL. Unfortunately, 
two diabetic rats in the OVX+E2-treated groups succumbed two weeks 
following STZ administration, resulting in four remaining rats within 
that group. The PET/CT measurement was conducted 5 days subsequent 
to the culmination of the E2 treatment. 

2.2. PET experiments and data analysis 

An animal NanoScan PET/computed tomography (CT) scanner 
(PET1225, Mediso, Budapest, Hungary) was used for the PET studies. 
For the PET scans, the animals were anesthetized with medical air 
containing 2–3% isoflurane. A dose of 0.55 ± 10% mCi of 18F-FDG was 
intravenously injected via the tail vein to visualize brain glucose meta
bolism. Following a 60-minute interval for 18F-FDG uptake, a 30-minute 
PET imaging session was conducted. Subsequent to the PET imaging, CT 
images were captured to account for attenuation and scattering effects, 

employing the following parameters: 360 projections, a voltage of 50 
kVp, current of 980 µA, exposure time of 170 ms, pitch of 1, and voxel 
size of 250 × 250 × 250 µm3 . All PET images acquired were utilized for 
subsequent analysis. Throughout the experiment, heart and respiratory 
rates were continually monitored, and the animals’ body temperature 
was upheld through the use of a warm water blanket. 

The PET images underwent reconstruction through a three- 
dimensional ordered-subset expectation maximization algorithm with 
four iterations and six subsets within the acquisition workspace. 
Assessment of cerebral 18F-FDG uptake was performed employing the 
region of interest (ROI) methodology. PMOD image analysis software 
(version 4.0; PMOD Technologies Ltd., Zurich, Switzerland) was utilized 
to delineate ROIs for specific brain regions including the cingulate 
cortex, hippocampus, thalamus, hypothalamus, insula, striatum, amyg
dala, and accumbens. The anatomical locations of these delineated re
gions are presented in Fig. 1. The standard uptake value (SUV), 
calculated as the radioactivity concentration divided by the whole-body 
concentration of the injected radioactivity, was employed to quantify 
the metabolic activity within these brain regions. 

2.3. Histological assessments 

Upon completion of the PET scans, all rats underwent sacrifice and 
subsequent perfusion with 250 mL of fixative (4% paraformaldehyde in 
0.1 M phosphate buffered saline, pH 7.4). Following fixation, cerebral 
tissues were preserved in 10% formalin and later embedded in paraffin 
wax to facilitate histological evaluation. Serial cross-sections measuring 
5 µm in thickness were meticulously sliced using the microtome (LEICA 
RM2125 RTS), and these sections were subsequently subjected to he
matoxylin and eosin (H&E) staining. To analyze the expression of 
glucose transporter protein 1 (GLUT1), which plays a pivotal role in 
influencing the uptake of 18F-FDG [18], the following procedures were 
performed. The sections were initially subjected to antigen retrieval 
using citrate buffer (0.1 M, pH 6.0). Peroxidase activity was blocked 
using 3% H2O2, and non-specific binding was prevented by incubating 
the sections in 1% bovine serum albumin. For the bioreaction, the sec
tions were exposed to a primary anti-GLUT1 antibody (dilution 1:200, 
ab115730) and kept at 4 ◦C overnight. Following the bioreaction, the 
sections were incubated with a secondary antibody, goat anti-rabbit 
immunoglobulin G H&L with HRP (dilution: 1:1000, ab205718), at 
25 ◦C for 1 h. Subsequently, the sections were stained using DAB sub
strate and hematoxylin, and then carefully mounted using a mounting 
medium. The resulting images were observed and captured using an 
optical microscope (Axioscan 7, Zeiss, Jena, Germany). 

2.4. Statistical analysis 

All statistical analyses were executed using MATLAB and the results 
were visualized through Microsoft Excel. Data are expressed as means 
± standard deviations. Paired Student’s t-tests were carried out to 
examine weight variations within each group before and after the STZ/ 
solvent injection. Due to the limitation of plasma glucose levels being 
recorded as 600 mg/dL when exceeding this value, the acquired data 
might not conform to a normal distribution. Thus, a non-parametric 
Wilcoxon test was employed to evaluate the disparities in plasma 
glucose levels within each group before and after the STZ/solvent 
injection. 

