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Abstract. Kidney renal clear cell carcinoma (KIRC) is a 
frequent malignant tumor characterized by a high degree 
of heterogeneity and genetic instability. DNA double‑strand 
breaks generated by homologous recombination deficit (HRD) 
are a well‑known contributor to genomic instability, which 
can encourage tumor development. It is not known, however, 
whether the molecular characteristics linked with HRD have 
a predictive role in KIRC. The discovery cohort comprised 
501 KIRC patients from The Cancer Genome Atlas database. 
Genome and transcriptome data of HRD patients were used 
for comprehensive analysis. Single cell RNA sequencing 
(scRNA‑seq) was used to verify the test results of bulk 
RNA‑seq. In the present study, patients with a high HRD score 
had a worse prognosis compared with those with a low HRD 
score. The DNA damage response signaling pathways and 
immune‑related signaling pathways were notably enriched in 
the HRD‑positive subgroup. Further comprehensive analysis 
of the tumor microenvironment (TME) revealed that the signal 
of exhausted CD8+ T cells was enriched in the HRD‑positive 
subgroup. Finally, scRNA‑seq analyses confirmed that the 
immune‑related signaling pathways were upregulated in 
HRD‑positive patients. In conclusion, the present study not 
only demonstrated that a high HRD score is a valid prognostic 
biomarker in KIRC patients, but also revealed the TME in 
HRD‑positive tumors.

Introduction

Renal cell carcinoma (RCC) is a prevalent urologic malig‑
nancy with incidence and fatality rates that rank fifteenth 
among malignant tumors (1). RCC is divided histologically 
into subtypes, with kidney renal clear cell carcinoma (KIRC) 
accounting for >80% of RCCs, followed by papillary RCC 
and chromophobe RCC (2,3). Despite the fact that KIRC is 
a disease that may be detected early and successfully treated 
with surgical or ablative techniques, up to one‑third of cases 
will present with or acquire metastases and 20‑40% of cases 
will relapse after nephrectomy for localized disease (4). KIRC 
is particularly resistant to chemotherapy and the conventional 
treatment for metastatic KIRC5 is targeted therapy with tyro‑
sine kinase inhibitor (TKI)/mammalian target of rapamycin 
inhibitor (mTORi) with or without immunotherapy (5). Once 
KIRC recurs, no additional treatment is successful.

The majority of patients with KIRC demonstrate chro‑
mosomal 3p deletion and genomic mutations in the Von 
Hippel‑Lindau (VHL) Tumor Suppressor allele (6), followed 
by secondary loss of several tumor suppressor genes, such as 
PBRM1, SETD2, BAP1 and/or KDM5C (7). These genes also 
contribute to genomic instability (8). 

Additionally, a significant contributor to genomic 
instability is homologous recombination repair deficiency 
(HRD) (9). As a potent prognostic biomarker, HRD has been 
discovered in recent years in a number of types of cancer. 
Although identification of HRD in adrenal cortical carcinoma 
predicts a worse clinical prognosis compared with non‑HRD 
patients, molecular characterization of HRD in ovarian 
malignancies predicts more effective PARP inhibitor therapy 
and longer life (10). The current clinical detection of HRD is 
theoretically based on the specific, quantifiable and permanent 
genomic alterations produced by HRD, such as identifying 
genetic mutations, insertion/deletion patterns, chromosomal 
structural abnormalities and gene copy number variations (11). 
A ‘genomic scar’ made up of large‑scale state transitions 
(LST), telomere allele imbalance (TAI) and genomic hetero‑
zygosity loss (LOH) may result from HRD, a functional defect 
in homologous recombinant DNA repair (12). The HRD 
state of cells can be partially described by LOH, TAI and 
LST, each of which have unique definitions. The HRD score, 
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which is created from the three markers (LOH+TAI+LST), is 
a more reliable predictor of HRD than any of the individual 
scores, even though each score has clinical significance on 
its own (13,14). The relationship between HRD and tumors 
has been extensively studied in other types of cancer, such as 
ovarian cancer and breast cancer, but it is still unclear how 
HRD affects the prognosis and the tumor microenvironment 
(TME) in KIRC (15,16).

