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Abstract: Adjuvant radiotherapy after prostatectomy was recently challenged by early salvage
radiotherapy, which highlighted the need for biomarkers to improve risk stratification. Therefore,
we developed an MRI ADC map-derived radiomics model to predict biochemical recurrence (BCR)
and BCR-free survival (bRFS) after surgery. Our goal in this work was to externally validate this
radiomics-based prediction model. Experimental Design: A total of 195 patients with a high recurrence
risk of prostate cancer (pT3-4 and/or R1 and/or Gleason’s score > 7) were retrospectively included
in two institutions. Patients with postoperative PSA (Prostate Specific Antigen) > 0.04 ng/mL or
lymph node involvement were excluded. Radiomics features were extracted from T2 and ADC
delineated tumors. A total of 107 patients from Institution 1 were used to retrain the previously
published model. The retrained model was then applied to 88 patients from Institution 2 for external
validation. BCR predictions were evaluated using AUC (Area Under the Curve), accuracy, and
bRFS using Kaplan–Meier curves. Results: With a median follow-up of 46.3 months, 52/195 patients
experienced BCR. In the retraining cohort, the clinical prediction model (combining the number of
risk factors and postoperative PSA) demonstrated moderate predictive power (accuracy of 63%).
The radiomics model (ADC-based SZEGLSZM) predicted BCR with an accuracy of 78% and allowed
for significant stratification of patients for bRFS (p < 0.0001). In Institution 2, this radiomics model
remained predictive of BCR (accuracy of 0.76%) contrary to the clinical model (accuracy of 0.56%).
Conclusions: The recently developed MRI ADC map-based radiomics model was validated in terms
of its predictive accuracy of BCR and bRFS after prostatectomy in an external cohort.

Keywords: magnetic resonance imaging; prostatic neoplasms; radiomics; machine learning;
treatment failure
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1. Introduction

Prostate cancer (PCa) is the most common cancer among men with approximately 191,900 patients
expected to be diagnosed in 2020 in the United States, and more than 33,000 deaths annually [1]. With
excellent long-term outcomes, radical prostatectomy (RP) is a first-line treatment for localized PCa. [2].
Nevertheless, biochemical recurrence (BCR) occurs in 50% of these patients, especially those with
high-risk features, such as locally advanced disease (T3-4), positive margins (R1), and high Gleason
scores, with BCR being a surrogate of metastatic relapse and cancer-specific death [3]. Adjuvant
radiotherapy (aRT) improves BCR-free survival, but its impact on overall survival is controversial and
was shown to increase gastrointestinal and genitourinary side effects [4–7]. Hence, aRT was recently
challenged by early salvage radiotherapy (esRT) with no significant benefit emerging for the use of
aRT for BCR-free survival, thus highlighting the need for additional biomarkers to enable patient
selection [8–10].

The natural history of relapse after RP is heterogeneous even in patients with high-risk features
and may reflect a broad range of underlying tumor pathophysiological processes. Magnetic resonance
imaging (MRI) is routinely used by clinicians for diagnosis and staging of PCa. In an attempt to
move toward more quantitative exploitation of medical images, interest in the radiomics approach has
recently been growing. Radiomics features are statistical, geometrical, or textural metrics providing
quantitative measurements of tumor intensity, shape, and heterogeneity, which may reflect intratumoral
histopathological properties and provide prognostic information in several pathologies, including
PCa [11–13].

We previously reported on the development of a predictive model based on a single radiomics
feature, size-zone emphasis (SZEGLSZM), extracted from ADC maps obtained from 107 pre-therapeutic
prostatic diffusion weighted imaging (DWI) MRIs [14]. Grey-Level Size Zone Matrix (GLSZM) evaluates
the size of zones of the same grey-level voxels. This model was trained on a cohort treated at our
center. Through this study, we aimed to validate this model in an independent external cohort.

2. Methods

2.1. Selection of Patients

Patients who were histologically proven to be PCa patients and treated with RP with or without
lymphadenectomy from 2010 to 2016 at one of two institutions, i.e., Institution 1: University Hospital
of Brest and Institution 2: the Hospital of Quimper and the Clinique-St Michel in Quimper, were
retrospectively considered. We only included patients harboring high-risk features on the pathologic
specimen, namely, pT3a-b or pT4 and/or R1 and/or Gleason 8–10, and with available preoperative
pelvic MRI.

