
Strategies and Considerations for
Improving Recombinant Antibody
Production and Quality in Chinese
Hamster Ovary Cells
Jun-He Zhang1,2,3*, Lin-Lin Shan2, Fan Liang1, Chen-Yang Du1 and Jing-Jing Li2

1Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China, 2Department of Biochemistry and Molecular
Biology, Xinxiang Medical University, Xinxiang, China, 3Henan International Joint Laboratory of Recombinant Pharmaceutical
Protein Expression System, Xinxiang Medical University, Xinxiang, China

Recombinant antibodies are rapidly developing therapeutic agents; approximately 40
novel antibody molecules enter clinical trials each year, most of which are produced from
Chinese hamster ovary (CHO) cells. However, one of the major bottlenecks restricting the
development of antibody drugs is how to perform high-level expression and production of
recombinant antibodies. The high-efficiency expression and quality of recombinant
antibodies in CHO cells is determined by multiple factors. This review provides a
comprehensive overview of several state-of-the-art approaches, such as optimization
of gene sequence of antibody, construction and optimization of high-efficiency expression
vector, using antibody expression system, transformation of host cell lines, and
glycosylation modification. Finally, the authors discuss the potential of large-scale
production of recombinant antibodies and development of culture processes for
biopharmaceutical manufacturing in the future.
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INTRODUCTION

In recent years, recombinant antibody drugs are emerging with the rapid development of modern
molecular biology technology as well as in-depth exploration on the three-dimensional structure and
mechanism of action of antibody molecules. Recombinant antibody drugs undergo the stages of
mouse monoclonal antibody, human-mouse chimeric antibody, humanized antibody, and fully
human antibody (Figure 1), which have been applied in many fields, such as anti-tumor, anti-
autoimmune diseases, and biosensor (DeLuca et al., 2021; Galvani et al., 2021; Liao et al., 2021;
Rudenko et al., 2021; Rybchenko et al., 2021; Yang G et al., 2021). Improving the affinity of antibodies
and reducing their immunogenicity are two basic principles of genetic engineering of antibody drugs.
The development of antibody drugs is relatively rapid. According to industry statistics, the global
annual sales of antibody drugs in 1997 were only $300 million, more than $60 billion in 2012,
exceeded $100 billion for the first time in 2017, and reached $123.2 billion in 2018. At present,
antibody drug development has become one of the fastest growing, most profitable, and most feasible
biopharmaceutical fields in the pharmaceutical industry; in particular, monoclonal antibodies have
become one of the most important therapeutic recombinant antibodies in the global pharmaceutical
market (Masuda et al., 2021; Savizi et al., 2021). Up to now, more than 300 biological drugs have been
approved by the U.S. Food and Drug Administration (FDA), among which monoclonal antibodies
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are developing rapidly (Tihanyi and Nyitray, 2020). The
production of recombinant antibody drugs is mostly achieved
by constructing expression vectors in vitro through genetic
engineering technology. Given that recombinant antibodies
often need to undergo a series of post-translational
modifications (such as glycosylation modification), folding,
and correct cleavage, antibody drugs with biological activity
and low immunogenicity can be produced, therefore,
mammalian cells have become the dominant system for the
production of recombinant antibodies, especially for full-
length monoclonal antibodies (Hussain et al., 2021; Kim et al.,
2021; Ha et al., 2022).

Compared with Escherichia coli and other expression systems,
the molecular structure and glycosylation type of recombinant
antibodies produced by mammalian cell expression systems are
similar to natural antibodies, and mammalian cells can be
cultured in suspension or serum-free medium on a large scale
(Kunert and Reinhart, 2016). Chinese hamster ovary (CHO) cells
are the preferred system for the production of recombinant
antibodies in mammalian cell expression systems (Ritacco
et al., 2018; Gupta et al., 2021). In 1986, the first recombinant
therapeutic protein, tissue plasminogen activator (tPA), was
approved for marketing (Kaufman et al., 1985), its expression
titer was less than 50 mg/L. After 30 years of rapidly development
and technological breakthroughs, progress in therapeutic
antibody field has been accelerated, the antibody expression
titers have increased more than 100–200 times, even the yield
of therapeutic antibody has exceeded 10 g/L (Li et al., 2010; Weng
et al., 2020). The approved therapeutic monoclonal antibodies
produced in CHO cells until 2020 are listed in Table 1. However,
the low expression level of the CHO cells system and high
investments during large-scale cell culture lead to high costs
for producing recombinant antibody drugs (Donaldson et al.,
2021; Torres and Dickson, 2021). Therefore, to improve the
productivity and quality of recombinant antibodies,
researchers need to optimize and design the gene sequences of
antibody and expression vectors, to optimize antibody expression
system and transform the host cell lines of antibodies, and to

control glycosylation modification, for upgrading key parameters
during industrial production and promoting the healthy
development of recombinant antibody drugs and even the
biomedical industry. A workflow for optimizing recombinant
antibody production and quality in CHO cells is listed in
Figure 2.

