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HIV-1 envelop gene is a major target for vaccine development. Envelop protein and its V3 loop is shown to be important deter-
minant of HIV-1 pathogenecity. Herein, the evolutionary pattern of most prevalent HIV-1 subtype B in Asia is determined by
analyzing envelop protein and V3 domain based on the 40 randomly selected sequences of HIV-1 from database (Los Alamos),
divided into four groups since 1990–2007. Construction of envelop protein phylogeny by using MEGA 5 exhibit the active mutation
pattern, increase in potential N-glycosylation sites which were predicted by using online software SignalP-NN. An online available
tool Drawgram was used for multiple sequence alignment (MSA) of HIV-1 subtype B envelop region and V3 loop while the
alignment was rechecked by using CLUSTAL W and further was analyzed for GPGX motif and conserved region in V3 loop.
Variation at fourth position of the GPGX motif and 60% conservation was found in V3 loop. Hence, this diversifying pattern of
envelop protein in the Asia formulates the HIV-1 strains more pathogenic during the period of 17 years. These findings might help
in understanding significant structural and functional constrains of the mutant viral strains and ultimately in vaccine development.

1. Introduction

High genetic variability of HIV-1 (Human immunodeficien-
cy virus I) is characterized and classified into three distinctive
groups; group M (main), group O (outliner), and group N
(non-M/non-O) [1–3]. Majority of the global epidemic of
the infection is caused by group M which may be further sub-
divided into nine nonrecombinant subtypes (A-D, F-H, J,
and K) and at least 34 intersubtypes recombinant forms,
termed as circulating recombinant forms (CRF) [4] dis-
tributed on the basis of geographical locations. Subtype B
is circulating in United States and Europe, in addition, two
genetic forms of subtype B and CRF01-AE are dominant
in South East Asia while subtype A is most prevalent in
European countries [5].

Envelop gene plays an important role in entry and fusion
of HIV-I and is a major target for vaccine development
studies. Envelop protein gp160 is encoded by envelop gene
involved in host cell-HIV interaction. It is composed of two
noncovalently bound subunits, the external glycoprotein
gp120 and the transmembrane gp41. External glycoprotein
gp120 plays an important role in entry of the virus into the

cell by binding to the specific receptors on the surface of the
target cell. These receptors are CD4 and chemokine receptors
known as HIV-1 coreceptors [6]. The chemokine receptors
CXCR4 and CCR5 are the two major coreceptors used by
HIV-I isolates [7]. The binding of the chemokine receptor
requires the presence of selected amino acids in gp120
(specifically within the V3 loop, and also in other regions),
providing greater affinity to CCR5 or CXCR4, and therefore,
the viral tropism [8–11]. The gp120 portion of envelop has
been generally classified into five hypervariable regions (V1
to V5) with conserved regions interspersed [12]. Among
these variable regions, the V3 is one of the most important
determinants of viral tropism and coreceptor usage [13],
as it contains major antigenic and neutralizing epitopes in
HIV-1 which are well exposed upon CD4-binding [14]. This
third variable region (V3 loop) of the HIV-1 gp120 also
plays an important role in the mechanism controlling the
fusion between envelop of HIV-I and the cell membrane of
the target cells [15]. Hence, it is considered as the fusion
domain whose sole function would be to initiate the fusion
process after an initial interaction between gp120 and CD4
on the surface of the CD4+ cells [7].
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Figure 1: Neighbour-joining phylogenetic tree (constructed using MEGA 5) based on amino acid sequences of envelop protein from HIV-1
subtype B in Asia.

Further, gp120 is also extensively glycosylated protein,
containing 24–26 potential glycosylation sites (24 for HIV-
INL4-3 strain, 26 for HIV-ISF2) [16]. Glycosylation of
envelop gene is crucial in all phases of HIV biology that
track from proper envelop folding, processing of virus trans-
mission, and the immune evasive mechanisms [17–19].
Therefore, the systematic analysis of the glycosylation profiles
of envelop could provide precious insights in designing well
envelop (env) immunogens. A decreased number of N-linked
glycosylation sites in gp120, especially within and around the
V3 region, have been demonstrated during evolution from
R5 to the X4 phenotype [20, 21].

