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Abstract: This paper describes the design of a low-current, multichannel, handheld electronic device
integrated with nanostructured chemiresistor sensor arrays. A key design feature of the electronic
circuit board is its low excitation current for achieving optimal performance with the arrays. The
electronics can rapidly acquire the resistances for different sensors, not only spanning several orders
of magnitude, but also as high as several hundreds of megaohms. The device tested is designed
using a chemiresistor array with nanostructured sensing films prepared by molecularly-mediated
assemblies of gold nanoparticles for detection. The low-current, wide-range, and auto-locking
capabilities, along with the effective coupling with the nanostructured chemiresistor arrays, meet
the desired performances of a low excitation current and low power consumption, and also address
the potential instability of the sensors in a complex sensing environment. The results are promising
for potential applications of the device as a portable sensor for the point-of-need monitoring of air
quality and as a biosensor for point-of-care human breath screening for disease biomarkers.

Keywords: low-current multichannel electronic board; chemiresistor array; nanostructured sensing
film; volatile organic compound

1. Introduction

Nanostructured sensing films have been widely utilized for chemiresistor sensing
in environmental and healthcare applications [1–5]. One of the important challenges in
this field is the development of the ability for integration of the nanostructured sensing
elements into portable electronic devices for point-of-care or point-of-need detection. Most
of the existing approaches focus on the CMOS process in terms of complementary metal-
oxide-semiconductor technology (CMOS) to address resolution of the resistance-to-digital
circuit for the detection of changes in resistance [6–10]. Limited work has been done in
electronics circuit board design aimed at an effective coupling to nanostructured chemire-
sistor arrays towards durable and reliable performances [11–13]. A major significance of
the chemiresistor array is the enhancement of the sensor performance in selectivity for the
detection of multiple analytes. The nanostructured chemiresistor array coupling and device
integration require high sensitivity, rapid response, low power-supply, and high durability.
Molecularly-linked thin film assemblies of nanoparticles on interdigitated microelectrode
platforms feature enhanced sensitivity, selectivity, detection limit, and response time via
controlling size, composition, functional group, and spatial properties [14–21], offering
the promise for potential applications of the sensors in healthcare and environmental
monitoring. However, a key problem for the coupling of the detection electronics with the
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nanostructured chemiresistor devices is that the measurement current of most commercial
instruments is too high for maintaining a good stability of the sensors. Addressing this
problem, along with engineering the device portability, multiple channel capability, and
wide range measurement, is critical for achieving practical point-of-care or point-of-need
biosensor applications. Therefore, the design of an electronic board that can effectively
couple the nanostructured chemiresistor arrays is needed for achieving low excitation
current and low power consumption so that the potential instability of the sensors can
be minimized. In this report, we describe an electronic circuit board in a handheld di-
mension to couple with the nanostructured chemiresistor array (handheld chemiresistor
detector (HCD)) which meets some of the desired performance specifications. This circuit
board is integrated with the nanostructured chemiresistor arrays for meeting the optimal
performances in device portability, channel multiplexing, measurement range expansion,
auto-locking, and sensor stability. The use of a high excitation current in many existing
instruments could cause instability in the gold nanoparticle assembly. As such, the use of
gold nanoparticle-assembled sensing films for testing the HCD being developed serves as a
real-life example to demonstrate the need of the low-current electronic device. The results
will be discussed in comparison with the results of some of the commercial benchtop or
handheld instruments or meters in interfacing with the nanostructured chemiresistor sensor
arrays for detecting volatile organic compounds (VOCs), which is an important research
front in developing sensors for point-of-need monitoring of air quality and biosensors for
point-of-care breath screening of human health.