OPTIMIZATION OF GENE SEQUENCES OF
ANTIBODY
Control the Proportion of Light and Heavy
Chains
Most IgG molecules have a symmetrical structure consisting of
four polypeptide chains including two heavy chains (HC) and two
light chains (LC) (Figure 3). In the endoplasmic reticulum, the
antibody binding protein (BiP) briefly binds to the heavy-chain
polypeptide of the antibody, and the light chain is secreted out of
the cell as polymerized dimers. Before assembling into a tetramer,
BiP maintains a binding state with the heavy-chain polypeptide.
Once the light-chain polypeptide is lacking, the heavy chain will
not be secreted outside the cell, causing the proteasome in the cell
to be unable to degrade the heavy-chain polypeptides secreted to
extracellularly; thus, the unit productivity of antibody is
significantly reduced (Vanhove et al., 2001; Ha et al., 2019).
Therefore, excess light-chain polypeptides should be ensured to
improve the expression of antibodies. In general, in the
traditional process of antibody preparation, researchers often
construct light- and heavy-chain genes of antibodies into two
vectors to further express the antibody molecules. The
disadvantage of this method is that the ratio of light and
heavy chains is not controllable. In addition, the ratio of light
and heavy chains affects the quality of monoclonal antibodies,
such as the formation of aggregates and glycosylation
modification. Chung et al. confirmed that excessive heavy-
chain polypeptides may be the main cause of polymerization
(Chung et al., 2018). In transient expression, the ratio of
polypeptides can be controlled by adjusting the relative

FIGURE 1 | Development process of recombinant antibody drugs. Mouse monoclonal antibodies are all mouse-derived components, with large side effects and
high immunogenicity; human-mouse chimeric antibodies are 65% human-derived components, with lower side effects than mouse monoclonal antibody; human-
derived components in humanized antibodies are over 90%, with mild side effects and very low immunogenicity; fully human antibodies are all human-derived
components, which can obviously remove the immunogenicity and side effects, and with good therapeutic effect.
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TABLE 1 | List of approved therapeutic monoclonal antibodies produced in CHO cells.

Trade name Active ingredient Developer/Manufacturer Year
of first approval

Rituxan Rituximab Genentech 1997
Enbrel Etanercep Immunex, now Amgen 1998
Herceptin Trastuzumab Genetech 1998
Campath Alemtuzumab Genzyme 2001
Humira Adalimumab Abbott 2002
Zevalin Ibritumomab tiuxetan Biogen-Idec Pharmaceuticals 2002
Raptiva Efalizumab Genzyme 2003
Xolair Omalizumab Genetech 2003
Avastin Bevacizumab Genentech 2004
Vectibix Panitumumab Amgen 2006
Actemra Tocilizumab Genentech 2009
Prolia Denosumab Amgen 2010
Adcetris Brentuximab vedotin Seattle Genetics 2011
Yervoy Ipilimumab Bristol-Myers Squibb 2011
Perjeta Pertuzumab Genentech 2012
Gazyvaro Obinutuzumab Roche 2013
Kadcyla Trastuzumab emtansine Roche 2013
Blincyto Blinatumomab Amgen 2014
Entyvio Vedolizumab Takeda 2014
Keytruda Pembrolizumab Merck and Co. 2014
Lemtrada Alemtuzumab Sanofi 2014
Opdivo Nivolumab Bristol-Myers Squibb 2014
Sylvant Siltuximab Janssen 2014
Cosentyx Secukinumab Novartis 2015
Darzalex Daratumumab Janssen 2015
Nucala Mepolizumab GlaxoSmithKline 2015
Praluent Alirocumab Sanofi, Regeneron 2015
Praxbind Idarucizumab Boehringer-Ingelheim 2015
Repatha Evolocumab Amgen 2015
Lartruvo Olaratuumab Eli Lilly 2016
Taltz Ixekizumab Eli Lilly 2016
Tecentriq Atezolizumab Roche 2016
Zinplava Bezlotoxumab Merck and Co. 2016
Bavencio Avelumab Merck KGaA, Pfizer 2017
Dupixent Dupilumab Regeneron, Sanofi 2017
Fasenra Benralizumab AstraZeneca 2017
Hemlibra Emicizumab Genentech 2017
Imfinzi Durvalumab AstraZeneca 2017
Kevzara Sarilumab Sanofi, Regeneron 2017
Ocrevus Ocrelizumab Roche 2017
Siliq Brodalumab Valeant 2017
Tremfya Guselkumab Janssen 2017
Aimovig Erenumab Amgen 2018
Ajovy Fremanezumab Teva 2018
Cablivi Caplacizumab Sanofi 2018
Crysvita Burosumab Ultragenyx 2018
Emgality Galcanezumab Eli Lilly 2018
Ilumya Tildrakizumab Sun Pharma 2018
Libtayo Cemiplimab Sanofi, Regeneron 2018
Lumoxiti Moxetumomab pasudotox Innate Pharma 2018
Takhzyro Lanadelumab Shire 2018
Trogarzo Ibalizumab TaiMed Biologics 2018
Ultomiris Ravulizumab Alexion 2018
Adakveo Crizanlizumab Novartis 2019
Beovu Brolucizumab Novartis 2019
Evenity Romosozumab Amgen 2019
Polivy Polatuzumab Genentech 2019
Skyrizi Risankizumab AbbVie 2019
Blenrep Belantamab GlaxoSmithKline 2020
Danyelza Naxitamab Y-mAbs Therapeutics 2020
Ebanga Ansuvimab Ridgeback Biotherapeutics 2020
Enspryng Satralizumab Roche 2020
Margenza Margetuximab MacroGenics 2020