For the assessment of disparities between the control and diabetes 
groups, unpaired Student’s t-tests were conducted on corresponding 
animal group pairs to establish brain metabolism values. Within each 
estrogen regimen, a one-way analysis of variance (ANOVA) was carried 
out on the 18F-FDG uptake values, facilitating a comparison of data from 
intact, OVX, and OVX+E2-treated animals. In instances where the one- 
way ANOVA results indicated an estrogen effect, Tukey’s honest sig
nificant difference test was employed. Across all tests, statistical sig
nificance was defined as a P value of < 0.05. 
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3. Results 

The weights and plasma glucose concentrations of all animals are 
comprehensively summarized in Table 1. Following solvent adminis
tration, the control animals demonstrated a noteworthy increase in body 
weight (P < 0.05). Comparatively, body weight was considerably higher 
in the OVX rats than in the intact rats (P < 0.05), which could poten
tially be attributed to weight gain as a consequence of ovariectomy [19], 
signifying a successful surgical outcome. Across the observation period, 
the plasma glucose concentration exhibited no significant changes. 
Conversely, in the diabetes group, animal body weights remained rela
tively unchanged (P > 0.05), while their plasma glucose concentrations 
displayed marked elevation (P < 0.05) four weeks subsequent to the STZ 
injection, indicative of diabetes development. It’s noteworthy that the 
plasma glucose levels for all intact and OVX + E2-treated female ani
mals within the diabetic group exceeded the measurable range (>
600 mg/dL), and hence were reported as 600 mg/dL. 

Fig. 2 shows representative PET images of rats from both the control 
and diabetes groups. Visual inspection revealed consistent diabetes- 
related differences in brain metabolism across various brain regions, 
characterized by hypometabolism in the diabetic brain. Furthermore, 
diabetic rats with intact estrogen levels or those receiving exogenous 
estrogen treatment exhibited lower FDG uptake in comparison to OVX 
diabetic animals. 

The findings from ROI analysis on estimated 18F-FDG uptake across 
different brain regions among the groups are depicted in Fig. 3. Four 
weeks following STZ injection, significant reductions in 18F-FDG uptake 
were observed in all brain regions among the diabetic animals (all 
P < 0.01) compared to the control group. Additionally, the extent of the 
decline in 18F-FDG uptake appeared to be influenced by the estrogen 
regimen. Notably, intact and OVX + E2 diabetic rats displayed more 
pronounced decreases in cerebral glucose metabolism within the 
amygdala and hippocampus compared to the OVX diabetic rats 
(P < 0.05). For the control animals, the level of 18F-FDG uptake 
exhibited no significant variation between intact, OVX, and OVX + E2 
rats, signifying that the estrogen regimens had no impact on brain 
metabolism. 

Fig. 4 shows light microscopy images of H&E-stained sections from 
the hippocampal dentate gyrus obtained from both the control and 
diabetic groups. The diabetic groups exhibited pathological changes, 
with neurons presenting abnormal morphologies. Most cells displayed 
irregular shapes, accompanied by deeply stained nuclei and nuclear 
condensation, indicative of neuronal injury in the diabetic group. 
Notably, the extent of cellular damage was more substantial in intact 
and OVX + E2 diabetic rats compared to OVX diabetic rats, with the 
H&E-stained sections also revealing a diminished overall neuronal 
density (highlighted by yellow arrows in Fig. 4). These H&E-stained 
histological findings corresponded with the results from 18F-FDG uptake 

Fig. 1. Paxinos rat brain atlas warped onto a positron emission tomography image illustrating specific regions of interest. (1) cingulate cortex, (2) hippocampus, (3) 
thalamus, (4) hypothalamus, (5) insula, (6) striatum, and (7) amygdala. 

Table 1 
Weight and plasma glucose level measurements for animals in the control and diabetes groups.   