All patients with lymph node involvement after extensive lymphadenectomy were excluded,
as were those whose PCa diagnoses were obtained after cystoprostatectomy for bladder carcinoma.
We excluded patients who received adjuvant treatment (aRT and/or adjuvant androgen deprivation
therapy) and those with postoperative detectable PSA (PSA > 0.04 ng/mL at 3 months following RP).
Patients with unavailable MRI were also excluded. Patient selection is detailed in Figure 1.

Clinical and biological follow-ups were performed at 1, 3, and 6 months and then every 6 months
after surgery. A minimum follow-up of 24 months was also mandatory, except in cases of BCR.

The patients from Institution 1 were already known to us. As mentioned above, our previous
article dealt with the development of the predictive models [14]. For the current analysis, we carried
out retraining of the predictive models using updated follow-up information and validation using the
Institution 2 cohort.

This study was approved by both hospital ethical committees (PREBOP 29DRC18.0108) and all
patients gave their consent for the use of their clinical and imaging data.
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Figure 1. Flowchart of the selection. 

Abbreviations: pN1: lymph node involvement after lymphadenectomy; pN0: absence of lymph node 
involvement after lymphadenectomy; cN0: absence of lymph node involvement after 
clinical/radiological exam; PSA: Prostate Specific Antigen; MRI: Magnetic Resonance Imaging. 
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The primary endpoint was the prediction of BCR, which was defined as a PSA increase above 
0.2 ng/mL confirmed by 2 successive blood samples. The secondary endpoint was the prediction of 
BCR-free survival (bRFS). 
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Figure 1. Flowchart of the selection. Abbreviations: pN1: lymph node involvement after
lymphadenectomy; pN0: absence of lymph node involvement after lymphadenectomy; cN0: absence
of lymph node involvement after clinical/radiological exam; PSA: Prostate Specific Antigen; MRI:
Magnetic Resonance Imaging.

2.2. Endpoints

The primary endpoint was the prediction of BCR, which was defined as a PSA increase above
0.2 ng/mL confirmed by 2 successive blood samples. The secondary endpoint was the prediction of
BCR-free survival (bRFS).

2.3. Surgery

Radical prostatectomy was performed by only one highly-experienced surgeon in Institution 1
and by 5 surgeons with diverse surgical experiences in Institution 2, all following EAU (European
Association of Urology) guidelines [15].
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Indication of lymphadenectomy was based on preoperative lymph node invasion risk assessment.
Until 2015, extended lymphadenectomy was at the surgeon’s discretion. After 2015, extended
lymphadenectomy was the standard of care.

2.4. MRI

Preoperative imaging differed between institutions. Four different MRI scanners were used,
including a Phillips 3T (Philips Healthcare, Eindhoven, The Netherlands) and a Siemens 1.5T (Siemens
Healthcare, Malvern, PA, USA) in Institution 1 and a Philips 1.5T (Philips Healthcare, Eindhoven,
The Netherlands) and a Siemens 1.5T (Siemens Healthcare, Malvern, PA, USA) in the two clinical
centers of Institution 2.

Acquisition was performed in supine position, using a 6-channel phased-array surface coil,
following the European Society of Urogenital Radiology (ESUR) guidelines. Anatomical images
(axial turbo spin echo T2-weighted) were combined with functional sequences, such as axial diffusion
sequences using several b-values up to 1100 (Table S1) and dynamic contrast-enhanced sequences
(perfusion sequence for Philips 3T and a T1 sequence with gadolinium injection for Siemens 1.5T and
Philips 1.5T). ADC maps were calculated using each corresponding manufacturer’s software. Full
details about acquisition parameters are provided in Table S1.

2.5. Clinical Features

We included the following clinical variables: T stage (extra-capsular extension and/or seminal
vesicle invasion), Gleason score (surgical pathology only), pre- and postoperative PSA, margin status,
age at surgery, number of risk factors, and CAPRA-S Score (Cancer of the Prostate Risk Assessment
Score) [16]. For patients who did not undergo pelvis lymphadenectomy, the risk of lymph node
involvement was evaluated using the Roach formula [17], i.e., risk of lymph node involvement (%) =

PSA × 2/3 + (Gleason score – 6) × 10, with a risk of >15% being considered high.