(Continued on following page)
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amount of each vector. However, this method is difficult to
operate because the integration of plasmids is often random,
and the number of gene copies and integration sites cannot be

controlled artificially (Schlatter et al., 2005). Therefore, the
industrial production of antibody drugs requires stable
transfection of cell lines and proper control of the ratio of
light and heavy chains, which are particularly important to
achieve high expression, low polymerization, and consistent
N-glycosylation profile of antibodies.

Change of Gene Arrangement
The heavy- and light-chain genes of antibodies use different
vectors and then enter the host cells by co-transfection. This
method has very low requirements on the vector, but the
transfection efficiency is high, which is a common strategy for
recombinant antibody expression (Carrara et al., 2021). However,
the main defect of this strategy lies in the random integration of
light- and heavy-chain genes into chromosomes, and the
insertion positions and numbers are different, resulting in
uncontrollable expression levels of light and heavy chains
(Ahmadi et al., 2016). The second arrangement is to construct
an independent expression unit of light and heavy chains on the
same vector; the light and heavy chain genes use separate
promoters and polyadenylic acid (Poly A) tail sequences of
different lengths. This strategy can theoretically achieve equal
mole expression levels of light- and heavy-chain genes. However,
such adjacent reading frames may cause transcriptional
interference, resulting in the imbalanced transcription of light
and heavy chain and ultimately inhibiting the expression of

TABLE 1 | (Continued) List of approved therapeutic monoclonal antibodies produced in CHO cells.

Trade name Active ingredient Developer/Manufacturer Year
of first approval

Monjuvi Tafasitamab MorphoSys, Incyte 2020
Sarclisa Isatuximab Sanofi 2020
Tepezza Teprotumumab Horizon 2020
Trodelvy Sacituzumab Gilead 2020
Uplizna Inebilizumab Viela Bio 2020
Vyepti Eptinezumab Lundbeck 2020

FIGURE 2 | A workflow for optimizing recombinant antibody production and quality in CHO cells. Too many factors can impact recombinant antibody production
and quality in CHO cells, therefore, it is important to follow a specific workflow when dealing with recombinant antibody production and quality.

FIGURE 3 | Basic structure of antibody. Each IgG antibody molecule
consists of four polypeptide chains (two identical light chains and two identical
heavy chains joined by disulfide bonds) and has two antigen-binding sites.
Each light chain and each heavy chain consists of a variable region and a
constant region. Each heavy chain consists of a variable domain (VH) and
three or four constant domains (CH); each light chain consists of a variable
domain (VL) and a single constant domain (CL). Human IgG structure with
glycans attached at Asn297 N-glycosylation site in the CH2.
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recombinant antibodies (Davies et al., 2011). Based on the
advantages and disadvantages of the two gene arrangements,
researchers adopted a third arrangement, in which an internal
ribosome enter site (IRES) or 2A peptide in the same open
reading frame to connect light-chain genes, namely,
triscistronic expression vector. This strategy can effectively
avoid the occurrence of transcription interference and control
the proportion of light and heavy chain expression. When
expressing monoclonal antibodies using IRES-mediated
tricistronic vector, the IRES connects heavy-chain genes, light-
chain genes, and resistance genes for expression on the same
vector. This strategy can maintain over 70% productivity of
positive clones and 2-fold increase in the yield of recombinant
antibodies (Li et al., 2007; Yeo et al., 2018). Ho et al. designed four
IRES-mediated tricistronic vectors to control the ratio of light and
heavy chains, depending on the different positions of the light and
heavy chains and selection marker genes on the vector; they also
compared the expression level and quality of antibodies,
including aggregate formation, N-glycosylation, and
conformational stability. The results show that excess light
chain is essential for high expression of antibody and also
reduces the occurrence of polymerization. In addition, the
main cause of polymerization is that the excessive heavy
chains cannot effectively fold with the limited light chains and
can change the N-glycosylation and reduce the conformational
stability (Ho et al., 2013b). Controlling the ratio of light and heavy
chains is crucial for the expression and quality of monoclonal
antibodies under stable transfection conditions (Ho et al., 2012).
In particular, excessive light chains cannot only achieve high
antibody expression but also reduce polymerization andmaintain
low fragmentation levels, which are very beneficial for obtaining
high-yield antibodies (Ho et al., 2013b). However, the fragment
length of IRES itself is relatively large, which occupies more space,
and the expression of IRES upstream and downstream antibody
molecules is seriously imbalanced (Bayat et al., 2018). In addition,
the activity of IRES is not easy to adjust, which will affect the
biological activities of other expressed proteins. In recent years, a
prominent approach is based on self-cleavage 2A peptide-
mediated multi-gene construction method (Chng et al., 2015;
Van der Weken et al., 2019). This strategy effectively avoids the
disadvantage of low expression of downstream genes caused by
the simultaneous expression of multiple genes and is commonly
used in multi-gene expression (Luke and Ryan, 2018; Li et al.,
2020). Ho et al. compared the effects of F2A and IRES on the
production of a monoclonal antibody in CHO-DG44 cells. The
expression level of the monoclonal antibody produced by F2A-
mediated tricistronic vector was significantly higher than that of
IRES-mediated vector under transient or stable transfection
conditions; the expression level of the recombinant antibody
was affected by the position of light- and heavy-chain cistrons
(Ho et al., 2013a).