Control Diabetes  

Intact OVX OVX þ E2 Intact OVX OVX þ E2  

Week 0 Week 4 Week 0 Week 4 Week 0 Week 4 Week 0 Week 4 Week 0 Week 4 Week 0 Week 4 

Weight (g) 205.2 
± 0.4 

247.8 
± 5.7 * 

208.2 
± 5.3 

276.8 
± 13.8 * 

221.2 
± 7.2 

277.5 
± 6.9 * 

199.2 
± 4.8 

189.2 
± 26.5 

225.8 
± 9.7 

256 
± 25.9 

220.6 
± 6.4 

235 
± 17.8 

Glucose 
(mg/dL) 

135.2 
± 24.7 

154.6 
± 11.3 

138 
± 10.4 

125.7 
± 17.2 

115.3 
± 5.35 

129.5 
± 18.1 

113.2 
± 5.1 

600 @ # 
0 

142.2 
± 23.5 

600 
4 @ # 

114 
± 2.58 

600 @ # 
0 

Values are presented as means ± standard deviation. 
Intact: unovariectomized female rats, OVX: ovariectomized female rats, OVX + E2: 17β-estradiol-treated ovariectomized female rats. 
* : Significantly different after solvent or streptozotocin injection by using a paired Student’s t-test. 
@ : Significantly different after solvent or streptozotocin injection by using a non-parametric Wilcoxon test. 
#: Animals with plasma glucose levels > 600 mg/dL can only be recorded as 600 mg/dL, and the data are presented as median and interquartile values.  
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analysis. 
The expression level of GLUT1 in the brain is depicted in Fig. 5. In 

comparison to the control group, the diabetic state significantly reduced 
the expression of GLUT1 level in the brain. While the levels of GLUT1 
did not exhibit significant differences among the three diabetes groups, 
the decline in GLUT1 expression was most pronounced in the intact 
group and less notable in the OVX group, following the same pattern as 
the 18F-FDG uptake in the brain. 

4. Discussion 

Compared to the control group, the diabetic animals displayed a 
notable reduction in cerebral metabolism across various regions. 
Furthermore, the diabetic condition seemed to alter the role of estrogen, 
shifting it from a neuroprotective to a neurotoxic substance. As a result, 
female animals with intact estrogen supply or those receiving exogenous 
estrogen treatment exhibited a more pronounced degree of hypo
metabolism. These discoveries underscore the need for clinicians to 
reevaluate hormone replacement therapy for diabetic patients. This is 
due to the realization that estrogen proves ineffective in guarding 
against brain changes and is linked to heightened neuronal damage and 
compromised brain function. 

An intricate relationship is present between persistent hyperglyce
mia and the accumulation of advanced glycation end products (AGEs) 
[20,21]. AGEs themselves possess the ability to induce the generation of 
reactive oxygen species (ROS) by engaging with cell surface receptors 
known as receptors for AGEs. This interaction initiates intracellular 
signaling pathways that ultimately lead to ROS production [22]. This 
interaction establishes a self-perpetuating cycle, wherein AGEs foster 
increased ROS generation, consequently exacerbating oxidative stress. 
In the context of the vasculature, heightened oxidative stress can pre
cipitate reduced arterial compliance and heightened vascular stiffness 
[23]. Consequently, the combined impact of AGEs and oxidative stress 
can expedite the advancement of various diabetes-related complica
tions, such as diabetic cardiomyopathy [24] and diabetic nephropathy 
[25]. On the other hand, it is well-established that ROS can lead to the 
downregulation of GLUT1 systems [26]. GLUT1 is a protein responsible 
for facilitating the transport of glucose across cell membranes, playing a 
pivotal role in glucose uptake, especially in tissues with high glucose 
demand, such as the brain. Both our research and previous studies [27, 
28] have consistently shown that GLUT1 experiences downregulation in 
diabetic rats. This reduced expression of GLUT1 correlates with lower 
glucose utilization within the brain, a pattern consistently observed in 
our 18F-FDG images. The pathological shifts observed in the patterns of 
cerebral metabolism within the diabetic brain closely resemble those 

documented in cases of dementia [29]. Furthermore, epidemiological 
data underscores an increased risk of dementia for individuals with 
diabetes [30]. Collectively, these observations underscore the impor
tance of sustained follow-up to monitor cerebral changes in diabetes 
patients, allowing for an enhanced comprehension of the potential 
mechanisms underpinning the diabetes-associated decline in cognitive 
function. 

