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Abstract: We calculated the magnetocaloric properties of the molecular nanomagnet Cu5-NIPA,
consisting of five spins S = 1/2 arranged in two corner-sharing triangles (hourglass-like structure
without magnetic frustration). The thermodynamics of the system in question was described using
the quantum Heisenberg model solved within the field ensemble (canonical ensemble) using exact
numerical diagonalization. The dependence of the magnetic entropy and magnetic specific heat on
the temperature and the external magnetic field was investigated. The isothermal entropy change
for a wide range of initial and final magnetic fields was discussed. Due to plateau-like behavior
of the isothermal entropy change as a function of the temperature, a high degree of tunability of
magnetocaloric effect with the initial and final magnetic field was demonstrated.

Keywords: molecular nanomagnets; magnetocaloric effect; magnetic entropy; magnetic specific heat;
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1. Introduction

Molecular magnets constitute a highly interesting class of modern magnetic materials [1,2],
the rapid development of which over the last decades [3–7] required concerted effort of theoreticians
and experimentalists. Zero-dimensional molecular nanomagnets [8,9] offer the possibility of exploring
a plethora of intriguing fundamental physical phenomena due to the underlying quantum physics [10].
On the other hand, the possible multifunctionality of molecular magnets [11] opens the way towards
numerous applications. Among them, the magnetic cooling based on the magnetocaloric effect
(MCE) should be emphasized as particularly interesting application [12–15]. MCE [16] consists in
the dependence of the entropy of substance on the external magnetic field and thus allows designing of
a thermodynamic cycle for refrigeration (working between two constant temperatures) or outlining
the procedure used to lower the temperature [17]. Therefore, MCE is a phenomenon of paramount
importance for advanced and innovative cooling in diverse temperature ranges, from room temperature
in everyday use to subkelvin range for experimental devices, which becomes a crucial technological
challenge. The constant quest for optimized materials for exploiting MCE motivates studies of novel
relevant materials [18]. This focuses the attention on molecular magnets as highly promising materials.
One of their unique features is the direct applicability in nanoscale cooling. The molecular nanomagnets
proved their potential in subkelvin cooling [19] and might be useful for on-chip cooling of nanoelectronic
devices [20,21]. The quest for cooling efficiency stimulates the development of various approaches to
design molecular magnets with desired properties [22–26]. Molecular magnets may offer record-high
spin per molecule maximizing the potential span of entropy change, turning the attention to high spin
clusters [27–29]. On the other hand, the maximization of MCE is searched in systems with magnetic
frustration resulting from the interplay between the antiferromagnetic interactions and the geometry,
where the relatively small changes of magnetic field can cause large variations of the magnetic entropy
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by lifting the quantum state degeneracy [30–32]. Another interesting route is utilizing the quantum level
crossings [33]. In addition, such ideas as rotational MCE exploiting strong magnetic anisotropy [34,35]
are investigated in molecular systems. These facts strongly motivate the interest in magnetocaloric
properties of molecular magnets.

To understand and control MCE in molecular magnets, the development of theoretical models for
description of their thermodynamics is of key importance [36]. For systems consisting of low enough
number of spins, the exact methods for spin Hamiltonians can be applied. Therefore, in the context of the
theoretical modeling of magnetic entropy and magnetocaloric properties of zero-dimensional systems,
numerous works concerning spin clusters of various geometry can be mentioned first, especially those
for spins 1/2. The exactly studied geometries include regular Ising polyhedra [37–40], planar Ising
clusters based on the triangular lattice [41–43], or Ising clusters based on tetrahedra [44]. In addition to
classical Ising model-based studies, quantum Heisenberg model has also been investigated by exact
methods in the context of zero-dimensional cluster geometry, e.g. cube [45], a cuboctahedron [46], an
edge-sharing tetrahedron [47], a hexagon [48], or a finite chain [49] clusters. Exact studies of Heisenberg
model for particular molecular systems can also be found in the literature, e.g., a butterfly-shaped
structure with higher spin [50] or our previous study concerning a structure with two interacting
triangles [51]. The calculations become more even more demanding when structures involving high
number of spins, especially S > 1/2, are modeled. For this purpose, advanced and effective close-to-
exact approaches for thermodynamic description of the spin systems are developed [52–55].

Among the basic cluster geometries, the triangle geometry as an underlying pattern for
arrangement of spins can be highly interesting [56–60]. Its experimental realization in the form of
quantum spin triangle can be based, for example, on Cu2+ ions which carry spin 1/2 and can form
the relevant structures in molecular nanomagnets (see, e.g., [61–66]). The interplay of the triangular
geometry and magnetic couplings between the spins may both lead to magnetic frustration or yield
unfrustrated systems. Interacting triangles or more complex triangle-based structures can also be
found in one-dimensional systems such as spin tubes or ladders, studied both theoretically [67,68]
and experimentally [69,70].