Codon Optimization
Antibody molecules usually have the molecular structure of
tetramer glycoprotein. Light- and heavy-chain genes in
antibody molecules need to have coordinated expression to
biosynthesize tetramer IgG. However, when expressing

recombinant antibodies, the special secondary structure in the
gene sequence and other factors often lead to low expression of
antibody, which can be remedied by codon optimization strategy.
Codon optimization involves gene synthesis, gene transcription,
mRNA translation, etc., with the ultimate goal of efficiently
expressing recombinant antibodies (Ayyar et al., 2017; Mauro
and Chappell, 2018; You et al., 2018). Before expressing a gene,
the rare codon in the gene should be searched first. If there are too
many rare codons, then the translation rate of antibody will be
affected. The expression of the target gene in transgenic hosts can
be increased by selecting the codon preferred by the receptor
without changing the amino acid sequence (Mauro, 2018). When
the codon of the variable region of an antibody is replaced with
the preferred codon of the natural human antibody gene, the
antibody expression levels in mammalian cells are significantly
increased by two- to 3-fold (Carton et al., 2007).

Signal Peptide Optimization
Signal peptide is a key factor for the secretion of recombinant
antibodies, and the high-efficiency expression of these antibodies
is closely related to the signal peptide (Haryadi et al., 2015; Wang
et al., 2016). When expressing recombinant antibodies, in addition to
the use of their own signal peptides, the following strategies are often
applied: ① replace the signal peptide sequence of the efficiently
expressed secreted proteins (Attallah et al., 2017); ② modifying the
primary structure of the signal peptide sequence in the original
antibody; ③ replace the protein signal peptide sequence in some
viruses; however, viral vectors are generally not recommended when
considering the safety of the expressed recombinant antibodies; and
④ select the preferred host codon. When selecting a suitable signal
peptide, the preferred codons of the expression host should be fully
considered, and the signal peptide should be further optimized.
Ramezani et al. showed a 2-fold increase of the pertuzumab
production in CHO cells by optimizing codons and selecting
appropriate signal peptide strategies (Ramezani et al., 2017).

CONSTRUCTION AND OPTIMIZATION OF
EXPRESSION VECTORS

The construction of high-efficiency expression vectors is considered
an important strategy to improve the expression level of recombinant
antibodies. The expression level of the target genes in mammalian
cells is mainly affected by the state of chromosome region integrated
by the gene of interest, the copy number of the target gene, and its
transcription and translation efficiency (Hung et al., 2010; Gupta
et al., 2019; Carver et al., 2020; Hoseinpoor et al., 2020). Therefore,
vector construction strategy should consider optimizing the
integration site and position effect on the chromosome and
improving the transcription and translation efficiency to effectively
improve the expression level of recombinant antibodies.

