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Long noncoding RNAs (IncRNAs), a class of noncoding RNAs with more than 200bp in length, are produced by pervasive
transcription in mammalian genomes and regulate gene expression through various action mechanisms. Accumulating data
indicate that IncRNAs mediate essential biological functions in human development, including early embryogenesis, induction
of pluripotency, and germ cell development. Comprehensive analysis of sequencing data highlights that IncRNAs are expressed
in a stage-specific and human/primate-specific pattern during early human development. They contribute to cell fate
determination through interacting with almost all classes of cellular biomolecules, including proteins, DNA, mRNAs, and
microRNAs. Furthermore, the expression of a few of IncRNAs is highly associated with the pathogenesis and progression of
many reproductive diseases, suggesting that they could serve as candidate biomarkers for diagnosis or novel targets for
treatment. Here, we review research on IncRNAs and their roles in embryogenesis, pluripotency, and reproduction. We aim to
identify the underlying molecular mechanisms essential for human development and provide novel insight into the causes and

treatments of human reproductive diseases.

1. Introduction

Identification and functional characterization of noncoding
RNAs (ncRNAs) have revolutionized our traditional view
of RNA biology, as well as developmental biology [1]. Before
discovering microRNAs (miRNAs) and small interfering
RNAs, mRNAs that are transcribed from the coding region
of the genome and translated as proteins are considered
the primary regulators of the gene expression program in
the cells [2]. The vast majority of the genome that is not
translated into protein is junk DNA regions [3]. With the
rapid development of microarray and high-throughput
sequencing technology, a comprehensive annotation of the
mammalian genome demonstrates that most mammalian
genome is actively transcribed into RNAs, and thousands
of ncRNAs have been identified [4, 5]. ncRNAs are divided
into two main types according to the length of the tran-
scripts: small noncoding RNAs (sncRNAs), which are com-
posed of less than 200 nucleotides, and long noncoding

RNAs (IncRNAs), which consist of more than 200 nucleo-
tides [6]. In this review, we focused on the discussion of
IncRNAs. There are five different sources of IncRNAs: (1) a
protein-coding gene was mutated and transformed into a
noncoding RNA sequence. (2) Following chromosome rear-
rangement, two separate nontranscribed sequence regions
are juxtaposed together to produce expressed noncoding
sequences. (3) IncRNAs without a protein-coding function
are produced by duplicating noncoding genes by retrotran-
sposition. (4) Local two tandem duplication produces adja-
cent repeat sequences, which increases the size of IncRNs.
(5) The insertion of transposable elements (TEs) can pro-
duce functional IncRNAs [7, 8].

It was questionable whether IncRNAs have putative
functions in cells, as they are present in relatively low levels.
It is estimated that total IncRNAs are present at two magni-
tudes less than total mRNAs. However, recent research sug-
gests that IncRNAs may function at a very low level as a
molecular scaffold or a catalytic molecule [9]. A growing
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FIGURE 1: Schematic diagram of IncRNA classification. Classification of IncRNAs into five classes: (a) sense, (b) antisense, (c) bidirectional,

(d) intronic, and (e) intergenic.

number of IncRNAs are found to play essential roles in reg-
ulating cell proliferation, survival, cell cycle, differentiation,
and apoptosis [10]. They are also indicated as vital regulators
in initiating and developing many diseases, including repro-
ductive diseases [11]. X-inactive specific transcript (XIST),
located on the X-chromosome of mammalian cells, is the
first reported IncRNA. It has been proven to be a major reg-
ulator of the X-inactivation process [12]. Another well-
established example of functional IncRNAs is H19, which
is highly expressed in many tissues derived from endoderm
and mesoderm. It regulates the network of imprinted genes
that regulate fetal and postnatal growth [13], and it is differ-
entially expressed in many disease tissues.

IncRNAs can be divided into five categories based on
their genome localization and the direction of transcription
relative to the protein-coding genes (pcGenes) in the
genome: sense, antisense, bidirectional, intronic, and long
intergenic (Figure 1) [14]. Sense IncRNAs are transcribed
from the same strand and direction as pcGenes, and anti-
sense IncRNAs are transcribed from the opposite strand of
pcGenes. Sense and antisense IncRNAs are located within
the regions of their surrounding pcGenes. Bidirectional
IncRNA is located less than 1kb from the surrounding
pcGenes, sharing the same promoter as the protein-coding
gene, but transcribed from the opposite direction [15]. Long
intergenic noncoding RNAs (lincRNAs) are located within
the intergenic regions of pcGenes, and they do not overlap
with protein-coding regions.