The present study discovered that HRD was a prognostic 
indicator for patients with clear cell renal cell carcinoma. 
HRD patients exhibited a characteristic upregulation of 
immune‑related and DNA damage repair pathways. Single 
cell RNA sequencing (scRNA‑seq) analysis revealed a higher 
prevalence of exhausted T cell signatures in patients with 
HRD. The present study is expected to yield novel insights into 
the individualized treatment of KIRC.

Materials and methods

Sample collection. In the present study, four KIRC patients 
with HRD‑positive tumors were recruited between March 
2021 and June 2021 in Hangzhou Hospital of Traditional 
Chinese Medicine (Table SI). For KIRC patients, tumor tissues, 
adjacent normal tissues were collected. Written informed 
consent was obtained from all participants. The present study 
was performed in accordance with the ethical principles of 
the Declaration of Helsinki and was approved by the Research 
and Ethics Committee of Hangzhou Hospital of Traditional 
Chinese Medicine (approval no. 2019KY005). The patients 
underwent next‑generation sequencing using whole exome 
sequencing (WES). Using matched normal (blood) samples 
from each patient as a reference, tumor mutation burden 
(TMB) was computed as the total detected missense mutations 
in the pretreatment tumor samples (17). PD‑L1 expression on 
tumor cells was prospectively assessed using the Dako PD‑L1 
IHC 28‑8 pharmDx test (Agilent Technologies, Inc.) (18). 
Microsatellite instability is calculated using the MSIsensor 
algorithm (19).

Data collection and processing. The Cancer Genome Atlas 
(TCGA) database, which is open to the public and can be 
accessed at https://portal.gdc.cancer.gov, was used to down‑
load the Original WES sequencing data, gene expression 
profile data and associated clinical follow‑up data (20). From 
the TCGA databases, 501 KIRC samples with complete 
clinical data were obtained (https://www.cbioportal.org/study/
clinicalData?id=kirc_tcga_pan_can_atlas_2018). VarScan2 was 
used to identify somatic mutations, such as insertion‑deletions 
and single nucleotide polymorphisms (21). Synonymous single 
nucleotide variants (SNV), non‑synonymous SNV, stop gain 
SNV, non‑frameshift insertions and frameshift deletions were 
among the exonic alterations that were extracted from the muta‑
tion points and annotated using ANNOVAR (22). The cBioPortal 
database (https://www.cbioportal.org/study/summary?id=kirc_
tcga_pan_can_atlas_2018) provided the somatic mutation 
counts, copy number variation (CNV), fraction genome altered 
scores (FGA; percentage of copy number altered chromosome 
regions out of measured regions) and TMB sensor score (tumor 
mutation burden detection using paired tumor‑normal sequence 
data) (23). Lymphocytes infiltrating HRD and homologous 

recombination proficient (HRP) tumors were obtained from 
public database (https://doi.org/10.5522/04/16573640.v1) (24).

HRD score analysis. The number of counts of chromosomal 
LOH regions longer than 15 Mb but shorter than the entire chro‑
mosome was used to define loss of heterozygosity (LOH) (25). 
After smoothing and filtering out small‑scale copy number 
variation shorter than 3 Mb, LST were defined as chromo‑
some breakpoints (change in copy number or allelic content) 
between adjacent regions, each of ≥10 Mb (26). The quantity 
of regions with allelic imbalance that reach the sub‑telomere 
but do not cross the centromere is known as telomeric allelic 
imbalance (TAI) (27). The TAI, LST and LOH scores were 
added together to create the HRD score. Table SII displays 
each patient's HRD score.