Optimization of Integration Site and Position
Effect
The integration site status of target gene on the mammalian cell
chromosome plays a decisive role in its expression level and its
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stability in host cells. Only clones formed by cells whose
integration sites are in transcription active region of
chromosomes can express the target gene at a high level.
However, transgene silencing often occurs due to the random
integration of the target gene after transfer into cells (Hilliard and
Lee, 2021). During the expansion of cell culture, the promoter
methylation will lead to the attenuation of expression. Therefore,
selecting an appropriate promoter and optimizing the
combination of promoters and different regulatory elements
can improve the expression of recombinant antibodies and
increase the stability of expression. Some chromatin-modifying
elements can prevent transgene silencing, including matrix
attachment regions (MAR) (Buceta et al., 2011;
Mohammadian et al., 2019; Zhang et al., 2020), locus control
regions (LCR) (Sharma et al., 2019; Morgan et al., 2020),
ubiquitous chromatin opening elements (UCOEs) (Pfaff et al.,
2013; Harraghy et al., 2015; Nematpour et al., 2017; Rocha-Pizaña
et al., 2017), stabilizing anti-repressor elements (STAR) (Kwaks
et al., 2003; Otte et al., 2007; Van Blokland et al., 2007), and
insulators (Benabdellah et al., 2014; Chetverina et al., 2014;
Naderi et al., 2018; Pérez-González and Caro, 2019).
Moreover, artificial chromosome expression (ACE) and
targeted integration technology, including Flp-In and
recombinase-mediated cassette exchange system (RMCE), can
overcome the shortcomings of random integration (Kennard
et al., 2009; Soler et al., 2018; Reinhart et al., 2019; Ng et al.,
2021). The introduction of these functional elements into the
vector construction can greatly increase the proportion of high-
expression clones and shorten the construction cycle of
engineered host cells (Table 2).

Improvement of Transcription and
Translation Efficiency
Transcription is the initial step of gene expression, among which
promoters, enhancers, and transcription termination signals have
very important impacts on transcription efficiency and mRNA
stability. CMV promoters are considered to be one of the
strongest viral promoters, and hEF-1α promoters have the
stronger transcription initiation efficiency and are more
suitable for large-scale production of recombinant antibodies
(Ebadat et al., 2017). In recent years, the construction of

synthetic or heterozygous promoters will become an effective
strategy to improve the transcription efficiency (Patel et al., 2021).

Enhancers can improve the transcription efficiency and can
function over long distances. Constructing heterozygous
enhancers is a good strategy to improve transcription
efficiency and obtain high transcriptional activity. Xu et al.
used the CMV promoter and CA hybrid promoter to insert
the SV40 enhancers downstream of SV40 Poly A; compared
with the CMV promoter, cells driven by the CA hybrid promoter
can increase the production of target proteins by two times (Xu
et al., 2001).

Introns can increase the expression of foreign genes. Xu et al.
compared the effects of five different introns on transgene
expression in CHO cells. Under transient and stable
transfection conditions, the SV40 intron can obtain the
highest transgene expression level among five introns, which
can also obtain high-level of recombinant protein production
in CHO cells (Xu et al., 2018).

The regulation of translation level and processing efficiency of
translation products will also significantly affect the expression of
target gene. Eisenhut et al. developed the 5′-untranslated region
(UTR) RNA-structures to impact translation efficiency, further
systematically tune protein expression levels in mammalian cells
and eventually help to optimize recombinant protein expression
(Eisenhut et al., 2020). Vivirius et al. found a universal translation
enhancer element in the 5′-end non-translation area of Hsp70
mRNA, which can enhance the translation efficiency of the cap-
dependent structure (Vivinus et al., 2001).

OPTIMZATION OF ANTIBODY
EXPRESSION SYSTEM

Gene Amplification Screening System
At present, the two common gene amplification screening
systems are dihydrofolate reductase (DHFR) and glutamine
synthetase (GS) (Budge et al., 2021; Huhn et al., 2021). The
CHO-DHFR amplification system mainly uses the CHO cell line
of DHFR defect to obtain high yields of recombinant antibodies
in the presence of methotrexate (MTX). Akbarzade-sharbaf et al.
used DHFR system to express a therapeutic antibody
(Trastuzumab); after seven rounds of MTX, the total antibody

TABLE 2 | Optimization strategies of integration site and position effect for improving recombinant antibody expression.

Element Mechanism of action

MAR A boundary element, which acts as an insulator and overcomes the position effect
LCR A DNA sequence composed of many regulatory elements such as enhancers or isolators, which has the function of

stabilizing the loose structure of chromatin and controlling the sequential expression of individual genes at the locus
UCOE A class of non-methylated CpG islands, combined with the promoter to prevent the formation of heterochromatin and gene

silencing
STAR Regulatory factors that can block the repressor protein, increase transgene expression and expression stability
Insulator A class of enhancer blocking elements prevent the heterochromatin marker from spreading to the euchromatin region
ACE Pre-engineered artificial chromosomes, which allows for the targeted transfection of single or multiple genes and eliminates

the need for random integration into native host chromosomes
Flp-In Site-directed integration of target genes into transcriptionally active regions
RMCE Recombinase-mediated site-directed integration technology
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valence can be as high as 50–60 mg/L/day (Akbarzadeh-Sharbaf
et al., 2013). As another mature and widely used system, the GS
amplification system is an explicit gene amplification selection
marker, which usually requires pressure and stable selection of
two rounds of methionine sulphoximine (MSX) to obtain high-
expression cell lines and reduce the screening time. However, the
two systems have some defects, such as the decline in the antibody
production after long-term screening; therefore, these systems
need to be further optimized. The strategy of using low activity of
GS as the screening marker could obtain high-yield clones after
MSX removal, further efficiently increase the antibody
production (Lin et al., 2019).