In this study, a decrease in glucose utilization was observed in dia
betic rats that were both intact and treated with OVX + E2, specifically 
affecting regions such as the hippocampus and amygdala. These findings 
contrast with previously published results that highlight estrogen’s 
neuroprotective impact on the brain, mitigating the risk of neuro
degeneration [2,3], and its role in promoting glucose utilization and 
enhancing metabolism [31]. In the context of diabetes, estrogen treat
ment might lose its advantageous effects and could potentially worsen 
diabetes-associated brain dysfunction, indicating the possibility of 
adverse consequences. Diabetes is linked to elevated levels of AGEs [20, 
21], and the introduction of synthetic estrogens can trigger an upregu
lation of the receptor for AGEs [32]. In cases of hyperglycemia, this 
combination of increased AGEs and estrogen-induced receptor expres
sion could lead to heightened inflammation and oxidative stress [33], 
contributing to the progression of vascular complications and subse
quent disruptions in glucose metabolism [34]. The distribution of es
trogen receptors varies across different brain regions, with the 
hippocampus and amygdala exhibiting higher receptor levels [35]. 
Consequently, an anticipation of greater hypometabolism in the hip
pocampus and amygdala is warranted. These regions play a crucial role 
in cognitive processing [36], aligning with the present study’s revelation 
of estrogen’s detrimental effects on brain metabolism in diabetic rats. 
This finding resonates with clinical observations that women with dia
betes who undergo postmenopausal hormone therapy are at a height
ened risk of dementia and cognitive impairment [37]. 

The impact of estrogen on cognitive function holds a special signif
icance, yet the body of research on this topic presents conflicting out
comes. While some studies have documented positive cognitive effects 
of estrogen in postmenopausal women [38,39], there are also reports of 
adverse impacts [7,8]. This variance in results could stem from varia
tions in cognitive evaluation tasks employed across studies and differ
ences in hormone therapy protocols. Furthermore, demographic 
diversity might also contribute to this divergence. Even though certain 
demographic factors like age and educational background were 
controlled for in previous investigations, the consideration of a diabetes 
history was omitted in certain cases [38,39]. Given that estrogen exac
erbates neural activity and consequent cognitive impairment in in
dividuals with diabetes, the presence of imbalanced proportions of 

Fig. 2. Representative positron emission tomography images of cerebral 18F-fluorodeoxyglucose uptake in control and diabetes groups. The anatomical locations 
presented in Fig. 2 are the same as that in Fig. 1. SUV, standardized uptake value; OVX, ovariectomized; E2, 17β-estradiol. 
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diabetic patients within estrogen and placebo groups could introduce 
biases in comparisons involving these groups. Considering that diabetes 
incidence rises notably with age, it becomes imperative to account for 
diabetes when probing the influence of estrogen on cognitive function 
among postmenopausal women. 

Diabetes stands as a significant risk factor for stroke, and the pre
diction of recovery post-stroke might be facilitated by monitoring ce
rebral glucose metabolism. Lower cerebral glucose metabolism is closely 
linked to worse outcomes, emphasizing its potential predictive value 
[40]. Initially, this might suggest that intact and OVX+E2-treated dia
betic rats would exhibit more pronounced dysfunction after stroke 
compared to OVX diabetic rats. Nevertheless, the outcomes of this study 
don’t consistently align with findings from other researchers. Regarding 
infarct volume, OVX+E2-treated diabetic animals displayed the largest 
volume, while intact and OVX diabetic animals showed no significant 
differences [11]. Santizo et al., when assessing stroke consequences via 
neurological scores, reported that the severity of neurological deficits 
was highest in OVX + E2-treated diabetic female rats and lowest in 

intact diabetic female rats [12]. This diversity in findings across studies 
could potentially be attributed to methodological factors. Surgical 
preparation in animal models of cerebral ischemia, like bilateral com
mon carotid artery occlusion, can introduce considerable stress to the 
animals, confounding brain metabolism influences. Anesthesia, a crucial 
component of these experiments, can also substantially impact out
comes. The choice of anesthesia might influence the neurological con
sequences of experimental stroke [41]. Given the variability in 
anesthesia regimens among studies, interpreting results from animal 
studies using different anesthetic agents demands caution. For a more 
comprehensive comprehension of the underlying mechanisms driving 
these disparities among studies, monitoring brain metabolism levels 
before and after stroke is recommended. 

