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Recent years have seen an increase in the number of studies focusing on alkaline phos-
phatases (APs), revealing an expanding complexity of function of these enzymes. Of 
the four human AP (hAP) proteins, most is known about tissue non-specific AP (TNAP) 
and intestinal AP (IAP). This review highlights current understanding of TNAP and IAP in 
relation to human health and disease. TNAP plays a role in multiple processes, including 
bone mineralization, vitamin B6 metabolism, and neurogenesis, is the genetic cause of 
hypophosphatasia, influences inflammation through regulation of purinergic signaling, 
and has been implicated in Alzheimer’s disease. IAP regulates fatty acid absorption and 
has been implicated in the regulation of diet-induced obesity and metabolic syndrome. 
IAP and TNAP can dephosphorylate bacterial-derived lipopolysaccharide, and IAP has 
been identified as a potential regulator of the composition of the intestinal microbiome, 
an evolutionarily conserved function. Endogenous and recombinant bovine APs and 
recombinant hAPs are currently being explored for their potential as pharmacological 
agents to treat AP-associated diseases and mitigate multiple sources of inflammation. 
Continued research on these versatile proteins will undoubtedly provide insight into 
human pathophysiology, biochemistry, and the human holobiont.

Keywords: alkaline phosphatase, hypophosphatasia, tissue non-specific AP, intestinal AP, lipopolysaccharide, 
microbiome

inTRODUCTiOn

Alkaline phosphatases (APs) belong to a superfamily of proteins (EC 3.1.3.1) sharing conservation 
of metal binding sites, amino acids required for activity, and predicted fold structure (1). APs are 
used extensively in life sciences education, as a tool in molecular biology research and as a blood 
serum marker for liver and bone health, and yet we know surprisingly little about the potential 
these proteins have to influence our health. In general, APs are anchored to outside surface of 
the plasma membrane and catalyze the hydrolysis of phosphate groups from a variety of differ-
ent substrates (dephosphorylation) in an alkaline environment, freeing inorganic phosphate (Pi) 
(2–4). APs are ubiquitous, with members of the AP super family of proteins extending from the 
archaea (5) to humans (2). Their ubiquity across life and their expansion and subsequent dynamic 
evolution in vertebrates implies both variety and conservation of function (6, 7). There are four 
genes encoding APs in humans. Three genes, ALPI, ALPP, and ALPPL2, display tissue-specific 
expression (TSAP proteins), whereas the fourth, ALPL is tissue non-specific in expression [tissue 
non-specific AP (TNAP) proteins] (Table 1). Unlike tissue distribution, surprisingly less is known 
about the function of these proteins, especially ALPP and ALPPL2 (Table 1). This mini-review will 
briefly highlight current knowledge of TNAP and intestinal AP (IAP) function in human health and 
disease (see Figure 1 for summary).
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FigURe 1 | Summary of human APs (hAPs) tissue non-specific AP (TNAP) and intestinal AP (IAP). (A) Established and proposed functions of TNAP and IAP.  
(B) Disease states in which increase, decrease, or dysregulation of hAPs is either indicative or causative. Background image modified from the tertiary structure  
of human PLAP generated by http://www.rcsb.org/pdb (8) PBD ID: 3MK2 (9).

TABle 1 | Description of human alkaline phosphatases (APs).a

AP gene AP protein Tissue distribution Known function

ALPL Tissue non-
specific AP

Liver, kidney, skeletal tissue, 
nervous system

Bone and tooth 
deposition

ALPP PLAPb Syncytiotrophoblasts, 
reproductive tumors

Unknown

ALPPL2 GCAPb Testis, reproductive tumors Unknown

ALPI IAPb Intestine, enterocyte Fatty acid absorption, 
lipopolysaccharide 
detoxification

aInformation from Ref. (2, 7).
bTSAPs.
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TiSSUe nOn-SPeCiFiC AP

The most direct link between APs and human disease is hypo-
phosphatasia (HPP), a disease characterized by mutations in 
TNAP associated with decreased enzyme activity in specific 
organs (10, 11) (Figure 1B). This decrease in AP activity results 
in variable symptoms that range from perinatal HPP that can 
result in still birth from profound skeletal hypomineralization 

(11, 12), potentially lethal seizures in infantile HPP (13–15), 
to milder phenotypes such as bone fractures and periodontal 
disease in juvenile HPP and adult HPP (16, 17). A relatively 
recent mouse model for HPP, in conjunction with medical data 
and genetic analysis has provided insight into the mechanism of 
HPP pathophysiology regarding at least two TNAP substrates, 
extracellular pyrophosphate (PPi), and pyridoxal-5-phosphate 
(PLP) (7).