Screening Marker Weakening
Two strategies can be employed to weaken the screening marker.
One is to mutate the screening marker and reduce its activity.
Neomycin-phosphotransferase (NPT) is one of the commonly
used screening markers in eukaryotic expression systems. The
second strategy is to reduce the expression of the screening
marker. Noguchi et al. started the transcription of DHFR
through the late promoter of weak promoter SV40 and used
the method of IR/MAR-dhfr fusion to easily separate the cell line
of high-expression recombinant protein, which further improved
the production of the recombinant proteins (Noguchi et al.,
2012).

MODIFICATION OF ANTIBODY HOST
CELLS

Many mammalian cells can produce recombinant antibodies,
including CHO, NS0, and SP2/0 cells, which can produce non-
human glycosylated modification. Owing to the difference
between the growth and metabolic characteristics of animal
cells, the expression level and modification ability of
recombinant antibody are also different (Dhara et al., 2018).
Therefore, we can further transform the host cells, improve the
expression level by engineering cell line, and meet the production
capacity and quality requirement of antibody drugs as much as
possible (Lu et al., 2018; Liu et al., 2021; Zhou et al., 2021).

Glycosylation Engineering
The enzymes responsible for glycosylation can be modified in
non-humanized cells, so the expressed recombinant antibody is
more similar to the natural humanized protein in terms of
glycosylation level and type, thereby improving the biological
effect of recombinant antibody. Glycosylation mainly includes
genetic and non-genetic modification strategies. The
glycosylation of protein can affect the pharmacological activity
and pharmacodynamics of the antibody, so researchers can
optimize the recombinant antibodies through genetic
engineering to achieve the glycosylation modification of cell
lines (Yang Y et al., 2021). For example, the therapeutic
activity of recombinant IgG3 antibodies was significantly
improved after transfecting murine 2, 6-sialyltransferase into
CHO cells (Jassal et al., 2001).

Anti-Apoptosis
Anti-apoptosis is a hot spot in the current host cell
transformation strategy, and the overexpression of anti-
apoptotic genes is one of the common strategies. Effective
anti-apoptotic genes include Bcl-2, Bcl-xL, and so on. Lee
et al. achieved the overexpression of Bcl-2 and Beclin-1 in
CHO-DG44 cells; the results showed that the time of cell
culture became longer, the cell survival rate was significantly
improved, and the occurrence of apoptosis was suppressed (Lee
et al., 2013). Kim et al. overexpressed Bcl-xL in recombinant
CHO cells, which can improve cell survival rate, prolong culture
time, and inhibit apoptosis and autophagy by inhibiting the
activation of caspase-3and caspase-7 (Kim et al., 2009).

Cellular Metabolic Engineering
In mammalian cell culture, the metabolic engineering strategy
changes the cell metabolism pathway, which can effectively
promote cell growth and product synthesis, discover more
novel metabolite additives, and reduce the accumulation of
metabolic inhibitors (Toussaint et al., 2016; Gupta et al., 2017;
Fouladiha et al., 2020; Yao et al., 2021). In cells with low lactate/
glucose, the expression levels of lactate dehydrogenase and the
accumulation of lactate are reduced, resulting in an increase in the
synthetic products. Zhou et al. used siRNA technology to reduce
the expression levels of lactate dehydrogenase A (LDHa) and
pyruvate dehydrogenase kinase (PDHK) genes, reducing the
lactate levels by 90% and increasing the production of
therapeutic monoclonal antibodies (Zhou et al., 2011). In
addition, the production of recombinant antibodies can be
multiplied by several times by effectively blocking engineered
cells in the G1 phase.

Cellular Cycle Regulation Engineering
In the large-scale cell culture process, with the continuous
exploration of the regulatory mechanism of cell cycle,
researchers have applied cell cycle regulation genes to cell
proliferation control. Fussenegger et al. found that p21, p27,
and p53 are cell cycle Gl/S suppressor proteins; after CHO cells
express these proteins, they can prevent cells from entering the S
phase, keep the growth in a static state, and increase the
production of secreted alkaline phosphatase (SEAP) to
10–15 times (Fussenegger et al., 1998).