2. Materials and Methods
2.1. Design of Electronic Board to Couple with Chemiresistor Array

The electronic circuit board is designed for the rapid measurement of the resistance
(R) changes of the nanostructured chemiresistor arrays. A key design consideration is that
the resistance of different sensors in an array may vary greatly, spanning several orders of
magnitude. Based on the sensors’ resistance range, the measured resistance is designed to
cover a wide range (30 Ω~300 MΩ). The circuit boards are designed in upgradable modules.
One basic model of the modules consists of 8 channels, which can be easily modified for
expansion to 16, 24, or 32 channels as needed. In order to improve the measurement
accuracy of the resistance change ratio (∆R/Ri), the measurement range of each channel
is subdivided into 16 ranges. The output is the resistance values of the sensors, which is
displayed in two ways: (1) by the LCD on the device, and (2) by a computer through the
RS232 interface. All electronic components were obtained from Texas Instruments (Dallas,
TX, USA). The design and specifications of the electronic circuit board and its performance
will be discussed in the Section 3.

2.2. Sensor Fabrication

Standard microfabrication methods [21] were used to fabricate the interdigitated mi-
croelectrode (IME) devices. A vacuum sputtering deposition system (Nordiko 2000) was
used to deposit the thin film electrodes on a glass substrate using the photolithographic
method. This method is currently the most widely used method for creating microelec-
tronics on glass or silicon wafer substrates. Gold nanoparticles (2 nm diameter) encap-
sulated with a monolayer of decanethiolate (DT) were synthesized using a wet-chemical
method, and gold nanoparticles of 5-nm diameter were produced by the thermochemical
processing method [14]. Different linker and capping molecules were used, including
dithiols such as 1,4-butanedithiol (BDT), 1,5-pentaneditjiol (PDT), 1,6-hexanedothiol (HDT),
1,8-octanedithiol (ODT), and 1,9-nonanedithiol (NDT), along with carboxylic acid func-
tionalized thiol, such as 11-mercaptoundecanoic acid (MUA). All chemicals were obtained
from Sigma-Aldrich (Milwaukee, WI, USA) unless specified. Hexane (Hx) vapor was
generated from hexane solvent (Fisher Scientific, Waltham, MA, USA). The thin films of
NDT-linked nanoparticles (NDT-Aunm) and MUA-linked nanoparticles (MUA-Aunm) were
prepared using the “exchanging-cross-linking-precipitation” method [14]. In this method,
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NDT or MUA exchanges with the alkanethiolates on the gold surface, and then undergoes
crosslinking and precipitation via Au-S bonding or hydrogen bonding. The thin films were
deposited on the IME devices by the immersion method. The film thickness was controlled
by immersion time. The thin films were rinsed thoroughly with hexane before drying under
nitrogen gas. The NDT- and MUA-linked nanoparticle thin films on IME are denoted as
NDT-Aunm/IME, and MUA-Aunm/IME, respectively. Other linker-assembled thin films
on IME are also labeled similarly.

2.3. Sensor Measurement

The low-current, multichannel, handheld device interfaced with nanostructured
chemiresistor sensor arrays has been tested under different atmosphere and vapor ex-
posures. The measurements of the sensor resistances were performed using the computer-
interfaced HCD and multi-channel multimeter (KMM, Keithley 2700). Both can be in-
terfaced with a computer for data readout. The experiments were carried out at room
temperature (22 ◦C ± 1 ◦C, and RH ≤ 20%). The vapor was generated by flowing N2
gas through a bubbler containing the solvent. The flow rates between 5 and 40 mL/min
were used for the mixed vapors, which are combined with N2 gas to achieve a flow rate
of 100 mL/min. Air and air with controlled relative humidity were also tested as carrier
gases for the evaluation of the device performance and the data comparison.

At different vapor concentrations, the measured resistance (R) values were expressed
as a differential resistance change, i.e., ∆R/Ri, where Ri is the initial resistance and ∆R is the
magnitude of the resistance response. A custom-designed test chamber connected to vapor
and N2 gas was used to house the IME device. The vapor concentration (ppm (V) was con-
trolled by the mixing ratio of vapor and N2 gas (99.99% Airgas, carrier gas) using calibrated
mass flow controllers in a custom-built impinger system [14]. In a typical measurement,
the test chamber was first purged with N2 and then with vapor at a certain concentration
for a controlled time period. The multi-channel flow system (Swagelok Modular Platform)
features low dead-volume and no cross-contamination for the gas mixing.

