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Abstract: Soft biomimetic electronic devices primarily comprise an electronic skin (e-skin) capable of
implementing various wearable/implantable applications such as soft human–machine interfaces,
epidermal healthcare systems, and neuroprosthetics owing to its high mechanical flexibility, tissue
conformability, and multifunctionality. The conformal contact of the e-skin with living tissues enables
more precise analyses of physiological signals, even in the long term, as compared to rigid electronic
devices. In this regard, e-skin can be considered as a promising formfactor for developing highly
sensitive and transparent pressure sensors. Specifically, to minimize the modulus mismatch at the
biotic–abiotic interface, transparent-conductive hydrogels have been used as electrodes with excep-
tional pressing durability. However, critical issues such as dehydration and low compatibility with
elastomers remain a challenge. In this paper, we propose a skin-like transparent polymer-hydrogel
hybrid pressure sensor (HPS) with microstructures based on the polyacrylamide/sodium-alginate
hydrogel and p-PVDF-HFP-DBP polymer. The encapsulated HPS achieves conformal contact with
skin due to its intrinsically stretchable, highly transparent, widely sensitive, and anti-dehydrative
properties. We believe that the HPS is a promising candidate for a robust transparent epidermal
stretchable-skin device.

Keywords: e-skin; electronic skin; soft pressure sensor; soft device; transparent; skin-like hybrid sensor

1. Introduction

Inspired by human tissues, various approaches have been proposed to mimic the
body for soft devices such as bio-integrated electronics [1,2], electronic skins (e-skins) [3–6],
and human-machine interface devices [7,8]. In particular, soft e-skin, inspired by human
skin, is used in robotics [9,10], skin-attachable electronics [11,12], and prosthetics [13–15]
for biomimetic features such as stretchability, mechanical stability, and tactile sensing prop-
erties. For instance, stretchable and conductive polymers such as Ag nanowires [16], Ag
flakes [17], carbon nanotubes (CNT) [18,19], PEDOT: PSS [20,21], nanomembranes [22,23],
and liquid metals [24,25] have been used as e-skins. These polymers can monitor external
stimuli such as strains, pressures, and temperatures and are mechanically robust and
sufficiently stable in various environments to convert the stimuli into electrical signals.
However, polymer-based e-skin devices have a relatively high moduli and low stretchabil-
ity, as compared to skin.
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Hydrogels, unlike polymers, have relatively low moduli [26], intrinsic stretchabil-
ity [27], biocompatibility [28], and transparency [29]. The elastic modulus of a hydrogel is
in the kilopascal range, which is lower than that of other compatible polymers owing to
the presence of water. The aggregation of the non-toxic cross-linked chain network of a hy-
drogel can help withstand mechanical strains up to approximately 1000%, while also being
biocompatible. In addition, conductive hydrogels, such as conductive polymers, can help
monitor external stimuli and convert them into electrical signals. However, hydrogel-based
e-skin devices suffer from the limitations of low robustness and dehydration.

Because polymers and hydrogels have complementary properties, it is desirable
to combine them into polymer-hydrogel hybrid structures, such as e-skins, that can
improve performance or overcome existing problems. Various strategies have used
polymer-hydrogel hybrid structures for realizing transparency, stable monitoring, robust-
ness, and softness [30–33]. This skin-mimetic hybrid structure has an intrinsically stretch-
able hydrogel layer with a modulus similar to that of the dermis of the skin [34,35]. The
hybrid structure also has an external polymer layer with a modulus similar to that of the
epidermis, which prevents dehydration of the dermis and relieves external stimuli via en-
capsulation [36,37]. Figure 1 depicts the overall schematics of a skin-like polymer-hydrogel
hybrid soft pressure sensor.
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Figure 1. (a) Overall schematic illustration of the transparent hybrid soft pressure sensor. (b) Pho-
tograph of the transparent polymer-hydrogel hybrid pressure sensor. Inset image shows the better
transparency of the sensor. (c) Schematics for the underlying mechanism of pressure sensing based
on the sensor and the materials strategy of long-term stable pressure sensing using p-PVDF-based
self-bonding assembly.
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Herein, we propose a skin-like polymer-hydrogel hybrid pressure sensor (HPS) us-
ing pressure-sensitive microstructures. Our HPS device uses intrinsically stretchable and
transparent hydrogel layers. The HPS device was also encapsulated with a polarized-poly
(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)-dibutyl phthalate (DBP) poly-
mer layer to realize a transparent and intrinsically stretchable device [34]. The pressure sen-
sor applied to the skin-like polymer-hydrogel hybrid structure exhibited anti-dehydrative
and relatively robust properties.