2.6. Tumor Delineation

Using the Fast GrowCut Effect extension available in 3D Slicer® v4.8.0 index, prostatic tumors
were semi-automatically delineated by a single expert (V.B.) on both the ADC and T2 sequences using
all sequences available on the preoperative multiparametric MRI (see Figure 2).
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Figure 2. Examples of delineation on both T2 (left) and ADC (right) sequences. Images acquired on a
Philips 3T Scan. Patient #27: Initial PSA (Prostate Specific Antigen) of 6.80 ng/mL, no clinical anomaly.
MRI: suspicion of extracapsular extension. Pathology exam: Gleason score of 9 (4 + 5), bilateral invasion
of the prostate (pT2c). Magnification scale: ×1.
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2.7. Radiomics Features

Prior to the extraction of radiomics features, wavelet filters were applied to each MRI sequence,
thereby creating 8 filtered images with high-pass and low-pass versions of the wavelet basis function
coiflet1. Radiomics features were extracted using homemade radiomics code implemented in MatLab®,
following the most up-to-date guidelines and benchmark values of the Image Biomarker Standardisation
Initiative (IBSI) [18]. Only the previously identified feature (ADC SZEGLSZM) [14] was considered in
the present study, as explained in the statistical analysis section below.

2.8. Statistical Analysis

In our previous work, we trained the model using 107 patients from Institution 1. First, we used a
feature selection method based on stability, robustness, and intercorrelation checks [19] in order to
only evaluate a reduced subset of features in the model training and validation. After training using
two-thirds of the cohort and validating using the rest, and additionally combining the radiomics (kept
after feature set reduction) and clinical variables, three predictive models were built, i.e., a radiomics
model based on a single textural feature (ADC SZEGLSZM), a clinical model based on preoperative PSA
and age at surgery, and a combined radiomics and clinical model [14].

In the present study, we chose to retrain the three models (clinical, radiomics, and clinical +

radiomics) using the entire cohort of Institution 1 with updated follow-up data and to evaluate them in
comparison to the external validation cohort of Institution 2.

The radiomics feature ADC SZEGLSZM and all collected clinical variables (see clinical features)
were then evaluated for their predictive ability with univariate (Receiver Operating Characteristic
(ROC) curves) and multivariate (Cox regression) analyses in Cohort 1 (n = 107). Optimal cut-off values
for each feature/model were defined using the Youden Index and models were built using a logistic
combination of variables of interest. Models with their specific features and associated cut-off values
were then evaluated using the testing cohort (n = 88). Quantitative performance evaluation was carried
out using balanced accuracy (BAcc), sensitivity (Se), and specificity (Sp) regarding prediction of BCR
via Kaplan–Meier curves and the log-rank test regarding bRFS stratification. All statistical analyses
were performed using MedCalc v14.8.1.

We evaluated our study based on the radiomics quality score developed by Lambin et al. [20].

2.9. Harmonization Method

To pool radiomics features extracted from the four MRI scanners relying on different protocols, we
used the harmonization statistical method ComBat [21], which was previously exploited to harmonize
MRI data [22,23]. ComBat proved successful in removing intersite technical variability while preserving
intersite biological variability.

As we did not apply the ComBat method in our previous work, a new cut-off value for ADC
SZEGLSZM was determined using the entire training cohort of Institution 1 after harmonization (since
two different scanners were used). This resulted in two additional “harmonized” prediction models
(radiomics only and combined clinical + radiomics).

2.10. Inter-Reader Variability

Two other experts (U.S. and F.L.) performed manual segmentation while blinded to the results
of the previous delineation by V.B. in a subset (n = 15) of the testing cohort. The variations between
each delineation were evaluated using the average Hausdorff distance and the DICE coefficient [24].
The variations of the radiomics feature (ADC SZEGLSZM) were quantified and intraclass correlation
coefficients (ICC) were used to evaluate their agreement across different delineations. Additionally, the
resulting impact on the actual classification of the patients was also reported.
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3. Results

3.1. Patient Characteristics

In the retraining cohort of Institution 1, 505 patients underwent RP between January 2010 and
December 2016. According to pathological analysis, 272 patients (54%) were categorized as high-risk
of BCR (T3a/T3b or T4 and/or R1 and/or Gleason 8–10).