3. Results and Discussion
3.1. Design and Specifications of the Multichannel Electronic Circuit Board

The design of the multichannel electronic circuit board focused on the ability to
automatically search for the channel according to the initial resistance value (Ri) of the
sensor in each channel and then lock it in the most appropriate resistance range. This
also avoids the difference and time delay of the measured value due to the switching of
the resistance value at the boundary of the measurement range. The HCD measures the
resistance by measuring the voltage drop upon flowing a constant current through the
sensor. The constant current source (6.0 nA to 1.2 mA) for each channel has 16 optional
current values, each corresponding to a resistance range.

Figure 1 shows the block diagram of a basic model of the electronic board, where the
dash-line outlined blocks correspond to the different input channels. These channels are
configurated as a modular array for the interfacing. Using a multiplexer (MUX), the output
voltage signal for the sensor’s resistance measured by each channel is sent to an analog-to-
digital converter (ADC), from which the resistance value is calculated by a microcontroller
unit (MCU). The design of the electronic board allows for rapid monitoring of each channel
of the array sensors. The measured resistance values are transmitted to the readout through
the microprocessor interface.
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Membrane keys with 7 buttons to realize the switch and basic operation functions; LCD: Liquid 
crystal display, which displays the measured values and the related parameters; Power: DC-DC 
power module; RS232: Communication interface RS232, which can be interfaced with the Wi-Fi 
wireless module; FRAM: Ferroelectric random-access memory, which can store the measurement 
data of the multiple channels at the same time, and depending on the capacity of the selected device, 
perform continuous sampling up to many days. The stored data can be transmitted to the host com-
puter through RS232 interface. Using FRAM storage mode, the HCD can realize offline field data 
sampling without an AC power supply. The sensor array is housed in a closed space with flow 
in/out tubing and is mounted on a circuit board which can be plugged into the HCD connector. 
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requirements. In the circuit board design, inherent errors of both reference resistance and 
reference voltage can be eliminated by calibration. However, the temperature drift and 
the long-term stability of the components may affect the absolute accuracy of the meas-
urement. These selections considered the characteristics of the nanostructured chemire-
sistor array sensors, the comprehensive measurement accuracy requirement, and the 
overall device cost. With this circuit design principle, the measurement accuracy of abso-
lute resistance can be further improved by selecting higher-index devices. In principle, the 
stability and accuracy of the measured values can be further optimized by the layout of 
the circuit board, the anti-interference capability of the input loop, the influence of the 
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Figure 1. Block diagram for the design of the electronic board for coupling to the nanostructured
chemiresistor array. Insets in the right panel: photo of the HCD interface with the sensor array, and the
schema showing the layout. Component descriptions—CH1 to CH8: Channel 1 to 8 modules; Sensor1–
Sensor8: chemical array sensor 1 to 8 with corresponding resistances from Rx1~Rx2, respectively;
I1~I8: Programmable DC constant current source (6 nA~1.2 mA); A1~A8: Operational amplifiers
from 1 to 8; Latch1~Latch 8: Range control latches from 1 to 8; Filter1 to Filter8: Filters from 1 to 8;
MUX: Multiplexer; ADC: Analog to Digital Converter; MCU: Microcontroller; Keys: Membrane keys
with 7 buttons to realize the switch and basic operation functions; LCD: Liquid crystal display, which
displays the measured values and the related parameters; Power: DC-DC power module; RS232:
Communication interface RS232, which can be interfaced with the Wi-Fi wireless module; FRAM:
Ferroelectric random-access memory, which can store the measurement data of the multiple channels
at the same time, and depending on the capacity of the selected device, perform continuous sampling
up to many days. The stored data can be transmitted to the host computer through RS232 interface.
Using FRAM storage mode, the HCD can realize offline field data sampling without an AC power
supply. The sensor array is housed in a closed space with flow in/out tubing and is mounted on a
circuit board which can be plugged into the HCD connector.