HYPOPHOSPHATASiA

Tissue non-specific AP is anchored to the cell membranes of 
osteoblasts and chondrocytes and to matrix vesicles released by 
those cells, where it degrades PPi to Pi. PPi is an inhibitor of 
mineralization (18) and regulation by TNAP controls propaga-
tion of extracellular mineralization of apatite crystals. TNAP 
deficiency increases the amount of inhibitory PPi thus decreas-
ing extracellular mineralization, and humans with HPP show a 
loss of mineralization fronts (19). This has been recapitulated 
in a TNAP knockout mouse model for infantile HPP (20–22). 
The loss of mineralization results in various symptoms including 
softening of bone, bowing and spontaneous breakage of bones, 
rickets, and tooth (dentin/cementum/enamel) defects (23).
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Pyridoxal-5-phosphate, the active form of vitamin B6 (24), 
is elevated in the serum of HPP patients (25, 26). Hydrolysis 
of PLP to pyridoxal (PL) by TNAP facilitates diffusion of  
PL across cell membranes, where it is then re-phosphorylated 
into PLP. PLP is a versatile cofactor for an estimated 4% of 
enzymatic reactions and is used by over 110 enzymes to pro-
duce or metabolize various molecules (27). PLP-dependent 
enzymes in the brain are responsible for the production of 
important neurochemicals including serotonin, dopamine, 
and gamma-aminobutyric acid (28). The decrease in PLP and 
resulting decrease in PLP-dependent metabolism in the brain 
in perinatal HPP patients has been implicated as the cause of 
neonatal seizures (29, 30).

nOn-HPP TnAP PATHOPHYSiOlOgY

Tissue non-specific AP has been implicated in non-HPP related 
medical conditions (Figure  1B). TNAP is expressed during 
embryonic neural and spinal chord development, and promotes 
axonal growth in vitro and neurogenesis in adults (31), suggest-
ing an importance in proper neural function. Indeed, increased 
TNAP activity in the brain has been demonstrated in postmor-
tem hippocampus and serum samples from Alzheimer’s disease 
patients and has been implicated in neuronal death through 
increased dephosphorylation of tau (32). Increased serum levels 
of AP (TNAP and/or TSAPs) due to mutations in GPI anchor 
synthesis, termed hyperphosphatasia, results most notably in 
Marby syndrome characterized by seizures, intellectual dis-
ability, and facial dysmorphology (33). TNAP upregulation 
in the vasculature contributes to medial vascular calcification 
causing vascular stiffening and eventually heart failure (34, 35). 
An emerging function for TNAP is regulation of purinergic 
signaling. Extracellular ATP and ADP, through the binding of 
nucleotide receptors, act as signals inducing inflammation after 
an acute event such as necrosis induced by damage or infection 
that releases intracellular nucleotides. In contrast, degradation of 
extracellular ATP and ADP to AMP and adenine causes cessa-
tion of inflammatory signaling, and induction through adenine 
receptors of an anti-inflammation response (36, 37). TNAP has 
been implicated in protection against inflammation in multiple 
diseases and promotion of intestinal microbial populations 
through hydrolysis of extracellular ATP/ADP to AMP and 
adenosine (38–40).

inTeSTinAl AP

Intestinal AP is expressed in villus-associated enterocytes where 
it regulates fatty acid absorption through secretion of vesicles 
at both the luminal and basolateral surfaces (41, 42), regulates 
bicarbonate secretion and duodenal surface pH (43), and has 
been implicated in the regulation of diet-induced obesity  
(44, 45) and metabolic syndrome (46, 47) (Figure  1A). But 
perhaps, the most remarkable function of IAP centers on its 
protective interactions with the bacterial symbionts that inhabit 
or invade our enteric system. IAP has been shown to dephospho-
rylate (detoxify) the lipid A moiety of lipopolysaccharide (LPS), 
the outer lipid layer of the outer membrane of Gram-negative 

bacteria (48). In vertebrates, these phosphates are important for 
binding of LPS to the toll-like receptor 4/MD-2 innate immune 
receptor complex (49), initiation of NF-kB signaling, and 
immune response induction (50–52).