The findings of this study necessitate cautious interpretation due to 
inherent limitations. Firstly, the omission of plasma estrogen concen
tration assessment raises a concern. Adhering to Isaksson et al.’s 
regimen, the study aimed for plasma estrogen levels within the normal 
rat estrous cycle range [17], ensuring the fidelity of reported detrimental 

Fig. 3. Regional comparisons of 18F-fluorodeoxyglucose uptake values between control and diabetic groups. * : P < 0.05; * *: P < 0.01. SUV, standardized uptake 
value; OVX, ovariectomized; E2, 17β-estradiol. 
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Fig. 4. Histological assessments of hippocampal dentate gyrus using hematoxylin and eosin staining. Red and yellow arrows indicate damaged neurons and 
decreased neuronal density in H&E-stained sections, respectively. OVX, ovariectomized; E2, 17β-estradiol. 

Fig. 5. Immunohistochemistry (IHC) staining of brain for glucose transporter 1 (GLUT1). (a) IHC images for the expression of GLUT1. (b) Quantitative analysis of 
GLUT1 expression in the six groups of rats. *: P < 0:05. 
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estrogen effects on brain metabolism in diabetes. However, future 
studies should prioritize monitoring plasma estrogen levels. Secondly, 
only animals with uncontrolled blood glucose levels and type 1 diabetes 
were included. While prior studies underscore a reduction in estrogen’s 
neuroprotective impact against cerebral ischemia in hyperglycemic 
diabetic animals [12], it’s noteworthy that estrogen treatment can 
mitigate ischemic injury in normoglycemic diabetic animals [42]. These 
insights imply a possible mediation of estrogen’s effects by plasma 
glucose concentration. Hence, exploring diabetes-related metabolic 
shifts necessitates experimental designs encompassing insulin-treated 
and normoglycemic female rats similar to the current design. Thirdly, 
a restricted sample size was employed due to ethical considerations 
aiming to minimize animal use. Although one-way ANOVA accentuated 
estrogen’s impact on diabetic brain metabolism, a conservative 
approach was adopted by reassessing data with two-way ANOVA to 
detect an interaction effect between diabetes and estrogen. While the 
two-way ANOVA yielded a non-significant but trend-indicating effect 
(P = 0.15 and P = 0.11 for the amygdala and hippocampus, respec
tively), significant interaction effects between diabetes and estrogen 
emerged (both P < 0.05), affirming distinct brain responses to estrogen 
in diabetic and control animals. This justifies our conclusions, yet larger 
participant cohorts are advisable for robust statistical analyses. 
Fourthly, our histological assessment exclusively utilized H&E staining 
and GLUT1 IHC staining to evaluate histological changes. While these 
staining results align with the observed 18F-FDG uptake patterns, it is 
crucial to acknowledge that diabetes involves additional pathogenic 
mechanisms, including an increased presence of ROS, as elaborated 
upon in our discussion. To lend further credence to our hypothesis, 
which proposes that estrogen-induced upregulation of the receptor for 
AGEs might lead to the augmentation of inflammatory and oxidative 
stress, the utilization of more intricate and sensitive immunohisto
chemistry techniques becomes essential. Techniques such as 4-hydroxy
nonenal (4-HNE) or 8-hydroxy-2′-deoxyguanosine (8-OHdG) 
immunohistochemistry [43] are pivotal for precisely identifying oxida
tive stress within the brain. 

This study demonstrates that diabetes induction causes deficits in 
brain glucose metabolism. Moreover, chronic hyperglycemia provides 
an environment in which estrogen potentiates neuropathology and ex
acerbates neuronal activity. The identification of idiosyncratic patterns 
of estrogen-related alterations in the diabetic brain may use to investi
gate the incidence of cognitive impairment in women after menopause. 
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