However, a more complicated and rather uncommon form of triangle-based structure is a pair of
corner-sharing triangles, possessing an hourglass-like geometry. Such a system is exemplified by a
molecular magnet Cu5(OH)2(NIPA)4·10H2O (Cu5-NIPA) [71]. In this system, the couplings do not
lead to magnetic frustration. Some of the magnetic properties of Cu5-NIPA were investigated as well
as a theoretical model was constructed by Nath et al. [71]. Let us mention that somewhat similar,
pentamer-based structures assembled of spin-1/2 copper ions are also reported [72–75], but they
exhibit different magnetic interactions and geometry than Cu5-NIPA. The aim of our work was to
characterize theoretically the magnetocaloric properties of the Cu5-NIPA nanomagnet. In the further
sections, the theoretical model used to describe the MCE in Cu5-NIPA is outlined, the numerical results
for the thermodynamic quantities of interest are discussed, and conclusions are drawn.

2. Theoretical Model and Computational Methods

The magnetic molecule of interest, Cu5-NIPA, contains five Cu ions carrying spins S = 1/2
located in two corner-sharing triangles, forming an hourglass structure, as shown in Figure 1.

In our study we modeled the magnetic behavior of the system using an isotropic quantum
Heisenberg model for spins S = 1/2 with the following Hamiltonian:

Ĥ =− J1 (S2A · S3 + S2B · S3)− J2 (S1A · S2A + S1B · S2B) + J2 (S1A · S3 + S1B · S3)

− gµBB (Sz
1A + Sz

1B + Sz
2A + Sz

2B + Sz
3) , (1)

where the operator Si =
(

Sx
i , Sy

i , Sz
i

)
is the operator of quantum spin S = 1/2 situated in the

hourglass-like structure at the site labeled with i = 1A, 1B, 2A, 2B, 3 (see Figure 1). In the system, there
are four AF couplings (solid and dashed lines) and two F couplings (dotted lines), as indicated
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in Figure 1. The values of exchange integrals equal accordingly J1 = −217 K and J2 = −62 K
(taken from the fitting to experimental data performed in Ref. [71]). Furthermore, g = 2.38 is the
gyromagnetic factor, µB is Bohr magneton, and B is the external magnetic field, which is oriented
along z direction. The Hamiltonian can be represented with a matrix of the size 32× 32. Then, the total
Hamiltonian undergoes the exact diagonalization (using Wolfram Mathematica software [76]), yielding
complete set of eigenvalues and eigenvectors. The diagonalization was performed both analytically
(see Appendix A) and numerically. The complete thermodynamic description was constructed using the
canonical ensemble (actually in the version of field ensemble—please note that the term with external
magnetic field is included in the Hamiltonian itself—see the discussion in Ref. [77]). The density
operator is

ρ̂ =
1
Z exp

(
− Ĥ

kBT

)
, (2)

where

Z = Tr exp

(
− Ĥ

kBT

)
(3)

is the statistical sum.

Figure 1. Schematic view of the Cu5-NIPA magnetic cluster with the relevant magnetic couplings marked.

The knowledge of the statistical operator enables the calculation of the arbitrary thermodynamic
averages. We mainly concentrate our attention on entropy, magnetic specific heat and isothermal
entropy change. In particular, the Gibbs function (Gibbs free energy) is calculated as

G = −kBT lnZ . (4)

The quantity of fundamental interest is then the magnetic entropy S, expressed as

S =
U − G

T
, (5)

where
U = Tr

(
ρ̂Ĥ
)

(6)

is the enthalpy. The magnetic specific heat is calculated from the relation

cB =
Tr
(
ρ̂Ĥ2)− [Tr

(
ρ̂Ĥ
)]2

kBT2 . (7)
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The direct relation between the magnetic entropy and the magnetic specific heat is given by

cB = T
(

∂S
∂T

)
B

. (8)

Let us mention that specific heat is a quantity directly measurable in the experiment as a function
of the temperature and magnetic field. Therefore, it is used for determination of the entropy from the
experimental data. Thus, the entropy at the given temperature and magnetic field can be expressed as
the following integral:

S(T, B) =
∫ T

0

cB(T′, B)
T′

dT′ + S(T = 0, B). (9)

Let us emphasize that the integration constant is the ground-state entropy at T = 0, which is
given by S(T = 0, B) = kB ln g, where g is the degeneracy of the ground state (see the discussion in
Appendix A). On the other hand, the magnetic entropy in the limit of high temperature is determined by
the number of states in the Hilbert space, that is S(T → ∞, B) = kB ln(2S + 1)n for a system composed
of n spins S. In the case of Cu5-NIPA composed of five spins S = 1/2, it yields S(T → ∞, B) =

kB ln 32 = 5 kB ln 2. Therefore, the difference between entropies in the limit of high temperature and in
the limit of zero temperature can be expressed on the basis of the following integral (see also [58]):

S(T → ∞, B)− S(T = 0, B) = kB ln
(2S + 1)n

g
=
∫ ∞

0

cB(T, B)
T

dT. (10)

The isothermal entropy change, a fundamental quantity characterizing MCE, is expressed as

∆ST = S (T, Bi)− S
(

T, B f

)
, (11)

being the change in entropy when the external field varies between Bi and B f at constant temperature
T. In this convention, ∆ST > 0 corresponds to direct MCE, whereas ∆ST < 0 implies the occurrence of
inverse MCE.