IncRNAs could control transcription in cis or trans, reg-
ulate essential proteins or nucleic acid molecules, and are
also involved in the organization of the nuclear domains
[16]. The mechanisms of action vary depending on their
structural conformations, biochemical properties, and spe-
cific subcellular localization [17, 18] (Figure 2). (1) They
could function as signal molecules. In this case, IncRNAs
respond to the environmental stimuli and then are tran-
scribed at a specific time and space. This property makes
them act as biomarkers for specific biological events. (2)
They could act as decoy molecules by binding to the regula-

tory factors of transcription. For example, IncRNAs could
bind to RNA-binding proteins, transcription factors, or
chromatin modifiers to inhibit their biological activity. (3)
They could function as guide molecules to direct the local-
ization of regulatory factors. For example, IncRNAs can
directly bind to protein molecules to form ribonucleoprotein
complexes and mediate their precise localization to specific
targets to regulate gene expression [19]. (4) IncRNAs could
serve as scaffold molecules to assemble various effector mol-
ecules into macromolecules to achieve precise and specific
control of biological events [19]. Finally, (5) IncRNAs could
function as competing endogenous RNAs (ceRNAs) to
sequester miRNAs, leading to the active transcription of
their mRNA targets [20]. Several studies have shown that
when TEs were embedded in IncRNAs, they may function
in the processing, stability, and localization of IncRNAs.
More importantly, TEs are often found to be the functional
domains of IncRNAs [21]. For example, 73% of Linc-ROR
sequences that have miRNA binding sites are derived from
TE, and these sequences are essential for maintaining the
pluripotency and self-renewal of embryonic stem cells [22].
Another example is XIST, which is important in early
embryonic development and reproductive diseases [23].
XIST contains three functional repeat domains that are
derived from TE. A-repeats that originated from ERVB5
TE are responsible for recruiting SPEN to silence the X chro-
mosome; C-repeats, originating from ERVB4 TE, are
required for the localization of XIST; and F-repeats, which
are derived from a DNA transposon, are found to interact
with JARID2 [24-28].

In mammals, development starts from the fusion of
mature germ cells, sperms, and eggs, generating a totipotent
zygote. Then, the zygote differentiates to form pluripotent
stem cells that have the potential to give rise to an entire
organism, including germ cells [29]. Thus, germ cells are
the most remarkable cell type capable of reestablishing toti-
potency and transmitting heritable genetic and epigenetic
information between generations [30]. Understanding the
unique cell fate change from totipotent embryos to
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FIGURE 2: Schematic diagram of IncRNA mechanisms of action. Mechanisms of action: (a) signaling, (b) decoy, (c) guides, (d) scaffold, and

(e) miRNA sponge.

pluripotent stem cells and germ cells will enable us to
develop novel strategies for disease treatments, particularly
in regenerative medicine [31]. Although substantial progress
has been made to dissect the molecular mechanism under-
pinning this cell fate change, the role of IncRNAs remains
largely unknown. In this article, we have reviewed the recent
progress of IncRNAs studies in embryogenesis, pluripotency,
and reproduction, aiming to shed light on future research to
probe the genetic program that drives the multistep develop-
mental processes.

2. IncRNAs in Early Human
Embryonic Development

IncRNAs are present from the beginning of human embryo
development. After embryonic gene activation (EGA),
IncRNAs become the main category of transcripts [14].
RNA-seq and hierarchical clustering analysis demonstrated
that IncRNAs show distinct developmental stage-specific
expression patterns [32]. Furthermore, the epigenetic signa-
tures of IncRNAs are similar to those of protein-coding
genes, including methylation distribution at the transcrip-
tion start site (TSS), methylation dynamics, and negative
correlation between gene expression and promoter methyla-
tion level. Collectively, these data suggest that IncRNAs may
play essential roles in early human embryonic development
by regulating gene expression [33].

Human endogenous retroviruses (HERV) are remnants
from ancient germline infections by exogenous retroviruses
and account for 8% of the human genome [34]. HERV-
derived IncRNAs are found to express at specific stages
and function in human-specific or even individual-specific
aspects of early human embryo development [35]. HERVK
is activated by the master transcription regulator of pluripo-
tency, OCT4, from embryonic genome activation at the
eight-cell stage to human embryonic stem cell derivation.
It is involved in the immunoprotective process of human

embryos against exogenous viral infection [36]. Another spe-
cies of HERV, HERVH, is considered the most successful
endogenous retrovirus in the human genome. It is expressed
during human preimplantation embryogenesis and regulates
human pluripotency by providing alternative binding sites
for key transcription factors, functioning as a long-range
enhancer, and producing pluripotency-specific IncRNAs [37].

Human pluripotency-associated transcripts 2, 3, and 5
(HPAT2, HPATS3, and HPATS5) are derived from transpos-
able elements (TEs) and are essential for preimplantation
embryo development by modulating the acquisition of plur-
ipotency and the formation of the inner cell mass [38].