Difference analysis and enrichment analysis. Using the 
R‑package (https://www.r‑project.org/) DEseq2 (28), the differ‑
ences between various molecular subtypes were examined. 
The cutoffs to find differentially expressed genes (DEGs) were 
set as fold change >1 and adj. P<0.05. For the HRD group, the 
present study used gene ontology (GO) enrichment analysis to 
identify specific biological functions. All peak‑related genes 
were first assigned to GO terms in the GO database. Gene 
numbers were calculated for each term and a hypergeometric 
test was used to identify GO terms that were significantly 
enriched in peak‑related genes compared with the genome 
background. Additionally, the reference gene set for gene set 
enrichment analysis (GSEA; cp.kegg.v7.0.symbols.gmt) was 
used to examine the enrichment of various molecular subtypes 
in various pathways (29). P<0.05 and a false discovery rate 
(FDR) threshold of 0.25 were used to determine which path‑
ways were significantly enriched.

scRNA‑seq data processing and quality control. Mammary 
tissues from both benign and malignant tumors were saved 
during surgery and processed in 1 h using Tissue Storage 
Solution (Miltenyi Biotec GmbH). Following being rinsed 
in PBS, samples were mechanically separated using a 
razor blade. Dissociated samples were processed in RPMI 
Medium 1640 (Gibco; Thermo Fisher Scientific, Inc.) with 
collagenase/hyaluronidase (20%; Stemcell Technologies, Inc.) 
and BSA (20 mg/ml; Beijing Solarbio Science & Technology 
Co., Ltd.) at 37˚C for 1 h in order to produce cell suspensions. 
In order to create single‑cell suspensions, the cells were next 
rinsed in a cold Hank's balanced salt solution (Beijing Solarbio 
Science & Technology Co., Ltd.) containing 0.04 percent 
BSA. The 10x Genomic Chromium Next GEM Single Cell 
5' Reagents kit V2 (dual index) (10x Genomics) was used to 
create a 5'gene expression library. Using the High Output 
kit v2.5 and the NextSeq (Illumina, Inc.), the samples were 
sequenced (150 Cycles). The aggregated scRNA‑seq library's 
low‑quality cells were eliminated (500 <nFeature <10,000; 
1000 <nCount <100,000 and 0 <pMT <0.2). Datasets were 
subsequently preprocessed with DoubletFinder v2.0.2 (30) to 
eliminate heterotypic doublets (presuming 6% of barcodes are 
doublets). With SCTransform and Harmony (31), the filtered 
library was normalized and batch effects were removed. Cell 
distances were then visualized in a reduced two‑dimensional 
space using the t‑distributed stochastic neighbor embedding 
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or uniform manifold approximation and projection (UMAP) 
method (https://satijalab.org/seurat/reference/runumap). 
scType was used to conduct cell type annotation and the cell 
markers used in this work were taken from earlier studies 
(Table SIII) (32). DEseq2 was used to determine the signifi‑
cance of each gene (FDR <0.01; fold change |log2FC| >1) in 
order to find the DEGs between two groups of clusters.

Single‑cell copy‑number variation (CNV) evaluation. 
The inferCNV R package (version 1.4.0; https://github.
com/broadinstitute/inferCNV/wiki) was used to evaluate the 
CNV of each cell. The CNVs of cells with renal cell carci‑
noma were calculated, using stromal cells as the standard. The 
default hidden Markov model (HMM) settings, ‘denoise’ and a 
value of 0.1 for cutoff were used in the inferCNV analysis. The 
default Bayesian latent mixture model was used to identify the 
posterior probabilities of the CNV alterations in each cell with 
the default value of 0.5 as the threshold in order to decrease the 
number of false‑positive CNV calls.

Data and code availability. The single cell datasets and 
code generated during the present study are accessible in 
the Zenodo database (https://zenodo.org/record/7783618#.
ZCTwZXZBy3A).