2. Materials and Methods
2.1. Fabrication of a Silicon Pyramid Mold for Pressure-Sensitive Microstructures

The polymer layer was fabricated using a pressure-sensitive microstructure, as schemat-
ically illustrated in Figure 2a. The SEBS (TuftecTM H1062, Asahi Kasei Co., Tokyo, Japan)
pyramids were fabricated using a wet-etched silicon wafer substrate. A silicon wafer with a
300 nm thermally grown oxide layer was prepared with dimensions of 30 mm × 3 mm. At
the beginning of the fabrication process, the silicon wafer was immersed in acetone and iso-
propyl alcohol to clean the surface of the substrate and was then surface-treated with bath
ultrasonication in deionized (DI) water for 5 min. Subsequently, the wafer was subjected to
reactive ion etching (RIE; PlasmaLab system 80 RIE, Oxford Instruments, Abingdon, UK)
with O2 20 sccm at a pressure of 100 mTorr with 300 W RF power for 5 min. After surface
cleaning treatment, a positive photoresist (S1805, Merck KGaA, Darmstadt, Germany) was
spin-coated with a spin-coater (SPIN-3000D, MIDAS SYSTEM Co., Ltd., Daejeon, Korea)
at 3000 rpm for 30 s. The PR-coated wafer was prebaked at 110 ◦C for 1 min, and pho-
tolithography was performed using a mask aligner (MDA-400M, MIDAS SYSTEM Co., Ltd.,
Daejeon, Korea) with 200 mW RF power for 10 s to draw square patterns on the substrate,
which was to be etched into a pyramid structure. A developer (MIF-300, Merck KGaA,
Darmstadt, Germany) was used to remove the exposed PR, resulting in square patterns.
Thereafter, the oxide layer was etched using a 6:1 buffered oxide etch (BOE;;Sigma-Aldrich,
Burlington, MA, USA) solution, followed by bath ultrasonication for 5 min. Subsequently,
the wafer was immersed in acetone to remove the undeveloped PR. The substrate sili-
con was then etched with 30% potassium hydroxide (KOH; Sigma-Aldrich, Burlington,
MA, USA) at 60 ◦C for 3 h and 30 min. After the pyramid pits were fully generated via
KOH etching, the wafer was ultrasonicated for 15 min, and the BOE was etched again to
remove the SiO2 residual. The fabricated silicon cavities were treated with vapor phase
1H,1H,2H,2H-perfluorodecyltrichlorosilane (Sigma-Aldrich, Burlington, MA, USA) and
baked at 120 ◦C for 1 h to lower the surface energy and the adhesion force between SEBS
and the silicon mold. The SEBS solution (300 mg/mL in toluene) was spin coated on the
fabricated wafer and the treated bare wafer and then cured overnight. Figure 2b shows the
scanning electron microscopy (SEM) images of the pyramid-shaped microstructure of the
SEBS dielectric layer.
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2.2. Fabrication of Skin-like polymer-hydrogel Hybrid Pressure Sensor

A capacitive flexible pressure sensor was fabricated, as schematically illustrated
in Figure 2a–c. To connect the hydrogel network, sodium alginate (SA; Sigma-Aldrich,
Burlington, MA, USA) and acrylamide (AM; Sigma-Aldrich, Burlington, MA, USA) were
dissolved in deionized water. After stirring evenly, N,N-methylenebisacrylamide (MBA;
Sigma-Aldrich, Burlington, MA, USA) and N,N,N,N-tetramethyl ethylenediamine (TEMED;
Sigma-Aldrich, Burlington, MA, USA) were added to the DI water solution as a crosslinker
and crosslinking accelerator for polyacrylamide. Ammonium persulfate (APS; Sigma-
Aldrich, Burlington, MA, USA) was added as an initiator for acrylamide polymerization.
After stirring again, the DI water solution was poured onto the SEBS dielectric layer. The
SEBS-coated wafer and the pre-solution of the hydrogel were thermally baked at 60 ◦C.
After curing, the double-layer film was peeled off from the wafer and transferred to the
p-PVDF-HFP-DBP film. Subsequently, a skin-like polymer-hydrogel HPS was prepared by
repeating the same process and overlapping the two samples. Because the p-PVDF-HFP-
DBP layer is highly cohesive and self-healable, the inner hydrogels were encapsulated to
prevent dehydration.

3. Results
Characteristics of polymer-hydrogel Hybrid Pressure Sensor

To characterize the polymer-hydrogel hybrid structure of the pressure sensor fabri-
cated, as discussed in Section 2, a press test was performed using a motorized force tester
device (ESM303, Mark-10 Co., New York, NY, USA) at a humidity of about 70% and a
temperature of 23 ◦C. Figure 3a illustrates the press test of the prototype pressure sensor
and the experimental setup.