In addition, the activity of the X chromosome is regu-
lated by the antagonistic action of IncRNAs XIST and XACT
in the early development of human embryogenesis [39].

3. IncRNAs in Pluripotent Stem Cells

Pluripotent stem cells (PSCs) cultured in vitro provide a
unique model for studying the molecular mechanisms of
human embryogenesis [40] and are considered the seed cells
to differentiate into functional cells for cellular therapeutics
[41]. The core regulatory network for self-renewal and plur-
ipotency involves transcription factors, chromatin modifiers,
and IncRNAs [42, 43](Figure 3). PSCs express a characteris-
tic set of IncRNAs that interact with the other members of
the core regulatory network to (1) regulate gene expression,
(2) modulate signaling pathways, (3) maintain epigenetic
signatures, and (4) direct differentiation.

Linc-RoR, HERVH (human endogenous retrovirus sub-
family H), HPATS5, and GAS5 (growth arrest-specific tran-
script 5) are found to be preferentially expressed in PSCs
and interact with the core regulatory transcription factor
network (OCT4, NANOG, SOX2, and SALL4) to regulate
the gene expression profiles and safeguard pluripotency
[22, 38, 44, 45]. Mechanically, Linc-RoR works as a compet-
ing endogenous RNA to connect the network of miRNAs
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FIGURE 3: Mechanisms of IncRNAs in pluripotency, differentiation, and reprogramming of PSCs by interacting with different partners.
Epigenetic regulator: recruit chromatin modification factors to affect chromatin status; transcription factor: binding transcription factors
to regulate gene transcriptional activity; RNA-binding protein: interacting with RNA-binding protein to directly regulate protein activity;
sponge for miRNA: functioning as the sponge of endogenous miRNA, preventing miRNA targets from degradation.

with core transcription factors in PSCs. Linc-ROR prevents
the core transcription factors from miRNA-mediated sup-
pression in PSCs, thus regulating the self-renewal and plur-
ipotency of PSCs [22]. HPATS5 acts as a miRNA sponge to
modulate the balance between pluripotency and differentia-
tion by counteracting the activity of let-7 [38].

Another group of IncRNAs, such as LincU, FAST, and
GAS5, maintains the pluripotency of PSCs by modulating
signaling pathways that are essential for PSCs [45-47].
Mechanistically, LincU binds to DUSP9 protein, an ERK-
specific phosphatase, and stabilizes its expression, thereby
inhibiting the MAPK/ERK signal pathway and maintaining
the naive state of ESCs [46].

Examples of IncRNAs that modulate the epigenetic sta-
tus of PSCs include ES1-3 and IncPRESSI. They are shown
to function as molecular scaffolds that bridge different chro-
matin modifiers to maintain the epigenetic signatures of
PSCs. ES1-3 are highly expressed in undifferentiated hESCs.
As a modular scaffold, they recruit the suppressive PRC2
component SUZI12 to silence the SOX2 neural targets in
PSCs, thus maintaining pluripotency [48-50].

IncRNAs are also involved in the differentiation of PSCs
into three germ layers. RMST and TUNA (Tcll upstream
neuron-associated lincRNA) promote neuronal differentia-
tion of human PSCs [48, 49], while DEANR1, GATAG6-
AS]1, and LINC00458 promote endodermal lineage specifica-

tion [51-53]. For example, RMST interacts with SOX2 and
binds to the promoter regions of neurogenic target genes
to promote neuronal differentiation [48, 49]. DEANRI, an
endoderm-specific IncRNA, interacts with SMAD2/3 to acti-
vate the expression of FOXA2, thus enabling the differentia-
tion towards endoderm [51]. In addition, HBL1, BANCR,
and YyIncT are identified as critical regulators for meso-
derm development [54-56].

IncRNAs are also involved in reprogramming. Linc-
ROR, as a negative regulator of p53, directly binds to hetero-
geneous nuclear ribonucleoprotein I (hnRNP I) to inhibit
the expression of p53, thereby inhibiting p53-mediated cell
cycle arrest and apoptosis and promoting cell reprogram-
ming [57]. HERVH is significantly upregulated in the repro-
gramming process of fibroblasts to induce pluripotent stem
cells (iPSCs). By recruiting P300 and OCT4 to the HERVH
LTRY7 region, HERVH regulates the expression of neighbor-
ing genes, as well as pluripotency-associated transcripts. It is
suggested that HERVH plays an essential role in the acquisi-
tion of somatic pluripotency [44]. lincRNA-p21 (P53-
induced large intergenic noncoding RNA p21) interacts with
the H3K9 methyltransferase SETDB1 and the DNA methyl-
transferase DNMT1 through the RNA-binding protein
HNRNPK to maintain high levels of H3K9me3 modification
and/or CpG methylation at the pluripotency gene promoter,
thus hindering somatic cell reprogramming [58].
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Knockdown of HPATS5 impairs reprogramming, indicating
that it contributes directly to reprogramming and acquisi-
tion of pluripotency [38].