The isothermal entropy change can be determined directly from the Equation (5) or, from the
experimental data, using the integral in Equation (9) (see, e.g., [78]). Please note that, in the experiment,
the ground-state entropy at T = 0 is not evaluated directly.

Let us mention that the above thermodynamic formulas are valid for a single Cu5-NIPA cluster.
Usually the corresponding thermodynamic quantities per mole are used and in the further presentation
of the results of calculations such a convention is accepted.

In the subsequent part of the paper, we show and discuss our results, which we obtained using
the exact numerical methods applied to the thermodynamic description of the model described with
the Hamiltonian in Equation (1).

3. Results and Discussion

The present section contains the results of exact numerical calculations of the thermodynamic
properties of Cu5-NIPA molecular magnet, performed along the lines described in Section 2.
The interest is focused on the magnetocaloric properties, such as magnetic entropy, magnetic specific
heat, and isothermal entropy change, which are expressed per mole of the substance of interest.

Let us start the analysis by presenting the energy spectrum of the system Hamiltonian in
Equation (1) as a function of the external magnetic field, which is shown in Figure 2a. A two-fold
degeneracy of the ground state at B = 0 is seen, whereas under the influence of B > 0 the degeneracy
is lifted. It can be deduced that three different quantum states can be (unique) ground states for
B > 0 and two critical fields (level-crossing fields) are present. The detailed analysis of the possible
ground states and the analytic expressions for their energies is presented in Appendix A. In particular,
below the first critical field of 54.36 T, the ground state has the total spin of S = 1/2 and the spin
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projection quantum number is Sz = 1/2. Between the first and the second critical field (which amounts
to 193.91 T), the ground state has S = 3/2 and Sz = 3/2. Finally, above the second critical field,
the magnetic saturation is reached, with S = 5/2 and Sz = 5/2. The analytic expressions for the
critical fields as a function of the exchange integrals are also given in Appendix A. The fact that the
energy levels cross when the external magnetic field is varied might be termed as quantum level
crossing [79] (for example, in some analogy to the phenomenon emerging in a simplest system with
interacting spins—a spin dimer [33,80], studied experimentally in the systems of various degree of
complexity [80,81]). The change of the ground state of the system as a result of the variation of
external parameter should induce the most profound consequences at zero temperature and at low
temperatures, whereas the increase in T would smear this effect due to increased mixing of all states
by thermal fluctuations.

The thermodynamic behavior of the system is to a significant extent governed by the energy
gaps between the ground state and the first excited state (and further states). The dependence of the
energy gaps ∆i between the ground state and the ith excited state for i =1,2,3 is shown in Figure 2b.
Between the field of 0 and 27.17 T, the most interesting gap ∆1 is a linearly increasing function of
the field. It can be also seen that the second gap is usually significantly higher than the first gap
(suggesting that the thermodynamics of the system in question can be Schottky model-like [38,51] and
that the second excited state is usually well separated from the first excited state).

Let us commence the discussion of the thermodynamics of the system from the magnetic specific
heat, which is a quantity measurable in the experiment. The density plot of the magnetic specific
heat for a wide range of magnetic fields (in linear scale) and temperatures (in logarithmic scale) is
presented in Figure 3a. In general, the greatest values of cB are noticed around 100 K, with a sort of
maximum for considerably high magnetic fields. The position of the maximum is shifted towards
higher temperatures when the field increases. For lower temperatures, three features are distinct.
The first, single feature is present at low fields below the temperature of 10 K. Moreover, in the vicinity
of both critical fields (level-crossing fields) where quantum level crossings occur (see Appendix A),
clear double maxima separated by a deep minimum are visible and these maxima extend down to
zero temperature. The overall temperature and field dependence of the magnetic specific heat is
rather complicated.

For the analysis of the magnetocaloric properties, the crucial quantity of interest is the magnetic
entropy as a function of the temperature and the magnetic field. The entropy density plot for a
wide range of temperatures and magnetic fields is shown in Figure 3b (in logarithmic scale for the
temperature). It is seen that the increase in the magnetic field causes the entropy to rise more slowly as
a function of the temperature. The clear features in a form of single maxima are visible in the vicinity
of the critical magnetic fields marking the quantum level crossings (see Appendix A), reflecting the
positions of double maxima for the specific heat and also extending down to zero temperature.