Several amino acids residues are extremely conserved in
V3 loop due to their functional importance among HIV-1

variants. However, the vast majority of the HIV-1 sequences,
and their putative common SIVcpz ancestors, have the
GPGX signature pattern (motif) at the central portion of
V3 loop of the envelop gene [22]. This conserved motif in
a variable region exhibits purifying selection pressure. Some
lineages, however, have been found worldwide with alternate
signature patterns, such as the GWGR subtype B variant
in which the proline residue is substituted by a tryptophan
[23, 24]. This variant was first recorded in Japan in early
1990s [25] but a serologic study suggests its presence in Brazil
since 1983 [17].

The present study is the first attempt to track the
evolutionary pattern of HIV-1 in Asia over the period of 17
years. The biological activity and pathogenicity of the most
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Figure 2: Potential N-glycosylation sites predicted from SignalP-
NN. (a) Group I (1990–1994). (b) Group II (1995–1999). (c) Group
IV (2005–2007). (d) Group IV (2005–2007).

prevalent HIV-1 subtype B in Asia was determined based on
the available sequences of HIV-1 in database (Los Alamos)
during the time frame of 1990–2007.

2. Material and Methods

Evolutionary pattern of HIV-1 subtype B was tracked by
analyzing the envelop protein and its V3 domain.

2.1. Dataset. The sequences used in the study were divided
into four groups, that is, each group constitutes the sequen-
ces from four years:

Group I: 1990–1994,

Group II: 1995–1999,

Group III: 2000–2004,

Group IV: 2005–2007.

In total, 10 sequences of HIV-1 subtype B from each
group were obtained from Los Alamos HIV database (http://
hiv-web.lanl.gov/). Two type of analysis were performed
based on envelop protein and V3 domain of the downloaded
sequences.

2.2. Phylogenetic Analysis Based on Envelop Protein. Forty
sequences of envelop protein were randomly selected and
aligned using CLUSTALW (parameters reading DNA Pair-
wise Parameters; Gap opening penalty: 10, Gap extension
penalty: 0.1, Multiple Parameters; Gap opening penalty: 10,
Gap extension penalty: 0.2, protein weight matrix: BLO-
SUM, Residue specific penalties: ON, Hydrophilic penalties:
ON, Gap separation distance: 4, End gap separation: OFF,
negative matrix OFF, Delay divergent cutoff: 30%). To
obtain phylogenetic tree alignment was analyzed in MEGA
4 tool (parameters reading; Tree inference Method: neighbor
joining, Include sites: Gaps/missing data: complete deletion,
substitution model: Amino p-distance, Substitutions to
include: All).

2.3. Prediction of N-Glycosylation Sites in Envelop Protein.
N-linked glycosylation sites of HIV-1 envelop protein were
predicted by using online software SignalP-NN.

2.4. Alignment of V3 Domain. ClustalW was used for the
alignment of V3 motifs to check the level of conservation of
this region. The conserved region was calculated manually.

2.5. Analysis of GPGX Motif. HIV-1 envelop protein sequen-
ces were aligned by using ClustalW of online software Draw-
gram to find out conserved GPGX motif.

2.6. Determination of Conserved Region. Used Sequences
were aligned through multiple sequence alignment (MSA) of
ClustalW from online software Drawgram.

3. Results and Discussion

3.1. Phylogenetic Profile of Envelop Protein. Phylogenetic
analysis of the envelop protein sequences in Asian strains
of subtype B was performed (Figure 1). The phylogenetic
tree representing the sequence relationships by amino acid
substitutions identified distinct genetic subgroups exhibiting
that viruses within these lineages were genetically closely re-
lated.

Isolates from 1990s make the root of the tree and also
exhibits the early evolution of the isolates. Strains from
groups year 2000 to 2004 and from 2005 to 2007 clustered
together and strains from 1990s act as their root. However,

http://hiv-web.lanl.gov/
http://hiv-web.lanl.gov/
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Figure 3: Multiple sequence alignment showing the variation a GPGX motif.

strains from 1990 to 1994 make separate cluster. The clus-
tering did not correlate closely with chronological origin of
the sequences. It was observed from the clustering pattern
that strains from 1990–1995 remained resistant to selection
pressure and act as the root of the tree, while strains from
other groups exhibit the high mutation rate demonstrated by
their branching pattern. The differences in the evolutionary
characteristics found could be attributed to a different selec-
tion pattern of the strains by the nature.