Rational selection of the electronic components is important for an effective adaption
to the battery power supply and to meet the low-current and low-power consumption
requirements. In the circuit board design, inherent errors of both reference resistance and
reference voltage can be eliminated by calibration. However, the temperature drift and the
long-term stability of the components may affect the absolute accuracy of the measurement.
These selections considered the characteristics of the nanostructured chemiresistor array
sensors, the comprehensive measurement accuracy requirement, and the overall device
cost. With this circuit design principle, the measurement accuracy of absolute resistance
can be further improved by selecting higher-index devices. In principle, the stability and
accuracy of the measured values can be further optimized by the layout of the circuit board,
the anti-interference capability of the input loop, the influence of the leakage current, the
hardware filter components, the software filter algorithms, the sampling rate, etc.

In comparison with commercial benchtop instruments (e.g., Keithley 2700), the main
attributes of the handheld device include: (i) Enhanced anti-interference capability and
stability under high resistance, and the capability to measure very small resistance change;
(ii) Low open circuit voltage with negligible damage to the sensor (note: there was no
indication of “breakdown” phenomena for the electronic devices after operating for at least
one year); (iii) short boot time (less than 2 min); and (iv) low cost. Table 1 summarizes
some of the major specifications in terms of the measurement ranges and errors. Additional
technical specifications include: (1) an expandable number of channels; (2) high readout
stability (±0.003% (∆R/Ri)/min or ±2 Ω/min); (3) a fast sampling rate of each channel
(≥4 times/s, for the case of 8 channels working at the same time); (4) automatic searching
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and locking in terms of the appropriate resistance measurement range; (5) low power
consumption (with the backlight off: ≤120 mW); and (6) handheld dimensions and weight
(70 × 25 × 200 mm3, 350 g).

Table 1. Specifications of the measurement ranges and errors.

Resistance Range Resolution Nominal Current Max Open
Voltage (V)

Accuracy (One Year,
TCAL ± 5 ◦C)

30 Ω~50 kΩ 1 Ω 1.2 mA~29 µA 3.3 ±3 Ω
350 kΩ 1 Ω 10 µA~4.7 µA 3.3 ±0.05% RD 1

4 MΩ 10 Ω 2.4 µA~0.39 µA 3.3 ±0.05% RD
30 MΩ 0.2 kΩ 192 nA~55 nA 3.3 ±0.2% RD
130 MΩ 1 kΩ 24 nA~12 nA 3.3 ±1% RD
300 MΩ 5 kΩ 6 nA 3.3 ±2% RD

1 Note: RD: Reading Value.

3.2. Performance Characteristic upon Coupling to the Nanostructured Chemiresistor Array

The microelectrode design parameters of the IME devices and the nanostructured
thin film assembly on the IME devices are detailed in our previous reports [21]. An 8-
sensor array was used in this work. In the sensor array, there are six sensors that were
derived from dithiol-linked gold nanoparticles (HDT-Au2nm, BDT-Au2nm, ODT-Au5nm,
PDT-Au5nm, NDT-Au2nm, and HDT-Au5nm) and two sensors which were derived from
MUA-linked gold nanoparticles (MUA-Au5nm, and MUA-Au2nm), forming an 8-sensor
array [16]. These sensors differ in electrical conductivities due to differences in interparticle
distances, particle sizes, dielectric medium properties, and the device design parameters.
These chemiresistor sensors behave as pure resistors, as demonstrated in Figure 2A by
comparing the I-V curves between pure resistors and the sensors. Linear relationships are
evident in the measured current range. By comparing the resistance values obtained from
the slopes, there is an insignificant variation for the 5 kΩ resistor (0.22% change). For the
0.1 MΩ cases, there is also an insignificant variation for the 5 kΩ resistor (0.16%). Figure 2B
shows a typical set of I–R plots for resistors with different resistance values. Note that the
voltage vs current is linear, which follows Ohm’s law. The data can be fitted well with
Ohm’s law.
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Figure 2. (A) Comparisons of I-V curves comparing resistors and sensors obtained using HCD.
(Initial values: Resistor-1: R = 4530 Ω; Sensor-1: R = 5700 Ω; Resistor-2: R = 0.12804 MΩ; Sensor-2:
R = 0.117 MΩ. Lines: linear regressions with slopes indicated in the plots. (B) I–R plots for resistors
with different resistance values using HCD: Red dashed line: fitting with Ohm’s law. Inset: a
magnified view of the low current region (I < 1 µA).
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In Figure 3, the results between our electronic circuit board (HCD) and several commer-
cial multimeters (Keithley 2700 (KMM), Agilent Technologies (AT) and BK Precision (BK))
are compared for measuring the resistances of selected resistors and sensors. As shown in
Figure 3A, the differences are small when comparing the resistance of physical resistors
obtained from the four instruments. However, there is a significant difference for the KMM
when measuring the resistances of the sensor from the other three instruments (Figure 3B),
reflecting the subtle differences in the excitation current used in the measurement.
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Figure 3. Comparisons of the different instruments in measuring resistance of physical resistors and
sensors. (A) Comparison of resistance of resistors obtained from four instruments; (B) Comparison of
resistance of a sensor obtained from four instruments ((a) KMM; (b) AT (Agilent U1252A multimeter);
(c) HCD; and (d) BK (B&K Precision 393 Multimeter)).