4. IncRNAs in Human Germ Cell Development

Germ cell development is a complex differentiation process
essential for the generation of gametes, which pass on the
genetic information between generations [59]. Disruption
of germ cell development or misregulation of gene expres-
sion in germline-related cells leads to infertility or reproduc-
tive diseases [60]. This dynamic developmental process is
precisely regulated by a tissue- or cell-specific gene network
[61]. As a new regulator in gene expression networks, cell
type-specific IncRNAs have recently been discovered and
suggested to be involved in many cellular processes during
human germ cell development [62]. Several IncRNAs show
differential expression or regulatory roles in the develop-
ment of human primordial germ cells (hPGCs), the first pro-
genitor cells of the germline [63]. For example, HIPSTR
(heterogeneously expressed from the Intronic Plus Strand
of the TFAP2A-locus RNA) has been identified as a novel
IncRNA transcribed from the TFAP2A locus and shows dif-
ferential expression in human primordial germ cells [64]. In
addition, XACT and XIST are expressed to regulate X-
chromosome dosage in hPGCs before meiosis [65]. RNA-
seq analysis of human testicular cells has identified thou-
sands of syntenic IncRNAs associated with spermatogenesis
[66-71]. The narcolepsy candidate-region 1 gene (NLCI-
C), a IncRNA expressed in the cytoplasm of spermatogonia
and early spermatocytes, is found to be associated with male
infertility and promotes testicular embryonal carcinoma cell
proliferation [71]. Single-cell RNA-seq profiling of meta-
phase II oocytes also found 8,700 maternal IncRNAs
expressed in the preimplantation embryos [32]. Note that a
large number of RNA-binding proteins are found to be crit-
ical for germ cell development across species, including
VASA (DDX4) and DAZL (Deleted in Azoospermia Like)
[72]. These proteins might function by influencing IncRNA
action to reinforce germ cell fate.

5. IncRNAs in Reproductive Diseases

Besides the roles in development, differential expression of
many IncRNAs has been identified using microarray or
RNA-seq between control and reproductive disease samples
[73], indicating potential roles in pathogenesis. Although
most of their functions and mechanisms of action need to
be further annotated and characterized, these IncRNAs
could serve as potential targets for the diagnosis and treat-
ment [74] (Table 1).

5.1. IncRNAs Associated with Male Infertility. Spermatogen-
esis is a complex developmental process that is essential for
male fertility [75]. The process is classified into three major
phases: (1) mitotic proliferation of spermatogonia, (2) the
meiosis of spermatocytes, and (3) spermiogenesis and matu-
ration of spermatocytes to spermatozoa [76]. Each phase is
strictly regulated by transcriptional factors, hormones, epi-

genetic regulators, and IncRNAs. Disruption of any steps
of spermatogenesis, referred to as maturation arrest (MA),
causes male infertility [77]. Nonobstructive azoospermia
(NOA) is considered the most severe case of male infertility,
and it is characterized as no sperm in the ejaculate due to
failure of spermatogenesis [78]. Several IncRNAs have been
indicated to play roles in the process of spermatogenesis
and NOA.

The narcolepsy candidate-region 1 gene (NLCI-C, also
known as LINC00162) is expressed in spermatogonia and
primary spermatocytes. Compared with fertile controls, its
expression is significantly downregulated in the cytoplasm
and accumulated in the nucleus in the testis of infertile
MA patients. NLC1-C forms a regulatory feedback loop with
miR-320a and miR-383 to control the survival and prolifer-
ation of the germ cells in the process of spermatogenesis. In
the cytoplasm, NLC1-C is the target of miR-320a and miR-
383; while accumulated in the nucleus of spermatogonia
and primary spermatocytes, it is suggested to repress the
expression of miR-320a and miR-383 by direct binding to
nucleolin, resulting in the hyperactive proliferation of germ
cells, which leads to male infertility [71].

GM2044 is indicated to play an essential role in NOA
and specific in reproductive diseases. It is the miR-202 host
gene, and its expression is significantly increased with its
host gene miR202 in NOA of spermatogonial arrest. IncRNA
Gm2044 inhibits the proliferation of the human testicular
embryonic carcinoma cell NCCIT through the miR-202-
Rbfox2 molecular signal pathway [79].