Overall, 107 patients were excluded because of positive lymph nodes (n = 58), follow-up < 24
months (n = 37), or postoperative detectable PSA > 0.04 ng/mL (n = 40). Among the remaining patients
(n = 137), preoperative MRI was available in 107 (78%) (Figure 1).

In the external testing cohort of Institution 2, during the same period, 947 patients underwent
RP, among whom 558 presented high-risk features. Eighty-eight patients were included; others were
excluded for the following reasons: pN1 status (n = 37), postoperative PSA > 0.04 ng/mL (n = 103),
follow-up < 24 months (n = 53), or unavailable MRI (n = 277).

Training and testing cohorts were comparable except for median bRFS, median follow-up, and
surgical margin status, which all significantly differed (Table 1).

Overall, the majority of patients had pT3–pT4 disease (62%) and microscopically involved margins
(68%). Seventeen percent of MRIs (n = 33) were acquired on a 3T scanner and 83% (n = 162) on a
1.5T scanner.

When comparing the analyzed population with the eligible population with no MRI (Table S2),
substantial differences existed, especially regarding surgical margin status and bRFS in Institution 2,
and follow-up in both institutions.

Table 1. Patient and tumor characteristics in training and testing cohorts.

Patient Characteristics Training (%)
n = 107

Testing (%)
n = 88 p-Value

Age at diagnosis (mean, y) 65.2 66.2 0.25
PSA (mean, ng/mL) 9.3 8.5 0.37
MRI characteristics

Siemens 1.5T Institution 1 (%) 70.0
Philips 3T Institution 1 (%) 30.0

Philips Institution 2 (%) 55.7
Siemens Institution 2 (%) 44.4
Surgical characteristics

Pathological tumor stage
pT1-pT2 34.6 43.2 0.28
pT3-pT4 65.4 56.8

Lymph nodes dissection
yes 68.2 96.6 <0.0001
no 31.8 3.4

Surgical margins
R0 40.2 22.7 0.014
R1 58.8 77.3

Gleason score
Gleason ≤ 7 86.0 83.0 0.71
Gleason > 7 14.0 17.0

Median Capra-S Score 4 4 1.00
Mean postoperative PSA (ng/mL) 0.014 0.017 0.22

Median number of risk factors 1 1
Median bRFS (months) 49.2 33.3 <0.0001

Biochemical recurrence (%) 16.8 38.6 0.0166
Median Follow-up (months) 57.0 41.9 <0.0001

Abbreviations: PSA = prostate specific antigen; MRI = magnetic resonance imaging; bRFS: biochemical
relapse-free survival.
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3.2. Outcome

In the training set (Institution 1), the median follow-up was 57.0 months (range: 24–107.4). Among
the 107 patients, BCR occurred in 18 patients (17%) after a median bRFS of 49.2 months (7.3–107.4 months).
Within the relapsing population and at the last follow-up, 11 patients (61%) experienced BCR alone and
the remainder developed lymph node (3–17%) or distant metastases (4–22%).

In the testing set (Institution 2), after a median follow-up of 41.9 months (range: 24–102.4),
34 experienced BCR (39%), with a median bRFS of 33.0 months (range: 4–102.4).

In the subset of patients that did not undergo lymphadenectomy, lymph node involvement risk
via the Roach Formula was evaluated to a median of 5% (CI95% of 4.4–6.4%).

3.3. Model Retraining

In the univariate analysis, three clinical features were significantly correlated with BCR: A Capra-S
Score > 3, the number of risk factors, and a postoperative PSA > 0.01 ng/mL. In the multivariate analysis,
only ADC SZEGLSZM remained independent and significantly correlated with BCR (Table 2). When
focusing on clinical variables, the best result to predict BCR was obtained logistically by combining
the number of risk factors and the postoperative PSA, thereby resulting in an AUC of 0.68 (p = 0.007)
and a BAcc of 63% (Se 78%, Sp 47%) after applying the optimal cut-off value. Patients were stratified
according to bRFS with an HR of 3.2 (p = 0.032, Figure 3a).