Intestinal AP deficiency has been associated with inflam-
mation in the human intestine (53) and in the intestines of 
vertebrate models in which AP levels are decreased (54). 
Supplementation of IAP to animals where intestinal inflam-
mation is induced directly or indirectly (with antibiotic use 
for example) reduces inflammation (53, 55, 56). In addition, 
a protective role has been ascribed to IAP in mouse models 
of necrotizing enterocolitis (57–59). This protective role may 
include IAP-dependent shaping (60) and homeostasis (61) 
of the microbiome. Along with direct regulation of intestinal 
homeostasis, IAPs and LPS detoxification have been implicated 
in other immune-related processes including prevention of 
bacterial translocation by endogenous or pharmacologically 
administered IAPs (62–64), and resolution of intestinal inflam-
mation and tissue regeneration (65–67). It should also be noted 
that in addition to vertebrate IAP, TNAP has been shown to 
dephosphorylate LPS when it is applied to tissue sections from 
rat livers (68) and in the mouse uterus (69). With the current 
and increasing interest in the microbiome, IAP function as it 
relates to interaction with the endogenous microbes and its 
influence on human health will undoubtedly be clarified in the 
coming years.

CliniCAl USe OF APs

Although there are a multitude of AP studies focusing on ver-
tebrate models of disease, there are relatively few publications 
to date reporting pharmacological use of APs as a treatment in 
humans. At the time this article was written, a search of http://
clinicaltrials.gov using AP as a search term produced over sev-
eral hundred responses, however, the vast majority assay for AP 
levels in serum (a constant hazard when searching any science 
or medical database using “alkaline phosphatase” as a search 
term). However, there were at least 11 clinical trials concerning 
AP treatment of HPP, 3 concerning AP treatment of sepsis with 
renal injury or failure, 2 concerning AP treatment during or after 
cardiac surgery, and at least 1 each concerning AP treatment of 
rheumatoid arthritis, and ulcerative colitis (UC). Interestingly, 
these studies use several AP sources such as isolated bovine IAP 
(bIAP), recombinant bIAP, and recombinant human Aps (hAPs). 
AP enzyme replacement therapy is also currently available to treat 
HPP. A recombinant soluble human TNAP has been approved for 
use in perinatal, infantile, and juvenile-onset HPP (70, 71) and 
has proven successful in symptom improvement and survival in 
perinatal and infantile HPP (72, 73). In addition to HPP, use of 
AP as treatment increased renal function in sepsis-induced acute 
kidney injury (74, 75) and showed short-term improvement of 
severity of UC in patients with moderate-to-severe UC (76). 
These studies are a first glimpse into AP use as a treatment for 
disease, with very positive results. Given the jack of all trades 
nature of APs and the potential for APs as pharmacological 
agents in various diseases, studies like these should increase in 
the coming years.
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PeRSPeCTive

The ability of APs to detoxify LPS appears to be an evolutionar-
ily conserved function as it was recently implicated in symbiont 
recognition and homeostasis in the invertebrate squid-Vibrio 
symbiosis model (77). As it is becoming clear that metazoans 
developed in a microbial world (78), it seems likely that APs 
have been and may continue to be an evolutionary force shaping 
the diversity and function of our endogenous microbial popula-
tions. Indeed, alterations in IAP have been shown to influence 
the composition of the intestinal microbiome (60). We can even 
expand this thinking—if hAPs evolved from an ancient ancestral 
bacterial AP, then APs may have had a prominent role in shaping 
basic human biochemistry in addition to our interactions with 
microbes, and thus exerted a profound influence on human health.

The reader of this review will notice that many of the articles 
cited might be considered old, with contributions from the 1960s, 

1970s, and 1980s. In fact, the study of APs goes back close to 
100 years when a bone enzyme freeing phosphate was first men-
tioned by Robison and Soames (79). That begs the question: how 
is it, after 90+ years, we still know relatively little about the overall 
functions of APs? The recent resurgence of interest in APs, should 
it continue, will hopefully provide more insight into all aspects 
of AP biology, especially as it relates to health. The ubiquity and 
functions of AP distinguish them as unconventional immune 
proteins, and to this writer, APs are unendingly fascinating.
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