The expression of Hox transcript antisense intergenic
RNA (HOTALIR) is decreased in asthenozoospermic and oli-
goasthenozoospermic patients [80]. The low expression of
HOTAIR was also observed to be associated with specific
sperm function parameters, including motility and vitality.
It is found that low HOTAIR leads to downregulation of
nuclear factor erythroid 2-related factor 2 (NRF2), a gene
related to the expression of antioxidant genes and the quality
of spermatozoa [81]. This eventually results in reactive oxy-
gen species- (ROS-) related defects in sperm function.

IncRNA growth-arrested DNA damage-inducible gene 7
(Gadd?) is indicated in the regulation of the oxidative stress
response and specific in reproductive diseases. Its expression
is upregulated in patients with varicocele compared with fer-
tile controls. Further functional analysis in mouse cell lines
indicates that overexpression of gadd7 inhibits cell growth
and promotes apoptosis by upregulating the proapoptotic
regulator Bax and downregulating the antiapoptotic regula-
tor Bcl2, resulting in male infertility [82].

5.2. IncRNAs Associated with Prostate Tumors. Prostate can-
cer is the most common cancer among men, and the andro-
gen receptor (AR) plays a central role in its progression by
regulating the expression of genes associated with the iden-
tity and behavior of prostate cancer cells [83]. A number
of IncRNAs are identified as potential regulators for disease
progression and may be applied as novel therapeutic targets.

PRNCRI and PCGEMI are highly expressed in aggres-
sive prostate cancer and bind to AR successively. They
enhance the activation of ligand-dependent and ligand-
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independent AR-mediated genes and promote the prolifera-
tion of prostate cancer cells [84].

Nuclear-rich transcriptase 1 (NEATI), a potential target
of estrogen receptor alpha (ERa), is significantly overex-
pressed in prostate cancer. NEAT1 is shown to regulate the
expression of prostate cancer genes and promotes the devel-
opment of prostate cancer by changing the epigenetic land-
scape of the target gene promoter [85].

PCAT-1 is upregulated in prostate cancer and promotes
the proliferation of prostate cancer cells through PRC2 and
cMyc proteins [86].

MALAT-1 is upregulated in prostate cancer and is asso-
ciated with the increase in the Gleason score, prostate-
specific antigen (PSA), and tumor stage. Downregulating
the expression of MALAT-1 inhibits the migration, invasion,
and growth of prostate cancer cells, increases the rate of apo-
ptosis, and blocks the cell cycle [87].

SChLAP]I is highly expressed in prostate cancer and is
associated with a poor prognosis. Thus, it could be used as
an essential biomarker to identify patients with a high risk
of lethal prostate cancer [88].

GAS5 is downregulated in prostate cancer cells com-
pared with prostate epithelial cells. GAS5 inhibits prostate
cancer cell proliferation. It can bind directly to E2F1 and
activate the P27°®' which is a regulator of the cell cycle.
Thus, GAS5 induces a cell cycle arrest in the GO-G1 phase
and acts as a tumor suppressor [89].

5.3. IncRNAs Associated with Ovarian Cancer. Ovarian can-
cer is one of the most common gynecological cancers that
affect women’s health worldwide. As there has been no effec-
tive method to detect ovarian cancer at an early stage, most
patients are diagnosed in an advanced stage, which has
developed resistance to multiple treatment modalities [90].
Despite the revolutionary role of surgery and chemotherapy
in curing ovarian cancer, the overall prognosis of ovarian
cancer is poor. Thus, improving our understanding of the
pathogenesis of ovarian cancer is essential for developing
more effective treatments.

XIST encodes a specific spliced IncRNA, and it is a vital
regulator of X chromosome inactivation. It is identified to be
the most differentially expressed gene and downregulated in
recurrent ovarian tumors. Downregulation of Xist may
increase the expression of linked inhibitors of apoptosis pro-
tein (X-linked Inhibitor of Apoptosis Protein (XIAP)) and
lead to the phenotype of drug resistance [91].

H19 is significantly increased in ovarian cancer cells and
ovarian cancer tissues. Ectopic expression of H19 promotes
cell proliferation while silencing the expression of H19 by
RNA interference inhibits the growth of ovarian cancer cells
and induces cell cycle arrest and apoptosis [92]. Moreover,
overexpression of H19 enhances the ability of tumor cells
to invade in vitro and metastasize in vivo [93].

Metastasis-associated lung adenocarcinoma transcript 1
(MALATI) is one of the earliest cancer-related IncRNAs
identified to be related to ovarian cancer [94]. The expres-
sion level of MALAT1 is associated with ovarian cancer cells
with different metastatic potentials. MALAT1 may play a
role in the metastasis of epithelial ovarian cancer cells, but
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its mechanism needs to be further studied [95]. Knockdown
of MALAT1 in ovarian cancer cells changes the expression
of many genes related to cell proliferation, metastasis, and
apoptosis, and inhibition of MALATI can significantly
inhibit the tumorigenicity of SKOV3 cells [96].