Figure 3b shows the design rules for determining the weight ratio of the MBA. Here,
we confirmed that the electrical conductivity of the hydrogels does not significantly affect
the sensing capability of the pressure sensor. However, if our pressure sensor is integrated
with other electronic components, the electrical conductivity issue of the hydrogel issue
becomes crucial due to resistance-capacitance delays. For this reason, we adopted the con-
ducting hydrogel with the lowest sheet resistance (a ratio of MBA crosslinker to monomer)
is 0.44% (Figure 3b). Specifically, the sheet resistance of a hydrogel depends on the size of
the polymeric space network. If the amount of MBA is excessively small, the spaces in the
polymeric network are not sufficiently formed, leading to the low electrical conductivity
of the hydrogel. In contrast, if the amount of MBA is excessively high, the space in the
polymeric network becomes small (Supplementary Figure S1) [35,38,39].
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Figure 3c shows the design rule for determining the optimal thickness of the SEBS
dielectric layer. The sensitivity, linearity, hysteresis, and initial capacitance values depend
on the SEBS thickness (Supplementary Figure S2). As the thickness of the SEBS dielectric
layer became thicker, the initial capacitance value and sensitivity of the pressure sensor
were decreased; however, the linearity and hysteresis of the pressure sensor were improved.
Conversely, as the thickness of the SEBS dielectric layer became thinner, the initial capaci-
tance value and sensitivity of the pressure sensor were increased; however, the linearity and
hysteresis of the pressure sensor were degraded. Such a result originates from viscoelastic-
ity of the SEBS film. From the asymmetric trends, we chose the optimal SEBS thickness of
15 µm to meet a simultaneous requirement regarding sensitivity, linearity, hysteresis and
initial capacitance (Supplementary Figure S3). Such critical parameters should be carefully
chosen in determining electrical performance of the skin-like devices. The sensitivity plays
a crucial role in evaluating the performance of the pressure sensor. We fabricated HPS
with a relatively high sensitivity using pressure-sensitive microstructures. For this reason,
a SEBS thin dielectric film with a high sensitivity (7.7 Pa−1) was selected. The linearity
and hysteresis are also important parameters in the sensing properties. Low linearity and
hysteresis led to undesired degradation in the measurement methodology, which requires
an additional feedback loop system or a computing algorithm [40–42]. Figure 3d shows the
relative capacitance–pressure curve depicting the sensitivity of the pressure sensor. The
diameter of the press cylinder was 10 mm, and the pressing and releasing speeds were
3 mm/min. When we applied a gentle pressure of 50 kPa to the pressure sensor, the linear
sensing profile was confirmed. This sensing range was much wider than those of previous
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pyramidal structure-based sensors [15]. However, its linearity was slightly distorted when
released. This result was also mainly due to the fatigue of the SEBS microstructures. Such a
challenge can be mitigated by applying elastic materials with higher modulus values.

In addition to the sensing performance of the pressure sensor, air-stability was ad-
dressed in Figure 4. Generally, the hydrogel composed of water and polymer networks is
vulnerable to air environment due to a dehydration issue. To overcome the challenge, we
used the p-PVDF film, which is capable of homogeneous interface between two individual
layers without any external stimuli due to dipole–dipole interaction. Using the p-PVDF
films, we encapsulated the pressure sensor. First, we verified the air stability of the p-PVDF-
based pressure sensor (Figure 4a). As expected, the pressure sensor without the p-PVDF
encapsulation layers was gradually degraded. However, the encapsulated sensor showed
the exceptional stability. This result fully supported our assumption. Figure 4b showed
the pressing cyclic data (up to 100 cycles) of the pressure sensors with (red, hybrid) and
without (blue, bare hydrogel) encapsulation layers. The p-PVDF encapsulation allowed
the pressure sensor to be more robust than before.
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4. Discussion and Conclusions

In this work, we demonstrated a skin-like polymer-hydrogel HPS with pressure-
sensitive microstructures that can complement the properties of polymers and hydro-
gels through hybrid structures. The HPS device was intrinsically stretchable and highly
transparent; it could address the dehydration issues due to p-PVDF-HFP-DBP polymer
encapsulation. Additionally, the performance of the HPS was controlled by optimizing the
thickness of the dielectric layer and the ratio of acrylamide in the hydrogel layer. Based on
the self-bonding assembly of p-PVDF films, we demonstrated that the pressure sensing
capability of our HPS device is very durable compared with those of previous hydrogel-
based sensors without encapsulation. Thus, we believe that HPS is a promising candidate
for long-term biomimetic e-skin devices.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym13193272/s1, Figure S1: (a) The chemical structures of the PAAm hydrogel, Polyacry-
lamide and N,N-methylenebisacrylamide. (b)Schematic diagrams of polymeric network structure
with different crosslinker/monomer proportion. As the amount of MBA increases, the polymeric
network space becomes denser, Figure S2: (a) Initial capacitance (blue) and hysteresis (red) of the
pressure sensor versus thickness of SEBS. (b) Hysteresis calculation method, Figure S3: (a) Raw data
(blue) and Regression of raw data (red) of the pressure sensor which has a 15 µm thickness of SEBS.
(b) Linearity calculation method.
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