ADC SZEGLSZM (AUC 0.82) with a cut-off value of 0.53 (the cut-off value determined in the initial
development study was 0.528) [14] was the best model, with a BAcc of 79% regarding BCR predictions
(Se 72%, Sp 85%, p < 0.0001) and a corresponding high stratification power according to bRFS with an
HR of 8.7 (p < 0.0001, Figure 4a).

The model consisting of the logistical combination of clinical and radiomics features resulted in a
BAcc of 84% (Se 94%, Sp = 67%, p < 0.0001) and a stratification for bRFS with a HR of 25 (p < 0.0001,
Figure 5a).

The ROC curves corresponding to each training model can be found in Figure S1.

Table 2. Correlation between clinical/radiomics features and biochemical recurrence (training).

Biochemical Reccurence Univariate Analysis Multivariate Analysis

Feature AUC Best
Cut-Off

BAcc
(%)

Se
(%)

Sp
(%) p-value HR p-Value

ADC SZEGLSZM 0.82 ≤0.53 79 72 85 <0.0001 10.9 0.0001
Age at surgery (y) 0.54 >65.7 60 72 48 0.62

Preoperative PSA (ng/mL) 0.62 >6.5 64 78 50 0.08
Gleason score 0.53 >4 57 17 96 0.72

T stage 0.62 >3 58 78 38 0.07
Surgical Margins 0.51 >0 51 61 41 0.90

Postoperative PSA (ng/mL) 0.64 >0.01 63 56 69 0.04 2.7 0.064
Capra-S Score 0.58 >3 63 72 53 0.27

Number of risk factors 0.64 >1 64 56 72 0.04 3.2 0.064

Abbreviations: ADC: Apparent Diffusion Coefficient Map; AUC: Area under the curve; BAcc: Balanced Accuracy;
Se: sensitivity; Sp: specificity; HR: Hazard Ratio; SZE: Small Zone Emphasis; GLSZM: Grey-Level Size Zone Matrix.

3.4. Model Evaluation in the Testing Cohort

The clinical model failed to validate the external cohort of Institution 2, with a BAcc of only 56%
(Se 53%, Sp 59%) for BCR prediction; therefore, it was unable to stratify patients according to bRFS
(p = 0.19, Figure 3b).

However, the radiomics model remained accurate with a BAcc of 76% (Se 59%, Sp 93%), and was
able to stratify patients according to bRFS with an HR of 5.5 (p < 0.0001, Figure 4b). Patients with
ADC SZEGLSZM values below 0.53 had a median bRFS of 19.2 months compared to 37.0 months in
patients above this cut-off (p = 0.0013). Furthermore, at the last follow-up, 83.3% of patients with ADC
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SZEGLSZM values below 0.53 exhibited BCR compared to the 22% of patients with ADC SZEGLSZM

values above 0.53.
The combined radiomics + clinical model did not outperform the radiomics-only model, with an

accuracy of 67% (Se 91%, Sp 43%) and a significant prediction of bRFS (HR 5.7, p < 0.0001, Figure 5b).
The positive predictive value (PPV) and negative predictive value (NPV) were respectively estimated
at 83.3% (CI95%: 66.0–87.5%) and 78.1% (CI95%: 62.6–95.3%).
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3.5. ComBat Harmonization

After harmonization, the AUC of SZEGLSZM in the training cohort remained at 0.82 (p < 0.0001)
and a new optimized cut-off value of 0.52 was determined, resulting in a BAcc of 77% (Se 72%, Sp 82%)
and a significant stratification regarding bRFS (HR: 8.0, p < 0.0001).

When applied to the testing cohort after ComBat harmonization, SZEGLSZM values with the same
cut-off led to a BAcc of 76% (Se 59%, Sp 93%) and an HR of 5.5 (p < 0.0001) regarding bRFS prediction.

Accordingly, in the training cohort, the best “harmonized” clinical + radiomics model was
obtained by combining the number of risk factors, postoperative PSA, and the harmonized SZEGLSZM.

This model had an AUC of 0.82 (p < 0.0001), with the optimal cut-off value resulting in a BAcc of
74% (Se 78%, Sp 70%), allowing for significant stratification regarding bRFS (HR: 6.9, p < 0.0001).
When applied to the testing cohort, this model resulted in a BAcc of 76% (Se 53%, Sp 98%) and an HR
of 6.8 (p < 0.0001). The “harmonized” models did not significantly differ when compared with the
“non-harmonized” models (radiomics only: p = 1; radiomics + clinical: p = 0.76).