LINC00565 is highly expressed in ovarian cancer tissues,
and its expression level was negatively correlated with the
prognosis of patients with ovarian cancer. It has been found
that the expression level of LINC00565 is related to the
FIGO (International Federation of Gynecology and Obstet-
rics) stage and the size of tumor cells. Knockdown of
LINCO00565 in ovarian cancer cells inhibits the proliferation,
invasion, and migration of the cells and induces cell cycle
arrest. In vivo studies have shown that downregulating the
expression of LINC00565 has an inhibitory effect on the
growth of ovarian cancer cells by mediating the expression
of cell cycle-related genes [97].

DARS-ASI is expressed higher in ovarian cancer tissues
than in adjacent normal tissues. It promotes the migration
and invasion of ovarian cancer cells. MicroRNA-532-3p
(miR-532-3p) is identified as the direct target of DARS-
AS1 in ovarian cancer, and DARS-ASI via sponging miR-
532-3p promotes the proliferation, migration, and invasion
of ovarian cancer cells [98].

FEZF1-ASI is identified as a carcinogenic gene in ovar-
ian cancer, as it is highly expressed in ovarian cancer tissues
compared with adjacent normal tissues. Its expression is
associated with a poor prognosis. After knocking down
FEZF1-AS1, the proliferation of ovarian cancer cells was
inhibited, and apoptosis was promoted. The mechanistic
analysis found that FEZF1-ASI regulated the JAK-STAT3
signal pathway by regulating the phosphorylation of STAT3
[99].

LEFI-ASI is upregulated in ovarian cancer and is related
to poor prognosis. The absence of LEF1-AS1 results in the
inhibition of proliferation, migration, and invasion of ovar-
ian cancer cells. LEF1-AS1 interacts with miR-1285-3p, a
tumor suppressor in ovarian cancer, to inhibit the expres-
sion of miR-1285-3p and promote the growth and metasta-
sis of ovarian cancer cells [100].

5.4. IncRNAs Associated with Endometrial Carcinoma (EC).
Endometrial carcinoma is the most common cancer in the
uterus. It is formed by the outgrowth of the cells that develop
the glands in the endometrium. Although it tends to have a
favorable prognosis if an early sign of abnormal uterine
bleeding is presented, once it develops into metastasis or
recurrence, the patients are at a significantly higher risk of
mortality, with a median overall survival time of <16 weeks
[101]. The genetic factors that cause endometrial carcinoma
remain unclear, and a growing number of studies have asso-
ciated IncRNAs with its initiation and progression.

HI9 is expressed higher in EC and tumor tissues than in
the normal endometrial epithelium, and it regulates migra-
tion and invasion of the tumor cells [102].

Colon  cancer-associated transcript 1 (CCATI) is
expressed significantly higher in EC and tumor tissues than
in normal endometrial tissue. Downregulation of CCAT1
expression leads to the inhibition of tumor cell growth and
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metastasis. In addition, it was found that CCAT1 was the
direct target of miR181a-5p in endometrial carcinoma cells.
It promotes the proliferation and migration of endometrial
cancer cells by negatively regulating the expression of miR-
181a-5p [103].

MIR22HG has been identified as a tumor repressor in
EC. Its expression is significantly downregulated in endome-
trial carcinoma tissue. Functional tests in vitro showed that
increased expression of MIR22HG could inhibit the prolifer-
ation and promote the apoptosis of cancer cells. In addition,
the study proposed that MIR22HG inhibits the proliferation
and migration of cancer cells by regulating the miR-141-3p/
DAPKI axis [104].

Maternal expression gene 3 (MEG3) is a tumor suppres-
sor gene, and its expression level in EC tissue is significantly
lower than that in normal endometrial tissue. High expres-
sion of MEG3 inhibits the migration, invasion, and prolifer-
ation of EC cells and increases apoptosis, probably through
the PI3K/mTOR signal transduction pathway [105].

5.5. IncRNAs Associated with Endometriosis. Endometriosis
is a benign gynecological disorder characterized by the pres-
ence of endometrial cells from the lining of the uterus out-
side of the uterine cavity. Although research efforts have
been devoted to uncovering the underlying cause of endo-
metriosis, the pathophysiological mechanisms causing this
disease remained obscure. Recent studies, especially the
results from high-throughput RNA sequencing [106], have
shown  differential  expression of IncRNAs in
endometriosis-related tissues and indicate the contribution
of IncRNAs to the pathogenesis of endometriosis.