Figure 2. (a) The dependence of the energy levels for the system Hamiltonian on the external magnetic
field; and (b) the dependence of the energy gaps between the ground state and a few first excited states
on the external magnetic field.
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Figure 3. (a) The magnetic specific heat; and (b) the magnetic entropy as a function of the temperature
and the external magnetic field. The features are visible in the vicinity of the quantum level crossings—
for detailed discussion and critical field values, see Appendix A.

From the density plot in Figure 3b, a cross-section for constant magnetic fields showing the
temperature dependence of the entropy can be constructed. Such a dependence is presented in Figure 4
in logarithmic scale for the temperature. For magnetic field equal to 0, the residual entropy of R ln 2
is visible, due to two-fold degeneracy of the ground state at B = 0 (the state with the total spin
S = 1/2 and projections onto z axis equal to ±1/2). The degeneracy is lifted for B > 0. For the
fields below approximately 10 T, the entropy rises first from 0 to R ln 2 and then a plateau is present.
At higher temperatures, the entropy rises to the saturation value of R ln 32 = 5R ln 2. The characteristic
temperature at which the entropy jumps from 0 to R ln 2 (the beginning of the plateau) increases
when the magnetic field is increased. On the contrary, the temperature at which the plateau ends is
rather insensitive to the field. It can be commented that the specific heat, cB = T (∂S/∂T)B, indicates a
maximum due to this quite rapid change in entropy at the beginning of the plateau. This is the origin
of the low-field and low-temperature feature seen in Figure 3a (for the detailed discussion, see the
similar case in another molecular magnet investigated by us [51]). The behavior of the entropy for
high fields, above 10 T, becomes much less regular.
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Figure 4. Entropy as a function of the temperature.

Another interesting cross-section of Figure 3b is presented in Figure 5, where the entropy is
plotted as a function of the magnetic field for different temperatures (entropy isotherms). When T → 0,
the entropy vanishes with the exceptions of the field B = 0 (when the ground state with S = 1/2 is
two-fold degenerate) and both critical fields, Bc,1 and Bc,2 (where two energy states with different total
spin quantum number S cross). At the mentioned points, the entropy value is, therefore, equal to the
residual ground state entropy of R ln 2. If the temperature rises, significant maxima build up around
these values of the magnetic field and become smeared by the influence of increasing temperature.
Up to considerably high temperature, the entropy is not a monotonic function of the field.

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0
0
5

1 0
1 5
2 0
2 5
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S (
J⋅m

ol-1 ⋅K-1 )

B  ( T )

T  ( K ) :     1        2          5        1 0    
           2 0      5 0      1 0 0      2 0 0

Figure 5. Entropy as a function of the magnetic field for various temperatures. The features are visible
in the vicinity of the quantum level crossings—for detailed discussion and critical field values, see
Appendix A.

To characterize MCE in the studied Cu5-NIPA molecular magnet, we concentrate on the isothermal
entropy change between the initial and final field given by Equation (11). Due to the residual entropy
at T = 0 it might be useful to study the entropy changes between various finite fields, not limiting the
interest to the usual case of either initial or final field equal to zero. The first case, with initial field equal
to zero and a selection of final fields, is shown in Figure 6a (please note the logarithmic temperature
scale). All the curves start from R ln 2 due to degeneracy of the ground state at B = 0. The plateau of
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this height is present in the results for the final field not exceeding 10 T. When the final field increases,
a plateau ends at increasingly higher temperatures, whereas its height remains unchanged. For very
high final fields, a second maximum builds up at higher temperatures. The evolution of ∆ST for
non-zero initial field of 10−4 T and a selection of final fields can be followed in Figure 6b (note that
the degeneracy of the ground state is now lifted already at initial field). In this case, for lowest final
fields, a maximum builds up first and then the plateau develops. The overall dependence of ∆ST on
the temperature has a step-like shape with relatively sharp increase at some initial temperature and
fall at some final temperature, with constant height. A similar behavior can be seen for the larger
initial field of 0.1 T, as shown in Figure 6c, with a plateau commencing at higher temperature than for
the previous case. If the initial field is as large as 1 T (Figure 6d), the temperature dependence of ∆ST
becomes rounded and resembles a moving peak.
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Figure 6. Isothermal entropy change as a function of temperature between the initial magnetic field
and varying values of final magnetic field: (a) initial field of 0 T; (b) initial field of 10−4 T; (c) initial
field of 0.1 T; and (d) initial field of 1 T.