3.3. Array Responses to VOC and Performance Evaluation

A series of VOCs such as hexane, toluene, ethanol, and water vapors were tested
with the electronic board coupled to a nanostructured chemiresistor array with subtle
differences in particle sizes (2–5 nm) and molecular linking/capping structures [14,16]. For
the performance evaluation of the devices, we focus on the discussion of the results obtained
with the chemiresistor array in response to hexane vapor and some pure resistors with
comparable resistance values. Figure 4 shows a typical set of the resistance response profiles
for an 8-sensor array in response to hexane vapors at several different concentrations. The
results are compared between (a) HCD and (b) KMM. It is evident that the response profiles
are essentially identical between the two systems, except for the absolute values of the
sensor resistances. Note that the same response pattern is assumed by design, since the
devices are exposed to the same sequence of vapor concentration increments. While the
patterns are the same, the response magnitudes are subtly different depending on the
specific sensor element, as shown in Figure 5, which illustrates the subtle differences in
the performances of the two instruments. The resistance values from the HCD are higher
than those from the KMM. This difference is believed to reflect the electronics board design
parameter differences, e.g., the constant current sources. Note that the absolute values of
the resistances from KMM is lower than those from HCD, which is consistent with the
result in Figure 3B. This result again reflects the subtle difference in the excitation current
used by the two different instruments.
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Since there are differences in the initial resistance for the different sensing films, the
relative resistance change, ∆R/Ri, was used as a measure of the sensor response signal.
Figure 5 shows a typical set of the results for the relative change of the resistance (∆R/Ri) of
the sensor array in response to hexane vapors of different concentrations between (a) HCD
and (b) KMM. Linear correlations with the vapor concentration are essentially identical
between the two systems, as reflected by the highly-comparable slope values, i.e., the
sensitivities. This result demonstrates comparable sensitivities between the two systems.

The response profiles for different arrays coated with sensing films were also examined
for their exposures to several volatile organic vapor analytes. In general, the response
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characteristic features an increase in ∆R/Ri upon exposure to the vapor, followed by
a return to baseline upon purging with nitrogen. The response is relatively rapid and
reversible. The responses increased linearly with the vapor concentration. The slope serves
as a measure of the response sensitivity. The array sensors display linear responses to
the concentrations of the VOC. The different sensitivities of the sensor devices reflect the
differences in the sensor design parameters, including particle sizes, interparticle linker
molecules, and dielectric medium properties.

The noise level of the device was also assessed by examining the noises of the array
response data to hexane vapor with different concentrations in comparison with the data
obtained using KMM. Based on the results, the detector shows a stability of 0.003%. Note
that the initial setting of the minimum resolution of the measurement to 1 Ω could be prob-
lematic, since it may be too large for measuring smaller resistances (e.g., for 5 kΩ resistance,
1 Ω/5000 Ω = 0.0002). The jump interval in the digits is related to the inability, which
is designed to meet the stability requirement of 0.003%. Higher-performance electronic
components, software, and hardware may be needed for handling the noise level exceeding
the practical requirement. These measures could further improve the stability index to
better than 0.003% (∆R/Ri)/min.