CONTROL GLYCOSYLATION
MODIFICATION

Recombinant antibodies are biological macromolecular drugs,
and the normal performance of their biological functions is
inseparable from the complex post-translational modification
process. As the most important type of post-translational
modification of recombinant antibodies, glycosylation
modification has certain effects on the biological activity of
antibody, immunogenicity, in vivo metabolism, antibody-
dependent cytotoxicity, and complement-dependent
cytotoxicity. Therefore, glycosylation modification of antibody

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org March 2022 | Volume 10 | Article 8560497

Zhang et al. Strategies for Improving Recombinant Antibody

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


molecules has been widely used in the development of novel
antibody drugs.

Type of AntibodyGlycosylationModification
According to different connection modes, antibody glycosylation
is usually divided into N-linked glycosylation and O-linked
glycosylation. The Fc fragments of two heavy chains in the
monoclonal antibody molecule contain an N-glycosylation
modification site at the 297th aspartic acid. The
N-glycosylation modification of monoclonal antibody drugs
usually presents biantennary sugar chains, and sometimes
fucosylation and sialylation may occur (Szabo et al., 2022). In
addition, some monoclonal antibody drugs undergo
O-glycosylation modification. For example, a humanized
monoclonal antibody drug produced by CHO cells has
O-glycosylation modified by a single glucose molecule (Tanaka
et al., 2013). At present, most of the antibody drugs on the market
are produced by CHO cells. CHO cells can produce antibodies
that are close to the glycotype of human serum antibodies;
however, the glycosylation of antibodies produced by most
engineered cell lines is different from that of human serum
antibodies. For example, antibodies produced from mouse-
derived animal cells have a high proportion of fucose
modifications and a low proportion of galactosylation
modifications (An, 2009). In contrast to human cells, CHO
cells lack the expression of α-2,6-sialyltransferase, while only
express α-2,3-sialyltransferase (Jenkins et al., 1996; Lin et al.,
2015; Chung et al., 2020). Consequently, CHO cells inherently
cannot produce glycoproteins with similar terminal sialic acid
content as compared to human cells (Yin et al., 2017).
Furthermore, CHO cells lack N-acetylglucosamine transferase
(GnT-III) expressed by human cells, resulting in the differences in
the modification of N-acetylglucosamine glycosylation from
human cells (Butler, 2005). These findings indicate that
different cell types produce different types of antibody
glycosylation (Attallah et al., 2020; Dyukova et al., 2021; Zhao
et al., 2021). In summary, the type of glycosylation modification
of monoclonal antibody drugs is closely related to the production
system, selected cell line, and incubation process.

Control Strategy of Antibody Glycosylation
Modification
Although the mass of sugar chains only accounts for 2% of the
total molecular weight of antibody, the sugar chains on the Fc and
Fab fragments play a very important role in the affinity, structural
maintenance, metabolism, and immunogenicity of the antibody
molecule (Krapp et al., 2003; Chung et al., 2008; Alessandri et al.,
2012). The physiological activity of therapeutic antibodies is
mainly mediated by two mechanisms: one is mediated by the
affinity between the variable region of the antibody and antigen,
causing the neutralization or apoptosis of the target antigen,
which is mainly by means of the Fab fragment of antibody to
recognize and bind antigenic substances; the other is the immune
effect mediated by the Fc fragment of antibody, including
antibody-dependent cell-mediated cytotoxicity (ADCC) and
complement-dependent cytotoxicity (CDC) (Salinas-Jazmín

et al., 2022). Metabolic analysis and mathematical model can
be used to analyze the production process to control the type and
degree of glycosylationmodification of recombinant antibodies to
reduce the immunogenicity of antibody drugs and optimize their
effector function (Sha et al., 2016). The types of glycosylation
modification of recombinant antibodies are shown in Figure 4.

Sialylation modification: Sialylatedglycans are the key
components of glycoproteins. According to relevant studies,
monoclonal antibody sialylation can inhibit inflammatory
response and reduce cell toxicity by means of different
receptors in the Fc fragment (Scallon et al., 2007). The anti-
inflammatory activity of the over-sialylated monoclonal antibody
obtained by affinity chromatography purification will be
significantly enhanced. Moreover, the higher degree of
monoclonal antibody sialylation is closely related to a decrease
in ADCC activity (Zhang et al., 2019; Nguyen et al., 2020).

Core fucosylation modification: Related studies have shown that
core fucose is an important glycosylation structure that affects the
ADCC activity of recombinant antibodies (Matsumiya et al., 2007).
Most recombinant IgG produced by CHO cells have core fucose in
their Fc sugar chains (Zimmermann et al., 2021). To improve the
binding activity of the low-affinity receptor IIIa (FcγR3a) of the
antibody to the Fc fragment as well as ADCC activity, researchers
have adopted a variety of strategies to reduce the level of fucosylation
of IgG, including the use of α-1,6-fucose cell lines in which α-1,6-
fucosetransferase gene is knocked out (Davies et al., 2001;Wang et al.,
2018).