The tunability of the step-like temperature dependence of ∆ST can be traced in detail in Figure 7,
where the final field of 1 T is fixed and the cases of various values of the initial magnetic field are
compared. In the range of initial fields down to 0.1 T, a peak builds up with only a slight tendency of
shifting towards lower temperatures. If the initial field is below 0.1 T, a plateau in the temperature
dependence of ∆ST is developed and essentially the right end of this plateau remains at constant
position. The left end shifts towards lower temperatures when the initial field is reduced.

The magnetocaloric phenomena can be quantified not only by considering the isothermal entropy
change under finite variation of the magnetic field ∆ST discussed above. A supplementary quantity
is a differential entropy change, characterized by (∂S/∂B)T . The negative value of the derivative
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corresponds to direct MCE (i.e., the entropy decreases if the magnetic field rises), whereas inverse MCE
means the positive value of the derivative. As a consequence, − (∂S/∂B)T is the convenient quantity
to consider. The behavior of − (∂S/∂B)T is illustrated in Figure 8 as a function of the temperature
and the magnetic field. The full range of T and B is depicted in Figure 8a (note the logarithmic scale
for the temperature). In general, the most pronounced absolute values of the derivative are observed
in the vicinity of the critical magnetic fields (where quantum level crossings occur) or close to the
zero field. This is consistent with the behavior seen in Figure 5. For the fields just below Bc,1 or Bc,2

inverse MCE can be detected, while just above both critical fields the effect switches to direct MCE.
The magnified range of parameters close to Bc,1 is shown in Figure 8b. The traces of the mentioned
behavior can be noticed up to significant temperature, up to a few tens of K. The low-temperature
feature in − (∂S/∂B)T is shown in detail in Figure 8c (this time in fully linear scale). The characteristic
field at which the entropy derivative takes the maximum value is proportional to the temperature.
This is related to the Schottky-like thermodynamic behavior of the system at low fields (when just
two states—the ground state and the first excited state—are important). This is the regime where
the energy gap between the states is proportional to the field and the characteristic temperature is
proportional to the gap. These factors explain the described linear relation.

1 0 - 5 1 0 - 4 1 0 - 3 1 0 - 2 1 0 - 1 1 0 0 1 0 1 1 0 2
0
1
2
3
4
5
6
7

 

 

∆S T  =  S ( T , B )  -  S ( T , B  =  1 T )
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T  ( K )

B  ( T ) :
 0 . 0 0 0 1
 0 . 0 0 1
 0 . 0 1
 0 . 0 5
 0 . 1
 0 . 2
 0 . 5

Figure 7. Isothermal entropy change as a function of temperature between the varying values of initial
magnetic field and the final magnetic field of 1 T.

Figure 8. Differential entropy change, − (∂S/∂B)T , as a function of the temperature and the magnetic
field. Lines of constant differential entropy change are plotted: (a) full range of temperature and
magnetic field (in logarithmic temperature scale and linear field scale); (b) magnetic fields in the
vicinity of the lower critical field (in logarithmic temperature scale and linear field scale); and (c) range
of weaker magnetic fields (in linear temperature and field scale). The features are visible in the vicinity
of the quantum level crossings—for detailed discussion and critical field values, see Appendix A.
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4. Final Remarks

In this paper, we present the calculation of the magnetocaloric properties of Cu5-NIPA molecular
magnet—an unfrustrated system based on a pair of corner-sharing spin triangles. The modeling was
based on the quantum Heisenberg Hamiltonian with exchange integrals taken from the experiment
(see [71]). The field ensemble (version of the canonical ensemble) and exact numerical diagonalization
was used for construction of the thermodynamic description and for calculation of the magnetic
entropy as a function of the temperature and external magnetic field.

It was found that the behavior of such quantities as the magnetic entropy and specific heat as a
function of the magnetic field is profoundly influenced by the crossing of energy levels corresponding
to different total spins, since two such critical magnetic fields are present in the system. The pronounced
maxima of entropy emerge in their vicinity and the derivative of entropy with respect to the magnetic
field also shows peaks there. The thermodynamics of Cu5-NIPA for weaker magnetic fields is ruled by
the Schottky-like behavior, with first excited state well separated from the higher excited states and the
energy gap being a linear function of the field.