In Table 2, the measurement currents and voltages are compared for resistors of
different resistances in terms of the design specifications. Both the output current and power
consumption for HCD are clearly much smaller than those for KMM when resistances
greater than 1 MΩ are measured.

Table 2. Comparison of the measurement currents and voltages for resistors of different resistances.

Resistance
KMM HCD

Current Open Circuit Voltage Current Open Circuit Voltage

10 kΩ 100 µA 6.6 V 100 µA 3.3 V
100 kΩ 10 µA 12.8 V 10 µA 3.3 V
1 MΩ 10 µA 12.8 V 1.2 µA 3.3 V

10 MΩ 0.7 µA 7.0 V 0.1 µA 3.3 V
100 MΩ 70 nA 7.0 V 12 nA 3.3 V
300 MΩ NA NA 6 nA 3.3 V

Note: The upper limit of resistance for KMM is 100 MΩ.

Indeed, experimentally, the baseline drift for the measured resistance of sensors with
high resistances was shown to strongly depend on the magnitude of the excitation current
and power consumption parameters. As shown in Figure 6 for the measurement of a
sensor with a resistance range of 12~13 MΩ, KMM obviously produces a clear baseline
drift, whereas HCD showed little drift.
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This result is consistent with the fact that the excitation current of KMM is much
larger than that of HCD for resistance greater than 1 MΩ. In this example, a sensor with a
resistance in the range of 12~13 MΩ was measured. While the measurement took a current
of about 12 nA for HCD, a current of 160 nA was observed for KMM, showing 1~2 orders
of magnitude difference. As such, the dissipated power (P), which varies exponentially
with the square of the current (P = I2R), could lead to a heat impact on the sensor. It is
known that the resistance of the chemiresistor sensor is sensitive to temperature [22]. A
subtle heating impact to the sensor would lead to a decrease in the measured resistance. In
this regard, there is a clear advantage for using HCD for the measurement of chemiresistor
sensors with high resistance in comparison with many of the commercial instruments.

To further evaluate the performance under ambient conditions, the multichannel
device interface sensor array was also tested using air and air with controlled relative
humidity (RH) as the carrier gases. Figure 7 shows a representative set of data to compare
the response sensitivities of individual sensors in the array in response to hexane vapor in
air and air with 30% RH. Note that both room air and pre-prepared air (O2/N2 ratio ~0.26)
were used. The pre-mixed air was then humidified with a controlled RH (30%), similar to
the room air’s RH.
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Figure 7 depicts the differences of the changes in resistance of individual sensors
in response to the vapor sorption per unit concentration, which is expected by design,
based on the differences in the sensor elements in the array. The result is significant in two
aspects. First, the differences of the response sensitivities of different sensors stem from the
differences in the interactions between the adsorbed hexane and the sensing films, which
is a key element of the design of the sensor array. Second, the variations of the response
sensitivities of each sensor between air and air with 30% RH reflect the difference in the
sensor for the competitive adsorption of hexane and water vapor in the sensing film, which
demonstrates the desired performance of the multichannel device interface sensor array
in different sensing environments, as known for the nanostructured chemiresistor sensors
interfaced with commercial instrument (KMM) in the detection of mixed VOC and water
vapors [17,21].
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4. Conclusions

In conclusion, we have developed a low-current, multichannel, handheld electronic
device integrated with nanostructured chemiresistor sensor arrays. By integrating the
circuit board with nanostructured chemiresistor arrays and testing it with VOCs, the
handheld device is shown to meet the desired low-current and wide-range performances for
different sensors spanning several orders of magnitude in resistance. The combination of the
multiplexing, wide-range, auto-locking, and high-stability capabilities is anticipated to find
applications in environmental monitoring of VOCs for air quality control and human breath
sensing for cancer screening and health monitoring. The current limitation of the HCD is
eight channels. Part of our on-going work involves increasing the number of channels to 16
or more. The low excitation current specification also enables low temperature drift and
low power consumption so that the potential instability of the chemiresistor sensors can
be minimized. This is an important specification, especially for applications of sensors for
the point-of-need monitoring of air quality, as well as for biosensors in point-of-care breath
screening for human health [23–25].
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