Galactosylationmodification: Approximately 95%of recombinant
IgG produced by CHO cells contains galactose as the terminal sugar.
Terminal galactosylation plays an important role in the conformation
of the Fc fragment, and the core fucosylation modification alone has
slight effect on the conformation of the Fc fragment (Kotidis et al.,
2019). The existing results indicate that galactosylation at the end of
the Fc fragment will seriously affect the CDC activity of IgG, and the

FIGURE 4 | Types of glycosylation modification of recombinant
antibodies. The representative N-glycan structures identified on antibody Fc
fragment are G0F, G1F, and G2F. G0F: asialo, agalactose, biantennary
complex, core substituted with fucose; G1F: asialo, mono-
galactosylated, biantennary complex, core substituted with fucose; G2F:
asialo, galactosylated, biantennary complex, core substituted with fucose.
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reduction of its glycosylation level will also weaken the CDC activity
(Wei et al., 2021).

Mannosylation modification: The content of a high-mannose
structure should be minimized as much as possible during the
production of recombinant antibodies due to the high
immunogenicity of high-mannose structures. In addition, the
content of mannose in the Fc fragment of the antibody varies
greatly between different cultured cells and different batches
(Brantley et al., 2021). Recombinant antibodies have two clearance
pathways in organisms; one is the asialoglycoprotein receptor in the
liver that binds andmediates the clearance, and the other is to bind to
mannose receptors on the surface of macrophages in the liver. The
high-mannose structure antibody molecules in the Fc fragment can
be quickly eliminated from the plasma, further reducing the efficacy
of recombinant antibodies (Liu, 2015).

Expression of GnT-III: Studies have shown that the bisected
glycosylated epidermal growth factor receptor (EGFR)
monoclonal antibody is prepared by introducing the GnT-III
gene and highly expresses bisecting acetylglucosamine residues;
this strategy can increase the ADCC activity by 3 times and
increase the anti-proliferative activity by 1.36 times, and almost
no α-Gal was detected. The bisecting EGFRmonoclonal antibody
prepared by glycosylation engineering contains only a small
amount of α-Gal, which greatly improves the biological
activity in vitro. At present, this study has not been further
verified in vivo (Jenkins and Curling, 1994; Yi et al., 2014).

CONCLUSION AND FUTURE
PERSPECTIVES

In recent years, with the development and application of
proteomics technology, the development of large-scale culture
of animal cells for antibody drug production has devolved from
the simple optimization of some process parameters to the recent
omics research, e.g., transcriptomics, proteomics, metabolomics,
glycomics, and fluxomics. The complex metabolic network of
production cells and production mechanism of recombinant
antibodies have gradually become clear. Raab et al. developed
a cell line through genetic engineering by a novel bottom-up
microRNA (miRNA) screening approach for optimizing the
production and secretion of therapeutic antibodies (Raab et al.,
2022). At present, the expression level and quality control of
recombinant antibodies has always been one of the important
bottlenecks restricting the development of antibody drugs.

The high-efficiency expression and quality of recombinant
antibodies can be affected by multiple factors, which can be
achieved by genetic engineering, including the optimization of
antibody gene sequence, construction of efficient expression
vector, optimization of antibody expression system,
modification of antibody host cells, and glycosylation site
modification (Table 3). The application of these optimization
strategies can effectively shorten the time of antibody generation
and improve the expression of target antibodies. However,
different optimization strategies have advantages and
disadvantages, and how to effectively integrate these
optimization strategies to make it an efficient operation system
needs further study. Under different process conditions, the
differences in the yield of recombinant antibodies by the
production cell lines can be analyzed from the levels of
genomics, proteomics, and metabolomics, laying a solid
foundation for large-scale cell culture processes. In the future,
the large-scale production of recombinant antibodies and
development of culture processes will develop rapidly in the
direction of stabilizing production capacity and improving
quality. Furthermore, big data and multi-omics technologies
are also beneficial to provide new research directions, more
and more process analytical technologies are applied to cell
culture processes, which will provide more ideas for improving
the efficiency of recombinant antibodies. Therefore, the focus
shifts towards how to control the quality of recombinant antibody
drugs scientifically and rationally, researchers should further
combine the clinical evaluation and post-market safety
monitoring, and continue to explore quality control.
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TABLE 3 | Basic strategies for improving recombinant antibody production and quality in CHO cells.

Action stage Strategy

Processing assembly Light and heavy chain expression balance, host cell modification
Integration site Screening marker weakening, chromosome location screening
Gene optimization Change of gene arrangement, codon optimization
Gene dose The amplifiable screening marker gene weakening
Transcription The potent promoter, enhancer and intron, appropriate antibody gene structure
Translation Translational enhancer and the regulation of translation products
Post-translational modification Control of antibody glycosylation modification
Secretion The suitable antibody secretion signal peptide
Other Choose the suitable host cells, modify host cells and try to remove non-productive clones
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