A persistent entropy plateau at the value of R ln 2 ' 5.76 J·mol−1·K−1 is seen in the temperature
dependence of the entropy at low temperatures. This causes the isothermal entropy change to take
a step-like temperature dependence also with a similar plateau at the same value. The position of
the beginning and the end of this plateau can be tuned with the initial or final magnetic field. Such a
tunability concerns a rather wide span of temperatures (in general, belonging to subkelvin range, up to
approximately a few K for the used magnetic fields not exceeding a few T). Therefore, the isothermal
entropy change exhibits a rather high degree on tunability with the initial and final magnetic
field used in the isothermal process. This feature might be used to optimize the behavior for the
required temperatures for MCE applications. It is worth emphasizing that the maximum value of the
entropy change per mole when exploiting the mentioned plateau is ∆ST = R ln 2 ' 5.76 J·mol−1·K−1.
The value itself is not a record one, due to considerably low number of spins in the molecule and
their low magnitude. However, a highly interesting feature is the flat plateau in the temperature
dependence and step-like shape of the curve. This might contribute to rather high refrigerant capacity
(being an integral of ∆ST over the temperatures between the temperature of cool and hot reservoir
in the thermodynamic cycle—see, for example, [82]). It can be noticed that the typical shape of the
∆ST dependence on the temperature exhibits a single triangular peak and the working range of
temperatures covers usually the full width at half maximum of the peak. The plateau-like shape
is predicted for Cu5-NIPA for the range of initial and final fields not exceeding approximately 1 T.
Somehow larger magnitudes of isothermal entropy change are obtainable for much higher fields, the
achievement of which constitutes a highly challenging task. In particular, exploiting the full possible
entropy change of 5R ln 2 ' 28.81 J·mol−1·K−1 would require using the fields exceeding the second
critical field Bc,2 of approximately 194 T.

The overall behavior of the system bears some resemblance to another molecular magnet,
vanadium-based V6 (with two weakly interacting unfrustrated spin triangles), for which we studied
similar aspects of MCE in Ref. [51]. This proves that the triangle-based systems with quantum spins
S = 1/2 might constitute highly tuneable MCE molecular materials. The further studies would
include, for example, the calculation of some inequilibrium MCE properties. We also hope that our
work may serve as a motivation for experimental study of thermodynamic properties of the Cu5-NIPA
molecular system aimed at characterization of MCE (for example, in a similar way as in the case of
vanadium-based molecules [78]). Finally, it might be mentioned that Cu5-NIPA as a magnetocaloric
material does not contain rare-earth elements.
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Abbreviations

The following abbreviations are used in this manuscript:

MCE Magnetocaloric effect
NIPA 5-nitro-isophthalic acid ligand
Cu5-NIPA Cu5(OH)2(NIPA)4·10H2O

Appendix A. The Ground States and Critical Magnetic Fields

For the molecular magnet Cu5-NIPA considered in the present work, the three states with different
total spin S and total spin projection Sz can constitute ground states in various ranges of the external
magnetic field (for the values of exchange integrals given in Section 2). When the magnetic field is
varied, quantum level crossings occur between the mentioned states. The energies of these states
as well as the critical fields (level-crossing fields) corresponding to the crossings between them are
discussed below. These energies were determined from exact diagonalization of the Hamiltonian
(Equation (1)). The corresponding matrix size was 32× 32 and the symbolic diagonalization was
performed using Wolfram Mathematica software [76].

The energy of the state with S = 1/2 and Sz = 1/2 can be calculated as

E1/2 = Ẽ− 1
2

geµBB, (A1)

where Ẽ is one of the roots of the following cubic equation:

Ẽ3 +

(
1
2

J1 + J2

)
Ẽ2 −

(
1
2

J2
1 +

1
2

J1 J2 +
5
4

J2
2

)
Ẽ− 3

8
J1 J2 = 0. (A2)

This root is expressed in closed form by the formula:

Ẽ =
1
2

(
−1 + i

√
3
) 3

√
p
2
+

√
p2

4
+

q3

27
− 1

2

(
1 + i
√

3
) 3

√
p
2
−
√

p2

4
+

q3

27
, (A3)

where
p =

1
12

(
7J2

1 + 10J1 J2 + 19J2
2

)
(A4)

and
q =

1
108

(
10J3

1 + 33J2
1 J2 + 12J1 J2

2 + 53J3
2

)
. (A5)

Approximately, the energy can be expressed in the form of the power series in ratio J2/J1:

Ẽ ' J1

[
1 +

J2

J1
+

7
12

(
J2

J1

)2
− 5

36

(
J2

J1

)3
− 103

432

(
J2

J1

)4
+

247
1296

(
J2

J1

)5
+

409
2592

(
J2

J1

)6
+ ...

]
. (A6)

The energy of the state with S = 3/2 and Sz = 3/2 equals

E3/2 =
1
4

J1 −
1
4

J2 −
√

3
4

J1

√
3− 2

J2

J1
+ 7

(
J2

J1

)2
− 3

2
geµBB. (A7)

The energy of the state with S = 5/2 and Sz = 5/2 equals

E5/2 = −1
2

J1 −
5
2

geµBB. (A8)
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In the range of fields between 0 and Bc,1, the ground state has S = 1/2, Sz = 1/2 and the energy
E1/2. The critical field Bc,1 corresponds to the change to ground state with S = 3/2, Sz = 3/2 and can
be calculated from the cubic equation resulting from the condition E1/2 = E3/2. Approximately, it can
be expressed as:

Bc,1 '
|J1|

geµB

[
3
2

J2

J1
− 1

4

(
J2

J1

)2
− 5

12

(
J2

J1

)3
+

19
144

(
J2

J1

)4
+

269
432

(
J2

J1

)5
− 151

2592

(
J2

J1

)6
+ ...