Results

Genomic scar‑based homologous recombination deficit 
(HRD) scores and prognostic analysis in KIRC. The discovery 
cohort of the present study included 501 KIRC patients 
from TCGA database to examine the potential relevance 
of HRD in KIRC. The top 20% of patients with the highest 
HRD scores and the bottom 20% of patients with the lowest 
HRD scores were determined using WES data for each 
KIRC sample and these samples were then sorted based on 
HRD scores. In terms of overall survival (OS; log‑rank test; 
P=0.0004), disease‑specific survival (DSS; log‑rank test; 
P=0.15), or disease progression‑free survival (PFS; log‑rank 
test; P=0.0008), patients with HRD had a worse prognosis 
compared with patients with HRP, according to the results of 
the survival analysis (Fig. 1A).

The present study examined genome‑wide copy number 
variation to show differences in genomic instability between 
HRD and HRP patients because HRD is an assessment of 
genome‑wide traces. As expected, HRD patients had more 
genomic instability (Fig. 1B).

The mutation landscape in KIRC. An integrated analysis of 
the WES data was conducted in the study population (The top 
20% of patients with the highest HRD scores and the bottom 
20% of patients with the lowest HRD scores). The five most 
frequently mutated genes, VHL, PBRM1, TTN, SETD2 and 
BAP1, all displayed mutation rates of >15% in both groups, 
as shown in Fig. 2A, which was consistent with the findings 
of other cohort studies. Next, the additional genetic variations 
between the two categories was assessed, including mutation 
count and fraction genome altered (FGA). In the HRD group 
compared with the HRP group, the signs of genomic instability 
were significantly more prevalent (Wilcoxon signed‑rank test, 
P<0.0001, Fig. 2B).

Discovering the HRD transcriptome signature in KIRC. To 
explore the transcriptomic signatures associated with HRD, the 
KIRC gene expression profile data was examined to understand 
HRD‑specific transcriptome markers (Fig. 2C). A total of 
1,540 genes were found to be differentially expressed between 
HRD and HRP patients according to the DEseq2 analysis 
of gene expression profiling data (|logFC| >1.5; FDR 0.05). 
Specifically, out of the 1,540 DEGs, 630 DEGs were upregu‑
lated and 910 were downregulated (Fig. 3A). Using the online 
analytical tool DAVID, Kyoto Encyclopedia of Genes and 
Genomes (KEGG) signaling pathway enrichment analysis and 
Gene Ontology (GO) functional annotation were performed to 
obtain a thorough and in‑depth understanding of the biological 
characteristics of these DEGs. According to GO analysis, sister 
chromatid cohesion, mitotic nuclear division, inflammatory 
response and other biological processes are among the enriched 
biological processes (BP) of upregulated DEGs. The enriched 
molecular function (MF) of upregulated DEGs included 
chemokine activity, DNA replication origin binding and 
anaphase‑promoting complex binding (Fig. 3B). The regulation 
of lipolysis in adipocytes, aldosterone synthesis and secretion, 
GABAergic synapses, vascular smooth muscle contraction, 
chemokine signaling pathway and Chemokine‑Chemokine 
receptor interaction are among the enriched pathways of 
upregulated DEGs, according to KEGG analysis (Fig. 3B). The 
homologous recombination pathway, the base‑excision repair 
pathway, Chemokine receptor interaction and the cytosolic 
DNA sensing pathway were all significantly enriched in the 
HRD group, according to the GSEA analysis (Fig. 3C).

Analysis of tissue samples from HRD‑positive KIRC patients 
using single‑cell sequencing. As standard bulk RNA‑sequencing 
assumes that each gene is expressed identically in every cell (33), 
it is obviously unable to explore intratumoral heterogeneity at 
the cell‑type level. Single‑cell RNA‑sequencing (scRNA‑seq) 
has made feasible the profiling of the transcriptome of a single 
cell. Consequently, the scRNA‑seq data of four KIRC patients 
were analyzed. A total of four KIRC patients undergoing radical 
nephrectomy provided a total of eight tissue samples for this 
investigation. The Materials and methods section describes 
the quality control criteria. A total of five separate clusters 
with diverse gene profiles were identified using unsupervised 
clustering of these cells and their distributions were comparable 
across patients (Fig. 4A). After removing batch effects and 
regressing out the influence of the number of unique molecular 
identifiers (UMIs) and percentage of mitochondrion‑derived 
UMI counts, 9,333 cells with ≥200 UMIs passed the quality 
filtering. These cells were separated into six major cell lineages: 
B cells, CD8 T cells, endothelium cells, epithelial cells, macro‑
phage cells and smooth muscle cells (Fig. 4B). The annotation of 
various clusters in Fig. 4C was performed in accordance with the 
type of tissue sample. In different cases, the boundaries between 
neighboring benight tumor tissue cells are unclear, although 
tumor tissue cells are relatively autonomous (Fig. 4C). Fig. 4D 
is a dot diagram illustrating marker genes for each cell subgroup.