The ROC and corresponding Kaplan–Meier curves corresponding to the “harmonized” prediction
models can be found in Figures S2–S4.

The performances of each prediction model according to the cohort are summarized in Table 3.

Table 3. Performance of each prediction model according to the cohort.

Prediction
Models

BCR Prediction bRFS Stratification

Training Testing Training Testing

Model AUC p-Value BAcc
(%)

Se
(%)

Sp
(%)

BAcc
(%)

Se
(%)

Sp
(%) HR p-Value HR p-Value

Clinical 0.68 0.007 63 78 47 56 53 59 3.2 0.032 1.7 0.19

Radiomics 0.82 <0.0001 78 72 84 76 59 93 8.7 <0.0001 5.5 <0.0001

C + R 0.86 <0.0001 84 94 67 67 91 43 25 <0.0001 5.7 <0.0001

Combat R 0.82 <0.0001 77 72 82 76 59 93 8.0 <0.0001 5.5 <0.0001

Combat C + R 0.82 <0.0001 74 59 93 76 53 98 6.9 <0.0001 6.8 <0.0001

Abbreviations: BCR: biochemical recurrence; bRFS: biochemical relapse-free survival, C + R: clinical + radiomics;
Combat R: harmonized radiomics; Combat C + R: harmonized clinical + radiomics; AUC: area under the curve;
BAcc: balanced accuracy; Se: sensitivity; Sp: specificity; HR: hazard ratio.

3.6. Inter-Reader Variability

The three independent segmentations were relatively similar, with a mean DICE coefficient of 0.78
and a mean average Hausdorff distance of 0.85 mm (Table S3). The ICC calculated between the ADC
SZEGLSZM values corresponding to the different delineations was 0.98 (CI95%: 0.95–0.99) for single
measures and 0.99 (CI95%: 0.98–1.0) for average measures. In this subset of patients, no change in BCR
prediction occurred with the changes in the ADC SZEGLSZM values across the different delineations
(Table S4).

3.7. Radiomics Quality Score

Our study scored moderately (17 points out of 36) on the radiomics quality score (Table S5).

4. Discussion

To the best of our knowledge, our work is the first to externally validate a radiomics predictive
model in the context of high-risk PCa treated by radical prostatectomy only.

Although a couple of clinical features were significantly correlated to BCR, the clinical predictive
model combining the association of the number of risk factors and postoperative PSA value failed to
provide a significant stratification of patients according to bRFS in the external cohort. The number
of risk factors and postoperative PSA are known to be predictive of late BCR with 10 years of
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follow-up [25,26]. However, this clinical model demonstrated no predictive power in the testing set
(balanced accuracy of 56%). By definition, the studied population was already at high-risk of BCR and
very homogenous in terms of clinical characteristics; as such, stratification based on clinical features
alone among this selected population remains inefficient, thereby emphasizing the need for more
robust predictive markers of BCR to tailor postoperative management.

As noted, BCR rates were higher in the external testing cohort of Institution 2 when compared to
the training cohort of Institution 1. This could first be explained by the higher percentage of R1 surgical
margins among patients with available MRI. Given the low accessibility of MRI in the preoperative
setting, one could think that MRIs were reserved for patients at highest risk during presurgical planning.
Furthermore, all RPs were performed by one surgeon in Institution 1, whereas several surgeons with a
diversity of surgical experiences were involved in Institution 2. Finally, selection bias due to missing
MRIs cannot be excluded (Table S1).

A few studies explored radiomics in PCa, including Wibmer et al. who developed an MRI-derived
radiomics model for the diagnosis of PCa in 146 patients [27]. Energy, entropy, correlation, and
homogeneity were all extracted using the Grey Level Co-occurrence Matrix (GLCM), achieving a
significant prediction of the presence of cancer. Similarly, Cameron et al. [28] trained a radiomics
signature for PCa detection, which outperformed all other feature sets with an accuracy of 87%
(sensitivity 86% and specificity 88%).