]
. (A9)

The value of this critical field amounts to 54.36 T for the exchange integral values used in the
present paper.

The second critical field, Bc,2, corresponds to the change of the ground state from S = 3/2,
Sz = 3/2 to S = 5/2, Sz = 5/2 (i.e., the saturation state). Its value can be expressed by:

Bc,2 =
1
4
|J1|

geµB

3− J2

J1
+

√
9− 6

J2

J1
+ 21

(
J2

J1

)2
 , (A10)

giving the value of 193.91 T for the Hamiltonian parameters used.
For the most interesting range of lower magnetic fields, the energy gap between the ground state

and the first excited state, ∆1, is between the states with Sz = 1/2 and Sz = −1/2, both with S = 1/2.
Therefore, it equals to:

∆1 = geµBB. (A11)

At the field of 27.17 T, the first excited state becomes a state with S = 3/2, Sz = 3/2.
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9. Hołyńska, M. Introduction to Single-Molecule Magnets. In Single-Molecule Magnets; John Wiley & Sons, Ltd.:

Hoboken, NJ, USA, 2018; pp. 1–39.
10. Bertaina, S.; Gambarelli, S.; Mitra, T.; Tsukerblat, B.; Müller, A.; Barbara, B. Quantum Oscillations in a

Molecular Magnet. Nature 2008, 453, 203–206. [CrossRef]
11. Fitta, M.; Pełka, R.; Konieczny, P.; Bałanda, M. Multifunctional Molecular Magnets: Magnetocaloric Effect in

Octacyanometallates. Crystals 2019, 9, 9. [CrossRef]
12. Evangelisti, M.; Luis, F.; de Jongh, L.J.; Affronte, M. Magnetothermal Properties of Molecule-Based Materials.

J. Mater. Chem. 2006, 16, 2534–2549. [CrossRef]
13. Sessoli, R. Chilling with Magnetic Molecules. Angew. Chem. Int. Ed. 2012, 51, 43–45. [CrossRef] [PubMed]

http://dx.doi.org/10.3184/003685011X13046171774898
http://dx.doi.org/10.1088/0953-8984/16/24/R03
http://dx.doi.org/10.1016/j.jmmm.2003.12.004
http://dx.doi.org/10.1080/00107510801967415
http://dx.doi.org/10.1080/00107514.2019.1615716
http://dx.doi.org/10.1038/s41578-019-0146-8
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104053
http://dx.doi.org/10.1038/nature06962
http://dx.doi.org/10.3390/cryst9010009
http://dx.doi.org/10.1039/b603738k
http://dx.doi.org/10.1002/anie.201104448
http://www.ncbi.nlm.nih.gov/pubmed/22038955


Materials 2020, 13, 485 13 of 16

14. Zheng, Y.Z.; Zhou, G.J.; Zheng, Z.; Winpenny, R.E.P. Molecule-Based Magnetic Coolers. Chem. Soc. Rev.
2014, 43, 1462–1475. [CrossRef] [PubMed]

15. Evangelisti, M. Molecule-Based Magnetic Coolers: Measurement, Design and Application. In Molecular
Magnets: Physics and Applications; Bartolomé, J., Luis, F., Fernández, J.F., Eds.; NanoScience and Technology,
Springer: Berlin/Heidelberg, Germany, 2014; pp. 365–387.

16. Tishin, A.M.; Spichkin, Y.I. The Magnetocaloric Effect and its Applications; CRC Press: Boca Raton, FL, USA, 2003.
17. Romero Gómez, J.; Ferreiro Garcia, R.; De Miguel Catoira, A.; Romero Gómez, M. Magnetocaloric effect:

A review of the thermodynamic cycles in magnetic refrigeration. Renew. Sustain. Energy Rev. 2013, 17, 74–82.
[CrossRef]

18. Franco, V.; Blázquez, J.S.; Ipus, J.J.; Law, J.Y.; Moreno-Ramírez, L.M. ; Conde, A. Magnetocaloric effect: From
materials research to refrigeration devices. Prog. Mater. Sci. 2018, 93, 112–232. [CrossRef]

19. Sharples, J.W.; Collison, D.; McInnes, E.J.L.; Schnack, J.; Palacios, E.; Evangelisti, M. Quantum Signatures of
a Molecular Nanomagnet in Direct Magnetocaloric Measurements. Nat. Commun. 2014, 5, 1–6. [CrossRef]