The present study estimated and identified large‑scale 
chromosomal CNV by inferCNV for each sample based on 
transcriptomes to identify malignant cells. Epithelial cells 
from tumor tissues generated an inferCNV clustered heatmap 
that matches to the normalized expression levels of epithelial 
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cells in benight neighboring tumor tissue. The resultant CNV 
heatmap depicted regions of increase in red and regions 
of loss in blue. As there were not enough epithelial cells in 
some samples, epithelial cells from the normal tissues of 
patients 2 and 3 were chosen as the control group and the tumor 
tissues of patients 1 and 4 were chosen as the case group. It 

was discovered that the epithelial cells of tumor tissues under‑
went significant CNV occurrences compared with control 
cells (Fig. 5A). These findings indicated that the epithelial 
cells were cancerous cells. Compared with conventional bulk 
RNA‑seq, scRNA‑seq may assess TME with greater preci‑
sion. Therefore, KEGG enrichment analysis was conducted 

Figure 1. The clinical significance of HRD in the TCGA‑KIRC cohort. (A) Kaplan‑Meier analysis of survival revealed OS, PFS and DSS differences between 
HRD and HRP patients in the TCGA‑KIRC cohort. (B) Genome‑wide copy number variation analysis revealed genomic instability differences between HRD 
and HRP patients. HRD, homologous recombination deficit; TCGA, The Cancer Genome Atlas; KIRC, kidney renal clear cell carcinoma; HRP, homologous 
recombination proficient; OS, overall survival; PFS, progression‑free survival; DSS, disease‑specific survival.
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Figure 2. The mutation landscape in the TCGA‑KIRC cohort. (A) Summary of the most prevalent genomic alterations in different HRD group. The mutational 
matrix shows Missense_Mutations (green), Nonsense_Mutations (red), Frame_shift_Deletions (blue), Splice_site mutations (orange), Frame_shift_Insertions 
(purple), In_Frame_Dels (yellow), In_Frame_Ins (brownness), Translation_Start_Site mutations (light brown), Nonstop_Mutations (light blue). (B) Violin plot 
of fraction of genome altered in HRD and HRP groups (Wilcoxon signed‑rank test;); Violin plot of mutation count in the HRD and the HRP groups (Wilcoxon 
signed‑rank test;). (C) WES calculated HRD scores for each KIRC patient, with the 20% of patients with the highest HRD scores constituting the HRD group 
and the 20% of patients with the lowest HRD scores constituting the HRP group. TCGA, The Cancer Genome Atlas; KIRC, kidney renal clear cell carcinoma; 
HRD, homologous recombination deficit; HRP, homologous recombination proficient; WES, whole exome sequencing.