AC002454.1 is upregulated with cyclin-dependent
kinase-6 (CDK®6) in patients with endometriosis, and there
was a significant positive correlation between them. After
downregulating the expression of AC002454.1 and CDKe,
the ability of cells to migrate, invade, and proliferate
decreased, the proportion of cells in the S phase decreased,
and the proportion of cells in the GO/G1 phase increased.
Therefore, AC002454.1 and CDK6 have a synergistic effect
on the biological behavior of endometrial cells [107].

MALATI plays a vital role in endometriosis. Compared
with normal tissues, the expression of MALATI in endome-
triosis is upregulated. Knockdown of MALAT1 inhibits the
proliferation and migration of endometrial cells, enhances
the activity of caspase-3, and induces apoptosis by inhibiting
the NF-xB/iNOS signal pathway [108].

AFAPI-ASI is significantly upregulated in ectopic endo-
metrial tissues and is positively correlated with epithelial-
mesenchymal transition (EMT). Knocking down AFAPI-
AS1 can inhibit the activity of the EMT-related transcription
factor ZEB1, thus inhibiting the EMT process of endometri-
osis [109].

CCDCI44NL-ASI is a newly identified IncRNA whose
expression is upregulated in ectopic endometrium tissues.
Downregulation of CCDC144NL-AS1 inhibited the migra-
tion and invasion of EC cell lines. Mechanism studies have
shown that the knockdown of CCDC144NL-AS1 leads to
changes in the distribution of filamentous actin (F-actin)
stress fibers in the cytoskeleton and affects the cytoskeleton
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structure. In addition, the expression of the CCDC144NL-
AS1 gene promotes the protein expression of vimentin fila-
ment and matrix metalloproteinase-9 (MMP-9), which pro-
motes cell invasion and migration [110].

5.6. IncRNAs Associated with Cervical Cancer. Cervical can-
cer is one of the most frequently diagnosed malignant gyne-
cological cancers that endanger women’s health and lives
[111]. Increasing data have shown the regulatory roles of
IncRNAs in the pathogenesis of cervical cancer, with the
prospective clinical application in the diagnosis and treat-
ment of cervical cancers.

In cervical cancer, the expression of IGF2 was signifi-
cantly increased, and the expression of H19 was decreased
considerably. However, the mechanism of this disorder is
not precise, and further research is needed [102].

MALATI is identified as an essential regulatory factor
involved in the occurrence of cervical cancer. Its expression
in cervical cancer tissues is significantly higher than that in
normal tissues. When endogenous MALATI is knocked
out, it reduces the proliferation and invasion of cervical can-
cer cells and promotes apoptosis [112].

The expression of HOTAIR in cervical cancer is higher
than that in normal tissues. HOTAIR has indicated a role
in metastasis and invasion of tumor cells by regulating the
expression of vascular endothelial growth factor, matrix
metalloprotein-9, and epithelial-to-mesenchymal transfor-
mation- (EMT-) related genes [113].

The expression level of RP11-480112.5 in the cervical car-
cinoma cell line is higher than that in normal tissue. RP11-
480112.5 induces EMT through the Wnt/f-catenin pathway
and promotes cervical cancer cell lines’ migration, invasion,
and proliferation [114].

IncRNARP1-93H18.6 is expressed higher in paracancer-
ous tissues in cervical cancer and specific in cervical cancer.
Overexpression of RP1-93H18.6 promotes growth and
metastasis of tumor cells and reduces apoptosis. Knocking
down the expression of IncRNARP1-93H18.6 promotes apo-
ptosis and inhibits the development of cervical carcinoma
cells by blocking the PI3K/Akt/mTOR pathway [115].

DSCAM-ASI is related to the occurrence and develop-
ment of various tumors, and its role in cervical cancer has
recently been studied. The expression of DSCAM-ASI in
cervical carcinoma is increased. DSCAM-ASI enhances the
ability of cells to migrate, invade, and proliferate and pro-
motes the development of cervical cancer through regulating
the miR-877-5p/ATXN7L3 axis [116].

GASS is a tumor suppressor factor that inhibits prolifer-
ation, EMT, invasion, and metastasis of tumor cells. GAS5-
ASI is the antisense RNA of GASS5, located on chromosome
1q25.1. Compared with normal tissues adjacent to cancer,
the expression of GAS5-AS1 in cervical cancer is downregu-
lated, and its expression is related to the FLGO stage, lym-
phatic metastasis, distant metastasis, and poor prognosis in
patients with cervical cancer. Mechanistically, GAS5-AS1
regulates the tumor suppressor GAS5 in an ALKBH5-
m6A-YTHDEF2-dependent manner. Specifically, GAS5-AS1
reduced the level of GAS5N6-methyladenosine (M6A) mod-
ification and improved the stability of GAS5 through the
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interaction of RNA demethylase and ALKBHS5. In addition,
YTHDEF2 specifically recognizes and binds to the RNA con-
taining M6A and degrades M6A-modified transcript [117].