20. Ciccarelli, C.; Campion, R.P.; Gallagher, B.L.; Ferguson, A.J. Intrinsic Magnetic Refrigeration of a Single
Electron Transistor. Appl. Phys. Lett. 2016, 108, 053103. [CrossRef]

21. Bradley, D.I.; Guénault, A.M.; Gunnarsson, D.; Haley, R.P.; Holt, S.; Jones, A.T.; Pashkin, Y.A.; Penttilä, J.;
Prance, J.R.; Prunnila, M.; et al. On-Chip Magnetic Cooling of a Nanoelectronic Device. Sci. Rep. 2017, 7, 1–9.
[CrossRef]

22. Affronte, M.; Ghirri, A.; Carretta, S.; Amoretti, G.; Piligkos, S.; Timco, G.A.; Winpenny, R.E.P. Engineering
Molecular Rings for Magnetocaloric Effect. Appl. Phys. Lett. 2004, 84, 3468–3470. [CrossRef]

23. Evangelisti, M.; Brechin, E.K. Recipes for Enhanced Molecular Cooling. Dalton Trans. 2010, 39, 4672–4676.
[CrossRef]

24. Garlatti, E.; Carretta, S.; Schnack, J.; Amoretti, G.; Santini, P. Theoretical Design of Molecular Nanomagnets
for Magnetic Refrigeration. Appl. Phys. Lett. 2013, 103, 202410. [CrossRef]

25. Liu, J.L.; Chen, Y.C.; Guo, F.S.; Tong, M.L. Recent Advances in the Design of Magnetic Molecules for Use as
Cryogenic Magnetic Coolants. Coord. Chem. Rev. 2014, 281, 26–49. [CrossRef]

26. Holleis, L.; Shivaram, B.S.; Balachandran, P.V. Machine Learning Guided Design of Single-Molecule Magnets
for Magnetocaloric Applications. Appl. Phys. Lett. 2019, 114, 222404. [CrossRef]

27. Torres, F.; Hernández, J.M.; Bohigas, X.; Tejada, J. Giant and Time-Dependent Magnetocaloric Effect in
High-Spin Molecular Magnets. Appl. Phys. Lett. 2000, 77, 3248–3250. [CrossRef]

28. Gajewski, M.; Pełka, R.; Fitta, M.; Miyazaki, Y.; Nakazawa, Y.; Bałanda, M.; Reczyński, M.; Nowicka, B.;
Sieklucka, B. Magnetocaloric Effect of High-Spin Cluster with Ni9W6 Core. J. Magn. Magn. Mater. 2016, 414,
25–31. [CrossRef]

29. Chen, W.-P.; Qin, L.; Camón, A.; Engelhardt, L.; Luis, F.; Winpenny, R.E.P.; Zheng, Y.-Z. Quantum Monte
Carlo simulations of a giant {Ni21Gd20} cage with a S = 91 spin ground state. Nat. Commun. 2018, 9, 2107.
[CrossRef]

30. Schnack, J. Frustration Effects in Magnetic Molecules. J. Low Temp. Phys. 2006, 142, 279–284. [CrossRef]
31. Schnack, J.; Schmidt, R.; Richter, J. Enhanced Magnetocaloric Effect in Frustrated Magnetic Molecules with

Icosahedral Symmetry. Phys. Rev. B 2007, 76, 054413. [CrossRef]
32. Pakhira, S.; Mazumdar, C.; Ranganathan, R.; Avdeev, M. Magnetic Frustration Induced Large Magnetocaloric

Effect in the Absence of Long Range Magnetic Order. Sci. Rep. 2017, 7, 1–8. [CrossRef]
33. Chakraborty, T.; Mitra, C. Magnetocaloric Effect as a Signature of Quantum Level-Crossing for a Spin-Gapped

System. J. Phys. Condens. Matter 2019, 31, 475802. [CrossRef]
34. Lorusso, G.; Roubeau, O.; Evangelisti, M. Rotating Magnetocaloric Effect in an Anisotropic Molecular Dimer.

Angew. Chem. Int. Ed. 2016, 55, 3360–3363. [CrossRef]
35. Beckmann, C.; Ehrens, J.; Schnack, J. Rotational Magnetocaloric Effect of Anisotropic Giant-Spin Molecular

Magnets. J. Magn. Magn. Mater. 2019, 482, 113–119. [CrossRef]
36. Engelhardt, L.; Luban, M. Simple Models and Powerful Tools for Seeking a Comprehensive Understanding

of the Magnetic Properties of Molecular Magnets. Dalton Trans. 2010, 39, 4687–4692. [CrossRef] [PubMed]
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42. Žukovič, M. Thermodynamic and Magnetocaloric Properties of Geometrically Frustrated Ising Nanoclusters.
J. Magn. Magn. Mater. 2015, 374, 22–35. [CrossRef]
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