Figure 3. Analysis of the transcriptome profiles of patients with HRD and HRP. (A) DEGs between HRD and HRP subtypes. The red triangles represent 
differentially upregulated genes, whereas the green triangles represent differentially downregulated genes. (B) GO term and KEGG analysis of upregulated 
pathways in the HRD group compared with the HRP group was conducted. The first lap indicates the top 21 GO terms and the outer lap corresponds to the 
number of genes. The second lap specifies the number of genes in the genome background as well as the Q values for enrichment of upregulated genes for 
the specified biological process. The third lap indicates the ratio of upregulated (dark purple) to downregulated (light purple) genes. The fourth lap represents 
the enrichment factor of each GO term. (C) GSEA of the most enriched pathways of the HRD group compared with the HRP group. HRD, homologous 
recombination deficit; HRP, homologous recombination proficient; DEGs, differentially expressed genes; GO. gene ontology; KEGG, Kyoto Encyclopedia of 
Genes and Genomes; GSEA, gene set enrichment analysis.
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on the upregulated and downregulated DEGs of malignant 
and normal epithelial cells. As indicated in Fig. 5B, epithelial 
cells of tumor tissue were enriched in the DNA repair, cell 
cycle, Chemokine‑Chemokine receptor interaction and innate 
immune response pathways.

Analysis of the T cell characteristics of HRD‑positive KIRC 
patients using single‑cell sequencing. Chemokine‑related 
signaling pathways play a crucial role in the migra‑
tion of T cells (34,35). The present study speculated that 
HRD‑positive patients may be characterized by the presence 
of loss‑of‑function mutations in homologous recombination 
repair (HRR)‑related genes, whereas patients with HRP 
may lack mutations in genes involved in the HRR signaling 
pathway. The present study found that in HRD‑positive 
cancers, the chemokine‑related signaling pathways were 
activated (Fig. 5B). To further characterize T cells in HRD 
tumors, the present study evaluated scRNA‑seq data recov‑
ered from HRD and HRP tumor‑infiltrating T lymphocyte 
suspensions . scType algorithm classified T cells as CD8+ 
(ISG+, NME1+, Tex and Trm) and CD4+ regulatory (Fig. 5C). 
Expression of cytotoxicity marker genes, such as GZMA/B/K 
and IFNG and immunological checkpoint marker genes, such 
as LAG3 and PDCD1, distinguished CD8+ Tex cells (Fig. 5D). 

The percentage of lymphocytes infiltrating HRD and HRP 
tumors were then compared. As depicted in Fig. 5E, when 
HRD tumors were compared with HRP cancers, CD8+ Tex 
cells were dramatically increased (60% vs. 6.2%, P<0.001) 
and CD4 + regulatory cells were significantly decreased 
(0.1 percent vs. 17.2%, P<0.001).

Discussion

Malignancies frequently exhibit HRD, a common genetic 
abnormality (36). The improvement of our understanding of 
malignancies is facilitated by HRD research. Despite the fact 
that few research have addressed the impact and importance 
of HRD in KIRC, genomic instability is associated to the 
prevalence of the disease (37,38). While KIRC has additional 
genomic instability characteristics, it has a lower preva‑
lence of BRCA1/2 mutations than breast or ovarian cancer. 
Additionally, KIRC had not offered a gene panel gold standard 
for HRD detection. A mutational signature‑based technique 
for predicting HRD is the HRD score. It can more correctly 
predict HRD in KIRC since it focuses on the consequences of 
HRD rather than its root cause. The present study was the first 
to look into the prognostic value of HRD in KIRC, to the best 
of the authors' knowledge.

Figure 4. Single‑cell sequencing analysis of tissue samples from HRD‑positive KIRC patients. (A) tSNE embedding of tumor and adjacent noncancerous cell 
transcriptional profiles in four patients. Each dot represents a single cell, while each color corresponds to a distinct sample. (B) tSNE plot of the six major cell 
types identified in tumors and their adjacent tissues. (C) The type of tissue sample is taken into consideration while annotating the different clusters in tSNE 
plot. (D) Bubble diagram displaying signature gene expressions across the six cellular clusters. The size of the dots indicates the proportion of cells that express 
a particular marker, while the color indicates the average expression levels of the markers. HRD, homologous recombination deficit; KIRC, kidney renal clear 
cell carcinoma; tSNE, t‑distributed stochastic neighbor embedding; N, para‑carcinoma tissue; P, tumor tissue.
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Patients with KIRC frequently experience recurring tumors 
as distant metastases and only 10% of them respond to chemo‑
therapy (5). This may be due to the absence of biomarkers that 
stratify chemotherapy treatment and HRD may be an excellent 
biomarker for predicting the efficacy of platinum treatment in 

KIRC. Obviously, additional research is required to determine 
the relationship between HRD‑positive KIRC patients and the 
efficacy of platinum treatment.