Several studies focused on the prediction of clinical outcomes after first-line treatment in PCa. Using
the population of two institutions (70 and 50 patients) scanned with two different MRIs, Shiradkar et al.
developed a classifier based on radiomics features and clinical variables, reaching an AUC of 0.74
in the testing set [29]. The main limitation of this work was related to the heterogeneous treatment
strategies, the absence of patient selection and population comparisons between treatment groups, the
small number of studied clinical and histological features, and the lack of data harmonization.

Therefore, we aimed to externally validate our previously developed model relying on a single
radiomics feature [14]. We confirmed that this radiomics model was predictive of BCR and could
significantly stratify patients according to bRFS based on small zone emphasis (SZEGLSZM) calculated
using the Grey-Level Small Zone Distance Matrix (GLSZM). The GLSZM analyzes the distance between
groups of voxels with similar grey-levels by counting the number of groups of linked voxels, which
occur if the neighboring voxel has an identical discretized grey level. SZE focuses on areas of small
volume, where the lower the SZE value, the more heterogeneous the intensities in the image (in this
case, the ADC map) within the tumor volume are considered to be [18].

The external testing cohort presented several significant differences with the re-training cohort,
including MRI parameters, patient characteristics, overall outcome (rate of BCR), and treating physicians.
However, despite these differences, the radiomics model performed well, reaching a balanced accuracy
of 0.76 and an HR of 5.5. Furthermore, the radiomics model was as effective in the testing cohort as
in the retraining cohort, thereby proving its robustness. Its reliability was also supported by the low
inter-reader variability of delineation observed in a subset of 15 randomly selected patients, for which
no BCR classification changes were induced by the use of a different segmentation.

The testing cohort only included patients scanned using a 1.5T MRI scan, which had lower
sensitivity and specificity compared to the 3T MRI scan [30]. Indeed, in the Institution 1 cohort alone,
the performance was previously shown to be higher using 3T compared to 1.5T (AUCs of 0.87 and 0.76,
respectively), which may contribute to an explanation of why the obtained accuracy was 0.76 [14].

Strict application of international guidelines results in unnecessary treatment in 143/195 (73.3%)
of patients. The use of the radiomics model, thanks to a PPV of 83.3% and an NPV of 78.1 (testing
cohort), could decrease unnecessary treatment to 32/195 (16.4%) patients overall. The radiomics model
was unable to predict BCR in 17/195 patients (8.7%); these patients would be eligible for early sRT at
the time of BCR. Although improvement is needed, the model could be useful for better selection of
patients eligible for aRT. Such selection is paramount, especially when considering the results of Phase
3 studies comparing early salvage radiotherapy and adjuvant radiotherapy. Preliminary results from
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RADICALS-RT, GETUG-AFU 17, RAVES, and their meta-analysis (ARTISTIC) [8–10] suggested that
eSRT was not significantly different from aRT, thereby favoring the use of eSRT instead of aRT.

However, caution is needed regarding the generalizability of these data as aRT may still be
beneficial for a subpopulation of patients at high risk of BCR. In fact, rates of Gleason 8–10 PCa in
the RADICALS trial were relatively low (17% in the eSRT arm vs. 16% in the aRT arm), as were
the rates of seminal vesical invasion (20% in the eSRT arm vs. 19% in the aRT arm). In the pooled
analysis of ARTISTIC, similar baseline features were found, with only 9–17% of patients exhibiting
Gleason 8–10 PCa and 12–21% showing seminal vesicle invasion. With a 5-year BCR rate of 88%
(RAVES trial) compared to 71.4% in our cohort (median follow-up of 41.9 months), the follow-up did
not appear sufficient in detecting a benefit of aRT over esRT in a population where the majority only
had one high-risk feature. Abdollah et al. showed that the cancer-specific mortality (CSM) rates in
patients with zero, one, two, or three high-risk features were 98.6%, 99.6%, 90.3%, and 84.0% at 5 years,
respectively [31]. Moreover, even when the PSA is very low (i.e., ≤0.5 ng/mL), pre-radiotherapy PSA
is known to be significantly associated with BCR in the eSRT setting (HR: 4.89; CI95%: 1.40–22.9) in
populations similar to ours (716 negative-node patients with undetectable postoperative PSA) [32].
Finally, the three trials pooled in the ARTISTIC meta-analysis only focused on BCR-free survival. BCR
is known to be a surrogate of clinical outcomes (metastasis-free survival and CSM) [33–35]. However a
benefit of aRT over esRT on these long-term outcomes might exist, especially given the statistical benefit
of aRT on 15-year metastasis-free survival (p = 0.036) and the trend toward significance regarding
overall survival (p = 0.056) [6]. aRT also significantly reduces the need for subsequent androgen
deprivation therapy, which is known for its inherent toxicity [36].