Plasmacytoma variant translocation-1 (PVTI) promotes
the proliferation and metastasis of cervical cancer. The
expression of PVT1 is upregulated in cervical cancer cells,
and PVT1 binds directly to miR-140-5p, which promotes
the expression of Smad3 and then promotes the develop-
ment of cervical cancer [118].

5.7. IncRNAs Associated with Polycystic Ovary Syndrome
(PCOS). Polycystic ovary syndrome (PCOS) is one of the
most common metabolic and reproductive disorders that
has been estimated to affect approximately 5 to 20% of
reproductive-aged women worldwide [119]. Although the
etiology of PCOS remains unclear, most researchers believe
that the causes are multifactorial, and IncRNAs have recently
been suggested to play pivotal roles in its pathogenesis and
prognosis.

HI9 is suggested to be involved in the occurrence and
development of PCOS. In patients with PCOS, the expres-
sion of H19 is increased. The expression level of fasting
plasma glucose (FPG), a sensitive indicator in the early stage
of metabolic disease, is positively correlated with H19 in
PCOS patients. These results suggest that the expression of
H19 may be a critical factor in endocrine and metabolic dis-
orders in patients with PCOS [120].

Taken together, many IncRNAs, including H19, NEAT1,
MALAT1, HOTAIR, and PVT], are upregulated in the pro-
gression of many reproductive diseases. Interestingly, the
expression of several IncRNAs, which is highly expressed
in embryonic development, is reactivated in the develop-
ment of reproductive cancer. For example, H19 is highly
expressed in embryonic stem cells and essential for early
human embryonic development. While its expression is
downregulated after birth, the expression of H19 is signifi-
cantly upregulated in endometrial carcinoma and ovarian
cancer [121]. Recently, the reemergence of fetal-associated
features in the tumor ecosystem is getting much attention
and is referred to as oncofetal reprogramming [122]. Upreg-
ulation of specific IncRNAs in reproductive cancer develop-
ment could be one of the features reminiscent of fetal
development and serves as one of the potential targets for
therapeutic interventions.

6. Conclusion and Future Perspectives

With the advances in sequencing technology, especially at
the single-cell level, more and more IncRNAs have been
identified at specific stages or within a particular type of
cells, during human embryo and reproductive development.
While expanding the repositories of IncRNAs, we notice that
a unique subset of IncRNAs is expressed during human
development. Dissection of the function of human-specific
IncRNAs may be of preeminent importance for understand-
ing the unique specifics of human development.

As a newly discovered role in gene regulatory networks,
IncRNAs provide an additional layer of complexity for tran-
scriptional and posttranscriptional regulation of gene
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expression programs. In addition, an increasing number of
IncRNAs are differentially expressed within the disease tis-
sues. They were found to regulate the initiation and progres-
sion of reproductive diseases through mediating the gene
expression program. However, most of the functional results
are based on the analysis in vitro on disease-related cell lines.
Rigorous investigations in vivo or in organoids that resemble
the physiological environment of development or diseases
are necessary to reveal the biological and physiological func-
tions of IncRNAs.

IncRNAs are proposed as therapeutic or diagnostic tar-
gets for disease treatment, as many of their expression are
restricted to a specific tissue/or cell type within a specific cel-
lular stage, which renders superior specificity. Furthermore,
the diversity of strategies to target IncRNAs offers a wide
range of therapeutic options. At the transcription level, we
can inhibit the expression of IncRNAs by genome editing
techniques or upregulate their expression by knockdown of
the corresponding natural antisense transcripts (NATs). At
the posttranslational level, IncRNAs can be degraded by
nucleic acid-based approaches, including siRNAs, antisense
oligonucleotides (ASO), and morpholinos.

Although immense enthusiasm is aroused in the field of
IncRNA-based therapy, especially nucleic acid-based
approaches, several challenges must be addressed before
the progression to large-scale clinical applications. First, we
need to have a thorough understanding of the molecular
function of IncRNAs to identify disease-determining
IncRNAs. Second, robust and physiologically relevant pre-
clinical models need to be established. As we mentioned
above, a few IncRNAs associated with diseases are human/
primate-specific or even patient-specific. So patient-derived
xenograft models or 3D organoids have gained much inter-
est in preclinical research. Third, for nucleic acid-based ther-
apies, a lack of an efficient delivery system to cross the
cellular plasma membrane, the risk of the overactivating
innate immune response, and the possibility of the off-
target effect are the main issues that need to be solved.
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