By analyzing the expression profile of patients with 
different HRD scores, the present study identified DNA 

Figure 5. Single‑cell sequencing analysis of the T‑cell characteristics of HRD‑positive KIRC patients. (A) Top, the hierarchical heatmap displaying large‑scale 
CNVs in normal tissues from the epithelial cells of two KIRC patients; bottom, the hierarchical heatmap displaying large‑scale CNVs in tumor tissues from 
the epithelial cells of two KIRC patients. (B) Analysis of differential genes in malignant epithelial cells based on KEGG and GO functional enrichment. 
(C) Left, UMAP projection of cells colored by HRD and HRP patients. Right, the tSNE plot of the five major T cell types isolated from tumor tissues. (D) The 
bubble chart displays the 14 signature gene expressions across the five cellular clusters. The size of the dots represents the percentage of cells that express a 
particular marker and the color spectrum indicates the average expression levels of the markers (log1p transformed). (E) Relative proportion of each cell cluster 
from HRD and HRP patients as indicated. ***P<0.01. HRD, homologous recombination deficit; KIRC, kidney renal clear cell carcinoma; CNVs, single‑cell 
copy‑number variation; KEGG, Kyoto Encyclopedia of Genes and Genomes; UMAP, uniform manifold approximation and projection; HRP, homologous 
recombination proficient; tSNE, t‑distributed stochastic neighbor embedding.
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damage repair (DDR) signaling pathways and the innate 
immune related pathways were enriched in patients with high 
HRD scores. The widespread activation of DDR signaling 
pathways supports the notion that HRD serves as a biomarker 
for assessing genomic instability (39). Additionally, HRD 
patients exhibit activation of innate immune‑related signaling 
pathways. To confirm that these activated immune‑related 
signaling pathways originate from HRD tumor cells, the 
present study conducted scRNA‑seq analyses. The results of 
scRNA‑seq directly proved that HRD tumor cells upregulated 
the Chemokine‑related signaling pathways. Chemokines 
are a class of proteins that attract leukocytes to the site of 
infection and serve an important role in the inflammatory 
response (40). Researchers believe that chemokines also play 
a key role in tumorigenesis and development. For example, 
some studies have found that chemokines mediate a variety 
of immune cells into the tumor microenvironment, help T 
cells enter tumors and affect tumor immunity and therapeutic 
effects (40‑42). The activation of Chemokine‑related signals 
causes changes in TME (37), as evidenced by scRNA‑seq 
results of T lymphocytes: intratumoral T cells in the HRD 
patients were distinct from T cells in the HRP patients. The 
present study found that KIRC patients with HRD had the 
highest proportion of CXCL13+ Tex. Previous studies have 
shown that CXCL13 is a signature gene of tumor‑specific 
T cells (43,44) and these results suggest that KIRC patients 
with HRD may have a higher proportion of tumor‑specific 
T lymphocytes in their tumors and that immunotherapy may 
benefit these patients. Furthermore, the present study discov‑
ered that intratumoral T cells in HRP had a larger percentage 
of Treg cells. Further investigation is necessary to determine 
the cause of this event.

It was expected that the results of the present study will 
provide important insights and lead to a more effective thera‑
peutic treatment and prognosis for KIRC. As the present study 
was conducted on a cohort from a public database, it did not 
collect comprehensive clinical data regarding the clinical care 
of patients and treatment options. More research is needed on 
the prognostic mechanism of genomic instability in KIRC. The 
analysis and discussion of the HRD‑related genome, transcrip‑
tome and TME in this review would provide a new method for 
identifying therapy‑ and prognosis‑related biomarkers.
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