Even if these three studies contribute to the better understanding of postoperative PCa relapse,
with the subpopulation analysis in the ARTISTIC trial still unpublished, decisions regarding aRT or
esRT must remain based on patient characteristics.

Our prediction model, although complex to develop, could be very easily implemented in clinical
practice. Indeed, it requires a simple semi-automatic tumor segmentation, which can be rapidly
performed by a radiologist using a pre-therapeutic MRI, followed by a fully automated calculation of a
single feature (due to our model relying on only one radiomics parameter), allowing for instantaneous
predictions for a given patient to be provided to the clinician as soon as the tumor delineation is finished.

With the need for efficient and personalized medicine, our simple model based only on the
extraction of a single radiomics feature could comfort clinicians in their decision regarding the best
postoperative management with better BCR stratification (PPV of 83.3%).

Interestingly, the ComBat harmonization method did not significantly change our results and the
predictions of BCR and bRFS remained similar after harmonizing radiomics features across the scanner
models. This method considered all extracted radiomics with the aim to remove the multicenter effect
for features heterogeneity of acquisition parameters. While MRI scan parameters differed between the
retraining and the external testing cohorts, the radiomics feature performed well, likely reflecting its
relatively high robustness with respect to the scanner model, acquisition protocol, and reconstruction
setting variability.

The radiomics approach applied to routinely acquired images for diagnosis has the great advantage
of being cost-effective and noninvasive. Genomic tests, such as the Decipher Prostate Cancer test® [37],
have been used to stratify PCa patients according to metastasis-free survival and cancer-specific
mortality. Based on a population of 256 high-risk PCa patients, the c-index of the genomic test was
0.79 (CI95%: 0.68–0.87) [38]. The integration of quantitative imaging data with genomic signatures
(radiogenomics) could be of interest in the field of PCa, but very few studies are available to date.

Apart from being a retrospective study, one of the limitations of our study was the absence of
PIRADS v2.0 implementation as a potential predictive feature for BCR. PIRADS v2.0 was developed as
a diagnostic tool to define and stage malignant tissues (vs. normal prostatic glandular tissue). Even
if a correlation with Gleason score is assumed [39], the impact of PIRADS v2.0 as a prediction tool
remains unstudied [40]. Furthermore, the short follow-up must be stressed, especially in the context of
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PCa, as the median follow-up for the nonrelapsing cohort was 50.2 months (range 24–120). However,
time from RP to BCR is, on average, 3.5 years [41]. A further analysis with a longer follow-up should
be performed to confirm our findings. Some patients in our cohort did not undergo lymphadenectomy.
However, the lymph node involvement risk was very low in this subpopulation (median of 5%), with
the Roach formula known for overestimating the risk of pelvic nodal invasion [42]. Another potential
limitation was the definition of the tumor volumes of interest, which was performed manually by
a single expert. Relying on delineations by multiple experts could be performed in future studies
to quantify the reproducibility of our findings. Another potential limitation was the definition of
the tumor volumes of interest, which was performed manually by a single expert. Nevertheless,
when analyzing a subset of 15 patients, our prediction model proved to be reliable regardless of the
chosen segmentation, with no BCR classification changes. With a score of 17 on the radiomics quality
score, our study scored moderately. The addition of other MRI sequences (such as high b-value DWI
sequences and Dynamic Contrast Enhanced sequences) and a prospective validation are currently
under investigation at our institution in order to further strengthen the confidence in our findings.

5. Conclusions

A radiomics model was externally validated and appeared to be predictive of both BCR and
bRFS after RP in patients with high-risk PCa. It seemed robust to patient characteristics and MRI scan
variability. This model could help to stratify patients after RP and tailor postoperative management.
For patients at high risk of recurrence, intensified postsurgical monitoring or aRT could be offered. on
the other hand, patients at very low risk of recurrence could avoid aRT, thus reducing unnecessary
treatment and the associated toxicity.
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