Consequently, high mutation rate and divergence have
been shown by almost all groups while some viral lineages
have shown extensive branching pattern which may be due
to negative selection of the strains by the nature (Figure 1,
Clade B, C, D, and E). An increase in envelope sequence
heterogeneity has also been observed in an infected popula-
tion over the period of time [8, 9]. This increase in sequence
heterogeneity may help in viral escape from host immune
response. Other clades of the tree exhibit the strong selection
and remain less divergent over the period of time (Figure 1,
Clade A and F). The viral robustness is a key factor affecting
the viral virulence which measures the capacity of a virus to

cause disease [22]. Genetic analysis of envelop gene, particu-
larly the third variable domain (V3), showed that the inter-
host (intrasubtype) variation increased over the course of the
AIDS epidemic [26].

3.2. Number of Predicted N-linked Glycosylation Sites. In-
crease in N-linked glycosylation sites was observed through
the period of 17 years from 1990 to 2007. This might serve to
protect viruses from neutralizing antibodies. Glycosylation
by the host cell can vigorously maneuver the folding, stability,
and biological function of virus-encoded proteins [27, 28].
The predicted glycosylation site calculated by using the
software SignalP-NN in the period of 1990–1994 is 20, from
1995–1999 is 25, from 2000–2004 is 26, and from 2005–2007
is 30 (Figure 2).

The N-linked glycosylation (NLG) of viral envelop pro-
teins, through the formation of a ”glycan shield,” is one of
the major mechanisms for inhibiting or minimizing virus
neutralizing antibody response [29] which promotes viral
persistence and immune evasion. Further, the N-linked gly-
cosylation pattern has also been shown to have a varied
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Table 1: Amino acids frequency at the fourth position of the GPGX
tetramer of V3 loop of HIV-1 subtype B.

Amino acid Percentage of subtype B isolates in Asia

Arginine (R) 73%

Glutamin (Q) 11%

Serine (S) 8%

Others 8%

effect on the stimulation of neutralizing antibodies in HIV-1
[30, 31]. Consequently, alterations in glycosylation events
influencing co-receptor utilization will also allow the virus
to escape the controlling responses of the CC chemokines in
vivo, which are believed to play an effective role in inhibiting
viral replication and slowing disease progression [32].

3.3. Analysis of V3 Domain. Multiple sequence alignment
(MSA) describes the variation at fourth position of the tetra-
peptide GPGX (Figure 3). Arginine remains predominant at
the fourth position while presence of serine, glutamine, and
other amino acids at this position is highly nonsignificant
(Table 1).

In HIV-1, V3 is involved in coreceptor usage [13]. This
region also contains major antigenic and neutralizing epit-
opes in HIV-1 which are well exposed upon CD4-binding
[14–17]. Residues in the V3 crown, including the GPG motif,
are important for soluble gp120-CD4 complex binding to cell
surface receptor CCR5 [33]. The tip motif represents a target
for neutralizing antibodies [34]. Therefore, sequence varia-
tion in this motif may have an impact on virus infectivity
and disease progression.

3.4. Consensus of V3 Loop. The conserved amino acids were
calculated after aligning the V3 loop sequences. Out of 35
amino acids of the V3 loop, 21 remain the same during the
studied period. Hence, the 60% of amino acids of the V3
loop remain conserved (Figure 4). The conserved residues is
marked (∗) Figure 4.

According to previous research, some of the conserved
or relatively conserved residues are normally essential for
the biological functions of the HIV-1 [34]. The deletion or
substitution of some residues in this loop was found to affect
gp120 coreceptor interactions and may further influence the
HIV-1 target entry into the host.

4. Conclusion

The present study is the first report that demonstrated the
evolutionary pattern of HIV-1 during the period of 17 years
from 1990 to 2007. The pathogenicity and infectivity of the
HIV-1 subtype B is increased that showed the rapid evo-
lutionary and modulatory mechanism. The analyzed data
also provides useful information on the surveillance of HIV-
1 infection in Asia and highlights the evolutionary pattern
of virus populations which may be under varied selection
pressures during different periods of time. However, further

∗ ∗ ∗∗ ∗∗∗ ∗ ∗ ∗∗ ∗ ∗∗∗∗∗

Figure 4: Aligned sequences exhibiting the consensus region of V3
loop (indicated by ∗).

studies are required to get more insights of all these mech-
anisms and for developing effective therapies and vaccines
against HIV-1 infection.
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